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Abstract. Subobject classifiers are a fundamental notion of category theory, as they are the main ingredient of elementary toposes. A
2-dimensional generalization of subobject classifiers has been proposed by Weber, upgrading the monomorphisms (fibres of dimension 0)
to discrete opfibrations (fibres of dimension 1). The classification process then shifts from pullbacks to comma objects. Our main result is
that the study of the 2-dimensional classifiers can be reduced to dense generators. As an application, we find a 2-dimensional classifier in
2-presheaves and in stacks.

2-dimensional classifiers
In dimension 1, the archetypal subobject classifier is the set {T,F} of truth values. It allows to encode subsets
(and hence propositions) via characteristic functions, exhibiting Set as the archetypal elementary topos. We
identity a subset A ⊆ X with χA : X→ {T,F} that sends x to T if x ∈ A and to F otherwise.
Definition 1. Let C be a 1-category with pullbacks. A subobject classifier in C is a monomorphism
τ : 1 ↪→ Ω in C that is universal in the following sense: every subobject i : A ↪→ X in C is the pullback of τ
along a unique morphism χi : X→ Ω (called the characteristic morphism of i).
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Equivalently, for every X ∈ C the function

Gτ,X : E (X,Ω)→ Sub(X)

given by pulling back τ is a bijection.

If E has a subobject classifier, has all finite limits and is cartesian closed, then E is called an elementary
topos. In particular, it has an internal logic.
Remark 2. The archetypal characteristic functions are secretly considering the fibres of the inclusion
A ↪→ X. Such fibres are either singletons or empty and thus have dimension 0. In dimension 2, Weber
proposes to classify discrete opfibrations. Such morphisms have fibres of dimension 1, since their fibres are
(essentially) general sets.
Example 3. The archetypal 2-dimensional classification process is the construction of the category of ele-
ments (Grothendieck construction), that exhibits CAT as the archetypal elementary 2-topos. This construc-
tion can be captured either with a comma object from 1 : 1 → Set or with a pullback along a replacement,
that is precisely the lax limit of the arrow 1 : 1→ Set (comma from 1 : 1→ Set to the identity).
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Moving to dimension 2, we can either upgrade the classification process to be regulated by commas or still
take pullbacks but now of a discrete opfibration. Weber chose the latter, which is slightly more general.
Definition 4 (Weber). Let K be a 2-category. A 2-classifier in K is a discrete opfibration τ : Ω• → Ω in
K with small fibres such that for every F ∈ K the functor

Gτ,F : K (F,Ω)→ DOpFibK (X)

given by pulling back τ : Ω•→ Ω and calculating liftings of 2-cells along τ is fully faithful.
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We say that a discrete opfibration φ : G→ F in K is classified by τ if φ is in the essential image of Gτ,F.
Remark 5. The functors Gτ,F are automatically pseudonatural in F. We are asking Gτ,F to be an equivalence
of categories with its essential image, that could be smaller than all discrete opfibrations with small fibres.

Reduction to dense generators
We reduce the study of the conditions for a discrete opfibration τ : Ω• → Ω in a 2-category K to be a
2-classifier to dense generators. The study of what gets classified is reduced as well.
Definition 6. A 2-functor J : Y → K is dense if the restricted Yoneda embedding J̃ : K →

[
Y

op,CAT ]
that sends F ∈ K to K (J(−), F) is fully faithful.

If J is fully faithful, this is equivalent to ask each object F ∈ K to be a weighted 2-colimit of objects of Y
that is preserved by J̃ (we say J-absolute 2-colimit).
Example 7. The inclusion y of the representables inside 2-presheaves is a dense generator, as ỹ is the iden-
tity. Every 2-presheaf is a weighted 2-colimit of representables.

Assume K has terminal object, pullbacks along discrete opfibrations and comma objects. Let then
J : Y → K be a fully faithful dense generator of K .
Remark 8. We prove that we can check the faithfulness of the functors Gτ,F just on those F ∈ Y. This first
reduction actually only needs F to be any 2-colimit of objects ofY (i.e. J a naive generator).

Proposition 9 (M.). If for every Y ∈ Y the functor Gτ,Y : K (Y,Ω) → DOpFib (Y) is faithful, then for
every F ∈ K the functor Gτ,F : K (F,Ω)→ DOpFib (F) is faithful.

