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Summary

Magnitude homology is a homology theory of enriched categories.

It specializes to a homology theory of metric spaces.

Main theorem (with Adrián Doña Mateo) Two closed subsets of RN

have the same magnitude homology if and only if they are related by a
certain concrete geometric condition.



1. What is magnitude homology?

Richard Hepworth and Simon Willerton,
Categorifying the magnitude of a graph.

Tom Leinster and Michael Shulman, Magnitude
homology of enriched categories and metric spaces.



Warm-up: homology of an ordinary category

Any unenriched category X gives rise to a chain complex C∗(X ):

Cn(X ) =
∐

x0,...,xn∈X

Z ·
(
X (x0, x1)× · · · × X (xn−1, xn)

)
where Z · − : Set → Ab is the free abelian group functor.

The differential ∂ is
∑n

i=0(−1)i∂i , where ∂i composes at xi (for 0 < i < n)
or forgets the first/last factor (for i ∈ {0, n}).
The homology H∗(X ) of X is the homology of C∗(X ).

Key ingredients here:

• (Set,×, 1) is a monoidal category, whose unit object 1 is terminal.

• Ab is both abelian and monoidal.

• Z · − is a strong monoidal functor.



The magnitude homology of an enriched category
Setup: Imitating the unenriched case, we start with:

• a monoidal category V whose unit object is terminal (generalizing Set)

• a monoidal abelian category A (generalizing Ab)

• a strong monoidal functor Σ: V → A (generalizing Z · −).

Let X be a V -category.

Define a chain complex C∗(X ) in A by

Cn(X ) =
∐

x0,...,xn∈X

Σ
(
X (x0, x1)⊗ · · · ⊗ X (xn−1, xn)

)
.

It has differential ∂ =
∑n

i=0(−1)i∂i , where ∂i either composes at xi or
forgets the first/last factor.

Definition The magnitude homology MH∗(X ) of X is the homology of
C∗(X ).



The magnitude homology of a metric space

Metric spaces are categories enriched in V = (([0,∞),≥),+, 0).

To take the magnitude homology of metric spaces, we’ll need:

• a monoidal abelian category A
• a strong monoidal functor Σ: [0,∞) → A.

We choose:

• A = Ab[0,∞) with the convolution product: (A⊗ B)ℓ =
∐

k+m=ℓ

Ak ⊗ Bm

• Σ: [0,∞) → Ab[0,∞) to be the functor defined by

(Σ(ℓ))(m) =

{
Z if ℓ = m

0 otherwise

(ℓ,m ∈ [0,∞)).



The magnitude homology of a metric space, explicitly

Let X be a metric space.

The chain complex C∗(X ) in Ab[0,∞) is given by

C ℓ
n(X ) = Z ·

{
(x0, . . . , xn) : d(x0, x1) + · · ·+ d(xn−1, xn) = ℓ

}
(n ∈ N, ℓ ∈ [0,∞)).

Equivalently, we can replace C∗(X ) by a normalized version, Ĉ∗(X ):

Ĉ ℓ
n(X ) = Z ·

{
(x0, . . . , xn) : x0 ̸= · · · ̸= xn, d(x0, x1)+ · · ·+d(xn−1, xn) = ℓ

}
.

The differential ∂ : Ĉn(X ) → Ĉn−1(X ) is
∑

0<i<n(−1)i∂i , where

∂i (x0, . . . , xn) =

{
(x0, . . . , xi−1, xi+1, . . . , xn) if xi is between xi−1 and xi+1

0 otherwise.

Then MH∗(X ) is the homology of the chain complex Ĉ∗(X ) in Ab[0,∞).



Magnitude homology is graded!

Magnitude homology of a metric space is a [0,∞)-graded homology theory.

That is, when X is a metric space and n is a natural number, MHn(X ) is not
just an abelian group, but an object of Ab[0,∞) — a family(

MHℓ
n(X )

)
ℓ∈[0,∞)

of abelian groups.

(Compare Khovanov homology. . . )



Sample results
• 1st magnitude homology detects convexity:

Theorem Let X be a closed subset of RN . Then

X is convex ⇐⇒ MHℓ
1(X ) = 0 for all ℓ > 0.

• Work of Kyonori Gomi substantiates the slogan:

The more geodesics are unique, the more magnitude homology is trivial.

• Ordinary homology detects the existence of holes.

Magnitude homology detects the size of holes.

Example (Ryuki Kaneta & Masahiko Yoshinaga) Let r > 0 and

X = {x ∈ RN : ∥x∥ ≥ r}.

Then r = inf{ℓ/2n : MHℓ
n(X ) = 0}.



2. Preparation for the main
theorem



What does it mean to “have the same homology”?
For any homology theory whatsoever, what does it mean for two objects X
and Y to “have the same homology”? There are several interpretations. . .

