Cartesian Closed Double Categories

Susan Niefield

Union College Schenectady, NY

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Cartesian Closed Categories

Two approaches for a cartesian 1-category C to be closed Objectwise: () × Y has a right adjoint, for all Y, denoted $(-)^Y$ As a bifunctor: C^{op} × C $\xrightarrow{[,]}$ C s.t. C(X × Y, Z) \cong C(X, [Y, Z])

In [N 2020], we showed Y is lax exponentiable in \mathbb{D} iff it is exponentiable in \mathbb{D}_0 , for "glueing categories" \mathbb{D} , with examples \mathbb{C} at, \mathbb{P} os, \mathbb{L} oc, and \mathbb{T} op, so \mathbb{C} at and \mathbb{P} os are objectwise lax cc

We'll see that the two approaches differ for double categories

Outline

- 1. Double categories and examples
- 2. Lax double functors and adjoints
- 3. Lax cartesian closed double categories
- 4. Objectwise lax cartesian closed double categories

5. Lax locally cartesian closed double categories

Why lax?

Double Categories

A double category \mathbb{D} is a pseudo internal category in CAT

$$\mathbb{D}_1 \times_{\mathbb{D}_0} \mathbb{D}_1 \xrightarrow{\odot} \mathbb{D}_1 \xrightarrow{s \\ \underbrace{\leftarrow \operatorname{id}^{\bullet}}_t \end{array}} \mathbb{D}_0$$

Objects X of \mathbb{D}_0 , called objects of \mathbb{D}

Morphisms $X \xrightarrow{f} Y$ of \mathbb{D}_0 , called horizontal morphisms of \mathbb{D}

Objects $X_s \xrightarrow{u} X_t$ of \mathbb{D}_1 , called vertical morphism of \mathbb{D}

 $\begin{array}{ccc} & X_s \stackrel{f_s}{\to} Y_s \\ \text{Morphisms} & u_V^{\dagger} & \varphi & _V^{\dagger} v & \text{of } \mathbb{D}_1, \text{ called cells of } \mathbb{D} \\ & X_t \stackrel{\sim}{\to} Y_t \end{array}$

Examples

Note: Also $\text{Span}(\mathcal{D})$ and $\text{Cosp}(\mathcal{D})$, for \mathcal{D} with pbs and pos, resp.

Cat: categories, functors, profunctors, $u \xrightarrow{\varphi} v(f_s, f_t)$

Q-Rel: sets, functions, Q-valued relations, $u \le v(f_s, f_t)$ for a quantale Q, where $X_s \times X_t \stackrel{u}{\twoheadrightarrow} Q$

Note: $\mathbb{R}el \cong 2\text{-}\mathbb{R}el$

Lax Functors

A lax functor $F : \mathbb{D} \longrightarrow \mathbb{E}$ consists of functors $F_0 : \mathbb{D}_0 \longrightarrow \mathbb{E}_0$ and $F_1 : \mathbb{D}_1 \longrightarrow \mathbb{E}_1$ compatible with *s* and *t*, and cells

$$\operatorname{id}_{F_0X}^{\bullet} \longrightarrow F_1(\operatorname{id}_X^{\bullet}) \quad \text{and} \quad F_1 \overline{u} \odot F_1 u \longrightarrow F_1(\overline{u} \odot u)$$

satisfying naturality and coherence conditions

 LxDbl denotes the 2-category double categories and lax functors

Oplax and pseudo functors are defined with the cells in the opposite direction and invertible, respectively

Definition (A 18)

 \mathbb{D} is called lax cartesian (AKA pre-cartesian) if the pseudo functors $\Delta \colon \mathbb{D} \to \mathbb{D} \times \mathbb{D}$ and $! \colon \mathbb{D} \to \mathbb{1}$ have right adoints \times and 1 in LxDbl; and \mathbb{D} is called cartesian if \times and 1 are pseudo functors

Lax Cartesian Closed Double Categories

Definition

A lax cartesian double category \mathbb{D} is lax cartesian closed if there is a lax functor $[-,-]: \mathbb{D}^{\mathrm{op}} \times \mathbb{D} \longrightarrow \mathbb{D}$ with natural bijections $\mathbb{D}_0(X \times Y, Z) \cong \mathbb{D}_0(X, [Y, Z])$ and $\mathbb{D}_1(u \times v, w) \cong \mathbb{D}_1(u, [v, w])$

Note: imes and [-,-] are compatible with s and t, being lax functors

Theorem

Suppose \mathbb{D} is cartesian a double category. Then \mathbb{D} is lax cartesian closed if and only if \mathbb{D}_0 and \mathbb{D}_1 are cartesian closed categories satisfying $s[v, w] = Z_s^{Y_s}$ and $t[v, w] = Z_t^{Y_t}$

Proof.

