Towards a Substitution Calculus for Dinatural Transformations

DINATURAL TRANSFORMATIONS

Dinatural transformations [4] generalise natural ones for mixed-variance functors.
Let $F, G: \mathbb{C}^{\text {op }} \times \mathbb{C} \rightarrow \mathbb{D}$ be functors. A family $\varphi=\left(\varphi_{A}: F(A, A) \rightarrow G(A, A)\right)_{A \in \mathbb{C}}$ is a dinatural transformation $\varphi: F \rightarrow G$ iff for all $f: A \rightarrow B$ in \mathbb{C} the following commutes:

Dinatural transformations arise in many different contexts: they define the notion of end $[13,18]$ of certain functors, which in appropriate enriched contexts allows to compute Kan extensions [5, 9]; they correspond to proofs in intuitionistic and multiplicative linear logic [2, 7, 15]; they provide a semantics for the notion of parametric polymorphism in the second-order λ-calculus $[1,3,6,17]$; they characterise fixed point operators on many categories of domains [16]; and very recently they were proved to provide an operational semantics [8] as well as to model subtyping and bounded quantification in a game semantics [11, 12] for higher-order languages.
Yet, they suffer from a troublesome shortcoming: they do not compose.

There is no way, in general, to infer the commutativity of the outer hexagon from that of the two inner ones. If either φ or ψ is natural, or if the middle diamond above is a pushout or a pullback, then $\psi \circ \varphi$ is dinatural. However, these are far from being satisfactory solutions for the compositionality problem, for either they are too restrictive (as in the first case), or they speak of properties enjoyed not by φ and ψ themselves, but rather by other structures, namely one of the functors involved.

VERTICAL COMPOSITION

Let \mathbb{C} be a cartesian closed category, and consider the evaluation morphism $\operatorname{eval}_{A, B}: A \times(A \Rightarrow B) \rightarrow B$. We see it as a transformation (i.e. a family of morphisms)
 We can associate to eval a graph that reflects its signature:

The 3 upper boxes correspond to the arguments of F, the 1 lower box to the argument of id_{C}, the 2 middle black squares to the variables of eval. The edges tell us which arguments of F and id ${ }_{C}$ we have to equate to which variable of the transformation eval when we write down its general component eval $_{A B}$. The direction of the edges and the colour shade of the upper/lower boxes keep track of the mixed variance of F and id ${ }_{\mathbb{C}}$.
In general, we consider arbitrary categories \mathbb{B} and \mathbb{C}, functors $F: \mathbb{B}^{\alpha} \rightarrow \mathbb{C}$ and $G: \mathbb{B}^{\beta} \rightarrow \mathbb{C}$, with $\alpha, \beta \in \operatorname{List}\{+,-\}$, and transformations $\varphi=\left(\varphi_{A_{1}, \ldots, A_{k}}\right): F \rightarrow G$ in k variables together with a graph $\Gamma(\varphi)$ that reflects its signature:

In the above, the i-th upper/lower box is linked with the j-th middle black square if the i-th argument of F / G is A_{j} when we write down the general component $\varphi_{A_{1}, \ldots, A_{k}}$ of φ.

Theorem (Vertical Compositionality), cf.[14]

Let $\varphi: F \rightarrow G$ and $\psi: G \rightarrow H$ be transformations in many variables as above, dinatural in all their variables. If the composite graph $\Gamma(\psi) \circ \Gamma(\varphi)$, obtained by glueing together $\Gamma(\varphi)$ and $\Gamma(\psi)$ along the G-boxes, is acyclic, then $\psi \circ \varphi$ is dinatural in all its variables.
Notice: if either φ or ψ is natural, then their composite graph is always acyclic. If instead they are both dinatural and of the form $\varphi_{A}: F(A, A) \rightarrow G(A, A)$ and $\psi_{A}: G(A, A) \rightarrow$ $H(A, A)$, then $\Gamma(\psi) \circ \Gamma(\varphi)$ is never acyclic! We need to consider many-variable functors and transformations to unlock compositionality.

Horizontal composition

Natural transformations compose also horizontally. In the following situation:

their horizontal composition $\psi * \varphi: H F \rightarrow K G$ is the natural transformation whose A-th component, $A \in \mathbb{C}$, is either leg of

$$
\begin{aligned}
& H F(A) \xrightarrow{\psi_{F(A)}} K F(A) \\
& H\left(\varphi_{A}\right) \mid \\
& H G(A) \xrightarrow[\psi_{G(A)}]{ } K G\left(\varphi_{A}\right. \\
& H\left(\varphi_{A}\right)
\end{aligned}
$$

* is associative, unitary, and satisfies an interchange law with vertical composition. Let now φ, ψ be dinatural transformations.

$\psi * \varphi: H\left(G^{\mathrm{op}}, F\right) \rightarrow K\left(F^{\mathrm{op}}, G\right)$ is the family of morphisms whose A-th component, $A \in \mathbb{C}$, is either leg of

Theorem (Horizontal compositionality)
If φ and ψ are dinatural, so is $\psi * \varphi$.
Proof. The outer hexagon below is the dinaturality condition of $\psi * \varphi$:

* is associative and unitary. How about an interchange law with vertical composition? Recall in the natural case:

Let now $\varphi, \psi, \varphi^{\prime}, \psi^{\prime}$ be dinatural:

such that $\psi \circ \varphi$ and $\psi^{\prime} \circ \varphi^{\prime}$ are dinatural. Then

$$
\varphi^{\prime} * \varphi: J\left(G^{\mathrm{op}}, F\right) \rightarrow K\left(F^{\mathrm{op}}, G\right) \quad \psi^{\prime} * \psi: K\left(H^{\mathrm{op}}, G\right) \rightarrow L\left(G^{\mathrm{op}}, H\right)
$$

They are not composable at all, not even as transformations

Towards a substitution calculus

The usual calculus of natural transformations stems from the cartesian closedness of Cat, as it is embodied in the functor $M:[\mathbb{B}, \mathbb{C}] \times[\mathbb{A}, \mathbb{B}] \rightarrow[\mathbb{A}, \mathbb{C}]$. We aim to develop a calculus of many-variable functors and dinatural transformations centred around the notion of substitution as originally envisioned by Kelly [10]. Substitution generalises ordinary composition of functors and horizontal composition of (di)natural transformations for the many-variable case. We shall define a generalised functor category $\{\mathbb{B}, \mathbb{C}\}$ over an appropriate category \mathbb{G} of graphs, and prove that $\{\mathbb{B},-\}$ has a left adjoint $-\circ \mathbb{B}$, mak ing $\mathbb{C a t} / \mathbb{G}$ monoidal closed. The analogue of the functor M above, now of the form $\{\mathbb{B}, \mathbb{C}\} \circ\{\mathbb{A}, \mathbb{B}\} \rightarrow\{\mathbb{A}, \mathbb{C}\}$, will yield the desired calculus.