Answer 1 Crude: H∗(X ) ∼= H∗(Y ).

Usually seen as unhelpful, too loose.

Unhelpful for us too. E.g. Emily Roff has exhibited metric spaces
with the same magnitude homology (in this sense) but different
topological homology.

Answer 2 Quasi-isomorphism: Declare X and Y to “have the same
homology” if there is a map X → Y inducing an iso H∗(X ) → H∗(Y ).

Answer 3 One step further: Ask for existence of maps X ⇄ Y inducing
mutually inverse maps H∗(X ) ⇄ H∗(Y ).

We follow Answer 3, where our objects are metric spaces and map means
distance-decreasing (= 1-Lipschitz = weakly contractive = short) map.



Another preview of the main theorem

Theorem (with Adrián Doña Mateo) Let X and Y be nonempty closed
subsets of RN . The following are equivalent:

• there are distance-decreasing maps X ⇄ Y inducing mutually inverse
maps MH∗

n(X ) ⇄ MH∗
n(Y ) for all n ≥ 1

• X and Y are related by a certain concrete geometric condition.

Next: that “concrete geometric condition”.



The inner boundary of a space

Let X be a metric space.

Points x , y ∈ X are adjacent if they are distinct and there is no point z ∈ X
strictly between them (d(x , z) + d(z , y) = d(x , y) ⇒ z ∈ {x , y}).
The inner boundary of X is

ρX = {x ∈ X : x is adjacent to some point of X}.

Note If X ⊆ RN then ρX ⊆ ∂X .



Examples of inner boundaries (all closed subsets of RN)
• ρX : inner boundary of X (the set of points adjacent to some other point)

• conv(ρX ): closure of convex hull of ρX

• core(X ) = conv(ρX ) ∩ X

Fact: core(core(X )) = core(X )

R2 with two discs removed

ρX = ∅
⇐⇒

X is convex

ρX is not
closed



The closed convex hull of the inner boundary
• ρX : inner boundary of X (the set of points adjacent to some other point)

• conv(ρX ): closure of convex hull of ρX

• core(X ) = conv(ρX ) ∩ X

Fact: core(core(X )) = core(X )



The core of a subset of RN

• ρX : inner boundary of X (the set of points adjacent to some other point)

• conv(ρX ): closure of convex hull of ρX

• core(X ) = conv(ρX ) ∩ X Fact: core(core(X )) = core(X )



3. The main theorem



The main theorem
Theorem (with Adrián Doña Mateo) Let X and Y be nonempty closed
subsets of RN . The following are equivalent:

(i) there exist distance-decreasing maps X ⇄ Y inducing mutually inverse
maps MH∗

n(X ) ⇄ MH∗
n(Y ) for all n ≥ 1

(ii) there exist distance-decreasing maps X ⇄ Y inducing mutually inverse
maps MH∗

n(X ) ⇄ MH∗
n(Y ) for some n ≥ 1

(iii) core(X ) and core(Y ) are isometric.

Proof A theorem of Kaneta and Yoshinaga + some convex geometry. □

In particular, X and core(X ) have the same magnitude homology, for any X .

Magnitude homology equivalence
reduces to a concrete geometric condition,

for closed subsets of Euclidean space.



References

. . . plus paper with Adrián Doña Mateo in preparation.



Frequently asked questions



What about persistent homology?

Magnitude homology specializes to a homology theory of metric spaces.

Persistent homology is another homology theory of metric spaces.

Both involve a real scale parameter.

How are they related?

Answer They capture quite different information about a space.

Two independent comparisons:

Nina Otter, Magnitude meets persistence: homology theories for
filtered simplicial sets.

Simon Cho, Quantales, persistence, and magnitude homology.



Why the name “magnitude homology”?

Magnitude is a numerical invariant of enriched categories.

Magnitude homology is intended to be a categorification of magnitude, in
the sense that the Euler characteristic of magnitude homology is magnitude.

This has been proved to be the case:

• for finite graphs by Hepworth and Willerton

• for finite metric spaces by Leinster and Shulman.



Does magnitude homology categorify magnitude?

For non-finite metric spaces, magnitude encodes a lot of geometric
information.

Examples For compact X ⊆ RN , if you know the magnitude of tX for all
t > 0, you can recover:

• the dimension of X (Mark Meckes)

• the volume of X (Juan Antonio Barceló and Tony Carbery)

• the surface area of X (Heiko Gimperlein and Magnus Goffeng).

In particular, different convex sets usually have different magnitude. . .
but they all have trivial magnitude homology!

Major challenge Refine the definition of magnitude homology so that for
non-finite metric spaces too, it categorifies magnitude.


