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Cartesian Closed Categories

Two approaches for a cartesian 1-category C to be closed

Objectwise: ( )× Y has a right adjoint, for all Y , denoted (−)Y

As a bifunctor: Cop× C
[ , ]// C s.t. C(X × Y ,Z ) ∼= C(X , [Y ,Z ])

In [N 2020], we showed Y is lax exponentiable in D iff it is
exponentiable in D0, for “glueing categories” D, with examples
Cat, Pos, Loc, and Top, so Cat and Pos are objectwise lax cc

We’ll see that the two approaches differ for double categories
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Why lax?



Double Categories

A double category D is a pseudo internal category in CAT

D1 ×D0 D1
� // D1

oo id•
s //

t
// D0

Objects X of D0, called objects of D

Morphisms X
f // Y of D0, called horizontal morphisms of D

Objects Xs
u //• Xt of D1, called vertical morphism of D
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Xs Ys
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v��
• •ϕ of D1, called cells of D



Examples
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Note: Also Span(D) and Cosp(D), for D with pbs and pos, resp.

Cat: categories, functors, profunctors, u
ϕ // v(fs , ft)

Q-Rel: sets, functions, Q-valued relations, u ≤ v(fs , ft)

for a quantale Q, where Xs × Xt
u // Q

Note: Rel ∼= 2-Rel



Lax Functors

A lax functor F : D // E consists of functors F0 : D0
// E0 and

F1 : D1
// E1 compatible with s and t, and cells

id•
F0X

// F1( id•
X ) and F1ū � F1u // F1(ū � u)

satisfying naturality and coherence conditions

LxDbl denotes the 2-category double categories and lax functors

Oplax and pseudo functors are defined with the cells in the
opposite direction and invertible, respectively

Definition (A 18)

D is called lax cartesian (AKA pre-cartesian) if the pseudo functors
∆: D // D× D and ! : D // 1 have right adoints × and 1 in
LxDbl; and D is called cartesian if × and 1 are pseudo functors



Lax Cartesian Closed Double Categories

Definition
A lax cartesian double category D is lax cartesian closed if there
is a lax functor [−,−] : Dop × D // D with natural bijections
D0(X × Y ,Z ) ∼= D0(X , [Y ,Z ]) and D1(u × v ,w) ∼= D1(u, [v ,w ])

Note: × and [−,−] are compatible with s and t, being lax functors

Theorem
Suppose D is cartesian a double category. Then D is lax cartesian
closed if and only if D0 and D1 are cartesian closed categories
satisfying s[v ,w ] = Zs

Ys and t[v ,w ] = Zt
Yt

Proof.
(⇒) Clear
(⇐) To show [−,−] is lax, use x oplax and the unit ε



Examples

Span is lax cartesian closed via [Y ,Z ]0 = ZY and [v ,w ]1 given by
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Since
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Note: Also, Span(D), for cartesian closed D with equalizers



Examples, cont.

Cosp is not lax cartesian closed, since s[v ,w ] 6= ZYs
s ; as Cosp1 is a

presheaf topos and one can show elements of [v ,w ]s correspond to
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We’ll see Cosp is “objectwise” lax cartesian closed

Cat is lax cartesian closed via [Y ,Z ]0 = ZY in Cat0 and

[v ,w ]1(σs , σt) =

 Yt Ztσt
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Examples, cont.

Q-Rel is lax cartesian closed, when Q is a locale, via

(u × v)((xs , ys), (xt , yt)) = u(xs , xt) ∧ v(ys , yt)

with [Y ,Z ]0 = ZY in Sets and [v ,w ]1 : ZYs
s

//• ZYt
t given by

[v ,w ]1(σs , σt) =
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(ys ,yt)

(
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)
defined using // in the locale Q
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as u× v ≤ w(fs−, ft−) iff u ≤
(
v(ys , yt) //w(fs(−, ys), ft(−, yt))

)
,

for all (ys , yt), iff u ≤ [v ,w ]1(f̂s , f̂t)



Objectwise Lax Cartesian Closed Double Categories

Definition
A double category D is called objectwise lax cartesian closed if
(−)× Y : D //D exists and has a right adjoint in LxDbl, for all Y

Note: Cat, Span(D), and Q-Rel are examples, for D, Q as above,
since lax cartesian closed implies objectwise lax cartesian closed

Cosp(D) is objectwise lax cartesian closed, for D a cartesian closed
category with pushouts, since
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Lax Locally Cartesian Closed Double Categories

Definition
D is called lax locally cartesian closed if every double slice D//B, is
lax cartesian closed, where

(D//B)0 = D0/B and (D//B)1 = D1/ id
•
B

• Cat is not, since (Cat//2)1 ∼= Cat/(2× 2)

• Span(D) is lax locally cartesian closed, if D has pbs and is
locally cartesian closed, since Span(D)//B ' Span(D/B)

• Q-Rel is lax locally cartesian closed, if Q is a locale, since

Q-Rel//B ' (B∗Q)-Rel(Sets/B)

where B∗Q is an internal locale in the topos Sets/B
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