(\Rightarrow) Clear (\Leftarrow) To show [-,-] is lax, use x oplax and the unit ε Examples

 \mathbb{S} pan is lax cartesian closed via $[Y, Z]_0 = Z^Y$ and $[v, w]_1$ given by

Note: Also, $\text{Span}(\mathcal{D})$, for cartesian closed \mathcal{D} with equalizers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Examples, cont.

 \mathbb{C} osp is not lax cartesian closed, since $s[v, w] \neq Z_s^{Y_s}$; as \mathbb{C} osp₁ is a presheaf topos and one can show elements of $[v, w]_s$ correspond to

We'll see $\mathbb{C}\mathrm{osp}$ is "objectwise" lax cartesian closed

Cat is lax cartesian closed via $[Y, Z]_0 = Z^Y$ in Cat₀ and

$$[v, w]_{1}(\sigma_{s}, \sigma_{t}) = \begin{cases} Y_{s} \xrightarrow{\sigma_{s}} Z_{s} \\ v \downarrow & \Rightarrow & \downarrow w \\ Y_{t} \xrightarrow{\sigma_{t}} Z_{t} \end{cases}$$

Examples, cont.

Q- \mathbb{R} el is lax cartesian closed, when Q is a locale, via

$$(u \times v)((x_s, y_s), (x_t, y_t)) = u(x_s, x_t) \wedge v(y_s, y_t)$$

with $[Y, Z]_0 = Z^Y$ in Sets and $[v, w]_1 \colon Z_s^{Y_s} \dashrightarrow Z_t^{Y_t}$ given by
 $[v, w]_1(\sigma_s, \sigma_t) = \bigwedge_{(y_s, y_t)} (v(y_s, y_t) \rightarrow w(\sigma_s y_s, \sigma_t y_t))$
defined using \rightarrow in the locale Q

Then

as $u \times v \leq w(f_s, f_t)$ iff $u \leq (v(y_s, y_t) \rightarrow w(f_s(-, y_s), f_t(-, y_t)))$, for all (y_s, y_t) , iff $u \leq [v, w]_1(\hat{f}_s, \hat{f}_t)$

Objectwise Lax Cartesian Closed Double Categories

Definition

A double category \mathbb{D} is called objectwise lax cartesian closed if $(-) \times Y \colon \mathbb{D} \longrightarrow \mathbb{D}$ exists and has a right adjoint in LxDbl, for all Y

Note: Cat, Span(D), and Q-Rel are examples, for D, Q as above, since lax cartesian closed implies objectwise lax cartesian closed

 $\mathbb{C}osp(\mathcal{D})$ is objectwise lax cartesian closed, for \mathcal{D} a cartesian closed category with pushouts, since

Lax Locally Cartesian Closed Double Categories

Definition

 $\mathbb D$ is called lax locally cartesian closed if every double slice $\mathbb D/\!/B,$ is lax cartesian closed, where

$$(\mathbb{D}/\!/B)_0 = \mathbb{D}_0/B$$
 and $(\mathbb{D}/\!/B)_1 = \mathbb{D}_1/\operatorname{id}_B^{ullet}$

- Cat is not, since $(Cat//2)_1 \cong Cat/(2 \times 2)$
- Span(D) is lax locally cartesian closed, if D has pbs and is locally cartesian closed, since Span(D)//B ≃ Span(D/B)
- Q-Rel is lax locally cartesian closed, if Q is a locale, since $Q\text{-}\mathbb{R}\mathrm{el}/\!/B\simeq (B^*Q)\text{-}\mathbb{R}\mathrm{el}(\mathrm{Sets}/B)$

where B^*Q is an internal locale in the topos Sets/B

References

- E. Aleiferi, Cartesian Double Categories with an Emphasis on Characterizing Spans, Dalhousie PhD Thesis, 2018, https://arxiv.org/abs/1809.06940.
- M. Grandis and R. Paré, Adjoints for double categories, Cahiers 45 (2004), 193–240.
- S. B. Niefield, Exponentiability in double categories and the glueing construction, TAC 35 (2020), 1208–1226.
- S. B. Niefield, Cartesian closed double categories, to appear in TAC in memory of Marta Bunge.