TOWARDS A SUBSTITUTION CALCULUS FOR DINATURAL TRANSFORMATIONS

Guy McCusker, Alessio Santamaria

OF SUSSEX

DINATURAL TRANSFORMATIONS

Dinatural transformations [4] generalise natural ones for mixed-variance functors.

Let $F, G: \mathbb{C}^{\mathrm{op}} \times \mathbb{C} \to \mathbb{D}$ be functors. A family $\varphi = (\varphi_A: F(A, A) \to G(A, A))_{A \in \mathbb{C}}$ is a *dinatural transformation* $\varphi \colon F \to G$ iff for all $f \colon A \to B$ in \mathbb{C} the following commutes:

HORIZONTAL COMPOSITION

Natural transformations compose also horizontally. In the following situation:

their horizontal composition $\psi * \varphi : HF \to KG$ is the natural transformation whose *A*-th component, $A \in \mathbb{C}$, is either leg of

$$HF(A) \xrightarrow{\psi_{F(A)}} KF(A)$$

Dinatural transformations arise in many different contexts: they define the notion of end [13, 18] of certain functors, which in appropriate enriched contexts allows to compute Kan extensions [5, 9]; they correspond to proofs in intuitionistic and multiplicative linear logic [2, 7, 15]; they provide a semantics for the notion of *parametric polymorphism* in the second-order λ -calculus [1, 3, 6, 17]; they characterise fixed point operators on many categories of domains [16]; and very recently they were proved to provide an operational semantics [8] as well as to model subtyping and bounded quantification in a game semantics [11, 12] for higher-order languages.

Yet, they suffer from a troublesome shortcoming: they do not compose.

There is no way, in general, to infer the commutativity of the outer hexagon from that of the two inner ones. If either φ or ψ is natural, or if the middle diamond above is a pushout or a pullback, then $\psi \circ \varphi$ is dinatural. However, these are far from being satisfactory solutions for the compositionality problem, for either they are too restrictive (as in the first case), or they speak of properties enjoyed not by φ and ψ themselves, but rather by other structures, namely one of the functors involved.

$$H(\varphi_A) \bigvee (\psi * \varphi)_A \qquad \bigvee K(\varphi_A)$$
$$HG(A) \xrightarrow{\psi_{G(A)}} KG(A)$$

* is associative, unitary, and satisfies an interchange law with vertical composition. Let now φ, ψ be dinatural transformations.

 $\psi * \varphi \colon H(G^{\text{op}}, F) \to K(F^{\text{op}}, G)$ is the family of morphisms whose A-th component, $A \in \mathbb{C}$, is either leg of

Theorem (Horizontal compositionality)

If φ and ψ are dinatural, so is $\psi * \varphi$.

PROOF. The outer hexagon below is the dinaturality condition of $\psi * \varphi$:

VERTICAL COMPOSITION

Let \mathbb{C} be a cartesian closed category, and consider the evaluation morphism $eval_{A,B}: A \times (A \Rightarrow B) \rightarrow B$. We see it as a transformation (i.e. a family of morphisms) eval: $F \to \operatorname{id}_{\mathbb{C}}$ dinatural in A and natural in B, where $(X, Y, Z) \longmapsto X \times (Y \Rightarrow Z)$

We can associate to eval a *graph* that reflects its signature:

with a graph $\Gamma(\varphi)$ that reflects its signature:

The 3 upper boxes correspond to the arguments of *F*, the 1 lower box to the argument of $id_{\mathbb{C}}$, the 2 middle black squares to the variables of eval. The edges tell us which arguments of *F* and $id_{\mathbb{C}}$ we have to equate to which variable of the transformation eval when we write down its general component $eval_{AB}$. The direction of the edges and the colour shade of the upper/lower boxes keep track of the mixed variance of *F* and $id_{\mathbb{C}}$. In general, we consider arbitrary categories \mathbb{B} and \mathbb{C} , functors $F : \mathbb{B}^{\alpha} \to \mathbb{C}$ and $G : \mathbb{B}^{\beta} \to \mathbb{C}$, with $\alpha, \beta \in \text{List}\{+, -\}$, and transformations $\varphi = (\varphi_{A_1, \dots, A_k}) \colon F \to G$ in k variables together

* is associative and unitary. How about an interchange law with vertical composition? Recall in the natural case:

$$\mathbb{C} \xrightarrow{\psi \varphi} \mathbb{D} \xrightarrow{\psi \varphi'} \mathbb{E}$$

 $(\psi' \circ \varphi') * (\psi \circ \varphi) = (\psi' * \psi) \circ (\varphi' * \varphi)$

Let now $\varphi, \psi, \varphi', \psi'$ be dinatural:

such that $\psi \circ \varphi$ and $\psi' \circ \varphi'$ are dinatural. Then

• • •

In the above, the *i*-th upper/lower box is linked with the *j*-th middle black square if the *i*-th argument of *F*/*G* is A_j when we write down the general component $\varphi_{A_1,...,A_k}$ of φ .

Theorem (Vertical Compositionality), cf.[14]

Let $\varphi \colon F \to G$ and $\psi \colon G \to H$ be transformations in many variables as above, dinatural in all their variables. If the composite graph $\Gamma(\psi) \circ \Gamma(\varphi)$, obtained by glueing together $\Gamma(\varphi)$ and $\Gamma(\psi)$ along the *G*-boxes, is *acyclic*, then $\psi \circ \varphi$ is dinatural in all its variables.

Notice: if either φ or ψ is natural, then their composite graph is always acyclic. If instead they are both dinatural and of the form $\varphi_A \colon F(A, A) \to G(A, A)$ and $\psi_A \colon G(A, A) \to G(A, A)$ H(A, A), then $\Gamma(\psi) \circ \Gamma(\varphi)$ is *never* acyclic! We need to consider many-variable functors and transformations to unlock compositionality.

$\varphi' * \varphi \colon J(G^{\mathrm{op}}, F) \to K(F^{\mathrm{op}}, G) \qquad \psi' * \psi \colon K(H^{\mathrm{op}}, G) \to L(G^{\mathrm{op}}, H)$

They are not composable at all, not even as transformations!

TOWARDS A SUBSTITUTION CALCULUS

The usual calculus of natural transformations stems from the cartesian closedness of \mathbb{C} at, as it is embodied in the functor $M : [\mathbb{B}, \mathbb{C}] \times [\mathbb{A}, \mathbb{B}] \rightarrow [\mathbb{A}, \mathbb{C}]$. We aim to develop a calculus of many-variable functors and dinatural transformations centred around the notion of *substitution* as originally envisioned by Kelly [10]. Substitution generalises ordinary composition of functors and horizontal composition of (di)natural transformations for the many-variable case. We shall define a generalised functor category $\{\mathbb{B}, \mathbb{C}\}$ over an appropriate category \mathbb{G} of graphs, and prove that $\{\mathbb{B}, -\}$ has a left adjoint $- \circ \mathbb{B}$, making $\mathbb{C}^{at}/\mathbb{G}$ monoidal closed. The analogue of the functor M above, now of the form $\{\mathbb{B}, \mathbb{C}\} \circ \{\mathbb{A}, \mathbb{B}\} \rightarrow \{\mathbb{A}, \mathbb{C}\}, \text{ will yield the desired calculus.}$