Idea. Given α, α′ : z =⇒ z′ : F→ Ω such that Gτ,F(α) = Gτ,F(α′), we want to show that α = α′. It suffices to
look at the 2-cells α ∗ΛA(X) given by whiskering α with the morphisms of the universal cocylinder that ex-
hibits F as a 2-colimit of objects ofY. But Gτ,D(A) (αΛA(X)) is essentially given by ΛA(X)∗

(
Gτ,F(α)

)
. □

Remark 10. The reduction of the fullness of the functors Gτ,F and of what gets classified requires more
technology. We need to consider the kind of 2-colimits described below. These give a theory equivalent to
that of weighted 2-colimits [Street, new proof M.[2]], but they are essentially conical.
Definition 11. Consider 2-functors W : Aop

→ CAT (a marking) with A small and F :
∫

W → K (a dia-
gram) where

∫
W is the Grothendieck construction of W. The oplax normal conical 2-colimit of F is given

by a universal oplax normal natural transformation
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where oplax normal means oplax with the request that Λ( f ,id) = id for every morphism ( f , id) in
(∫

W
)op

.

Construction 12 (M.[1]). Given F ∈ K , there exists a 2-diagram K :
∫

W → K which factors through
Y and makes F into an J-absolute oplax normal conical 2-colimit of K. Call Λ the universal oplax normal
cocone. Consider now q : F→M, a discrete opfibration µ : M•→M and the 2-pullback in K
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We express P as an oplax normal conical colimit of a diagram constructed from K and Λ. First we exhibit
q = oplaxn -colimK′q = oplaxn -colimK′q = oplaxn -colimK′ in K /lax M. This generalizes the well known fact that a colimit in a 1-dimensional
slice is precisely the map from the colimit of the domains which is induced by the universal property. We
need the lax slice because we only have essentially conical 2-colimits. Then we need to consider a change of
base 2-functor µ∗ between lax slices. The 2-functor

K /lax M
µ∗
−−→ K /lax M•

dom
−−−−→ K

preserves the colimit qqq, exhibiting P = oplaxn -colim
(
dom ◦µ∗ ◦ K′

)
. We can also apply this to q = idF.

Theorem 13 (M.). If for every Y ∈ Y the functor Gτ,Y : K (Y,Ω) → DOpFib (Y) is fully faithful, then
for every F ∈ K the functor Gτ,F : K (F,Ω)→ DOpFib (F) is full (and faithful).

Idea. Consider z, z′ : F→ Ω in K and h : Gτ,F(z)→ Gτ,F(z′). We produce α : z =⇒ z′ such that Gτ,F(α) = h.
We write F as an oplax normal conical 2-colimit of objects ofY and define the “components” of α by fullness
of the functors Gτ,Y. The faithfulness of the Gτ,Y’s guarantees that they induce a 2-cell α : z =⇒ z′. To prove
Gτ,F(α) = h, we use the universal property of a colimit, thanks to Construction 12. □

Remark 14. We now know that we can check on a dense generator if τ is a 2-classifier in K . We show
that we can also reduce the study of what τ classifies. This would be smooth in the bicategorical context,
considering bicolimits. In the context of strict 2-categories, we further ask that a normalization process is
possible. Such extra assumption is true for 2-presheaves.

Theorem 15 (M.). Let τ be a 2-classifier in K and φ : G→ F be a discrete opfibration in K . Consider
a 2-diagram D :

∫
W → K that factors through Y such that F = oplaxn -colimD and this is J-absolute

(guaranteed by density); call Λ the universal oplax normal cocone. The following facts are equivalent:

(i) φ is classified by τ, i.e. φ is in the essential image of Gτ,F;

(ii) for every (A,X) ∈
∫

W the change of base of φ along ΛA,X is in the essential image of Gτ,D(A,X)
and the operation of normalization described below is possible.

Idea. (i) =⇒ (ii): take as classifying morphism just a classifying morphism for φ precomposed with ΛA,X.
(ii) =⇒ (i): we induce the classifying morphism z : F→ Ωz : F→ Ωz : F→ Ω for φφφ by the universal property of the colimit
F = oplaxn -colimD. As every Gφ,D(A,X)(ΛA,X) is in the essential image of Gτ,D(A,X), we can consider the
oplax natural transformation χ given by the composite below on the left
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This is a sigma natural transformation, which would be enough to induce a morphism z : F→ Ω if we were
in a bicategorical context. In our strict context, we assume that we can find an oplax normal natural trans-
formation ℵ isomorphic to χ. Then the morphism z : F → Ω induced by ℵ is a classifying morphism for
φ with respect to τ. The strategy is to show that G is isomorphic over F to the 2-pullback of τ along z, by
Construction 12. □

Example 16. A fortiori, the study of the construction of the category of elements, that is the archetypal 2-
dimensional classification process (see Example 3), can be greatly reduced. Indeed the terminal 1 is a dense
generator in CAT . So we can just look at the discrete opfibrations over 1.

Gτ,1 : CAT (1, Set )→ Set
sends a functor 1 → Set to the set it picks, so it is an equivalence of categories. By the theorems above,
the construction of the category of elements is fully faithful and classifies all discrete opfibrations with small
fibres. Moreover, by the proof of Theorem 15, the classifying morphism for a φ is obtained by collecting all
its fibres, since the pullback of φ along B : 1→ B gives precisely the fibre over B.

The following proposition helps restrict a 2-classifier to a 2-classifier in a subcategory.

Proposition 17. Let τ′ : 1 → Ω in K such that its lax limit τ is a 2-classifier in K . Consider i : L ff
↪−→ K

with L closed under terminal and comma objects of K (that is, i lifts them) and such that i preserves discrete

opfibrations. Finally, let τ′L : 1 → ΩL in L such that i(ΩL)
ff
↪−→ Ω making the triangle below on the left

commute. Then the lax limit τL of τ′L is a 2-classifier in L . Moreover, given φ a discrete opfibration in L , if
i(φ) is classified by τ via a classifying morphism zzz that factorizes through i(ΩL)i(ΩL)i(ΩL) then φ is classified by τL .
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Applications (work in progress)

We can apply the theory shown above to find a 2-classifier in 2-presheaves and in stacks. The details of the
ideas below are to be checked.

Let A be a 2-category and consider K =
[Aop,CAT ]. We search for τ′ : 1 → Ω in K such that its lax

limit τ is a 2-classifier. The representables form a dense generator, so we can just look at discrete opfibrations
over representables. Wishing to classify all discrete opfibrations with small fibres, we want

Gτ,y(A) :
[A ,CAT ] (y(A),Ω

)
→ DOpFib (y(A)

)
to be an equivalence of categories for every A ∈ A . But then we want Ω(A) to be equivalent to

DOpFib (y(A)
)

for every A. The assignment A Ω
7−→ DOpFib (y(A)

)
only gives a pseudofunctor

Aop
→ CAT . In a bicategorical context, this would be perfectly fine. In our strict context, we replace

DOpFib (y(A)
)

with
[
q-
(
A
/
oplax A

)op
,Set
]
, where q-

(
A
/
oplax A

)
is the quotient of the oplax slice by its

2-cells. We should be able to do such replacement by an indexed version of the Grothendieck construction
that does not seem to appear in the literature:

OpFib [A ,CAT ] (F) ≃
[∫

F,CAT
]

that restricts to DOpFib [A ,CAT ] (F) ≃
[
q-
∫

F,Set
]

If A is a 1-category and F : A → Set then the right hand side equivalence becomes the well known[Aop,Set ] /F ≃ [∫ F,Set
]
.

Ω should then be a 2-classifier in
[Aop,CAT ]. When A is a 1-category,Ω becomes the Hofmann-Streicher

universe.
Taking A to be a 1-category C (as it is usually done in geometry) with a Grothendieck topology on it, we

would like to restrict ΩΩΩ to a 2-classifier in stacks. The idea is to restrict Ω(A) =
[(

A /A)op
,Set
]

to the

sheaves on A /A for every A ∈ A . As written by Hofmann and Streicher, this does not form a sheaf. So it
does not form a 2-classifier in 2-dimensional sheaves. Nonetheless, it is a stack that is strictly functorial. The
factorization assumed in Proposition 17 is at least true on representables. From this, it should follow that
A 7→ Sh

(
A /A) is a 2-classifier in strictly functorial stacks.
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