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Weak ω-categories?

0-cells 1-cells 2-cells 3-cells · · ·

· · ·

Our weak ω-categories will be globular sets, i.e. presheaves over

0 1 2 3 . . .
s

t

s

t

s

t

s

t
where ss = ts and st = tt,

equipped with extra structure encoded by a monad Twk.

Question

How should we define Twk?

We should have {strict ω-cats} ⊂ {weak ω-cats}, or equivalently a monad map
α : Twk → T st.
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Pasting Theorem

The definition of Twk will encode a sort of Pasting Theorem.

Recall:

Pasting Theorem for 2-categories

Every pasting diagram e.g.

f1

f2

α

g1

g2

g3

β1

β2

h

in a strict 2-category gives rise to a unique 2-cell hg1f1 → hg3f2.

In a weak 2-category (bicategory), we similarly get a unique 2-cell but only
after specifying what we mean by “hg1f1” and “hg3f2”.
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T st1

The terminal globular set 1 has:

a unique 0-cell x0,

a unique 1-cell x1 : x0 → x0,

a unique 2-cell x2 : x1 → x1, . . .

In 1, everything is composable along everything. So

(T st1)n = {n-dimensional (globular) pasting schemes}.

e.g.

(T st1)1 = { , , , · · · }

(T st1)2 contains cells like .
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Twk1

In the weak case, e.g. (→→)→ and →(→→) should be distinct cells in Twk1.

(T st1)n = {n-dimensional pasting schemes}

(Twk1)n = {n-dimensional pasting instructions}

Existence part of Pasting Theorem

We ask that any commutative square

∂Gn Twk1

Gn T st1

α1

admit a chosen diagonal lift for n ≥ 1.
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Twk

Definition (Leinster)

Twk is the

initial

monad over T st such that

α1 : Twk1 → T st1 satisfies the existence part of the Pasting Theorem, and

for any globular set X,

TwkX Twk1

T stX T st1

αX α1

is a pullback.

By a weak ω-category, we mean a Twk-algebra.

We get:

identities & compositions from the existence part,

and

axioms & coherence from the uniqueness

(up to equivalence)

part.
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Equivalences?

What should we mean by “equivalence” in this context?

Finite dimensional case

In an n-category, an “equivalence k-cell” should be something that is:

strictly invertible for k = n,

invertible up to equivalence n-cell for k = n− 1,

invertible up to equivalence (n− 1)-cell for k = n− 2,

. . .

When n = ω, we can’t define it inductively because there is no top dimension;

but we can define it coinductively.
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Coinductive equivalences

Definition

An n-cell f : x → y (with n ≥ 1) is an equivalence if

there exist:

an n-cell g : y → x,

an equivalence (n+ 1)-cell gf → 1x, and

an equivalence (n+ 1)-cell fg → 1y.

To exhibit a 1-cell f : x → y as an equivalence, we must provide

a 1-cell g : y → x,

an equivalence 2-cell h : gf → 1x,

a 2-cell h′ : 1x → gf ,
an equivalence 3-cell h′h → 1gf ,
an equivalence 3-cell hh′ → 11x ,

an equivalence 2-cell k : fg → 1y,

a 2-cell k′ : 1y → fg,
an equivalence 3-cell k′k → 1fg ,
an equivalence 3-cell kk′ → 11y ,

“f is an equivalence” means “f admits such an infinite hierarchy of witnesses”
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Uniqueness part

Uniqueness part of Pasting Theorem (Fujii-Hoshino-M.)

Let (X,TwkX
ξ−→ X) be a weak ω-category. If u//v in (TwkX)n and

αX(u) = αX(v) then there is an equivalence (n+ 1)-cell ξ(u) → ξ(v) in X.

Instances of this result yield:

h(gf) ∼ (hg)f, 1f ∼ f ∼ f1 etc.

For more non-trivial things, we need:

Theorem (Fujii-Hoshino-M.)

The class of equivalence n-cells in a weak ω-category is closed under pastings.

Using these facts, we can treat weak ω-categories just like strict ones.

..???

Thank you!
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Identity and binary composition

Let (X,TwkX
ξ−→ X) be a weak ω-category and x ∈ Xn−1.

We can define 1x ∈ Xn by applying ξ to the lift in

∂Gn TwkX Twk1

Gn T stX T st1

(ηwk(x),ηwk(x))

αX α1

identity on ηst(x)

Similarly, given n-cells x
f−→ y

g−→ z, we can define gf ∈ Xn using

∂Gn TwkX

Gn T stX

(ηwk(x),ηwk(z))

αX

ηst(g)ηst(f)
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Proof of uniqueness

Uniqueness part of Pasting Theorem

Let (X,TwkX
ξ−→ X) be a weak ω-category. If u//v in (TwkX)n and

αX(u) = αX(v) then there is an equivalence (n+ 1)-cell ξ(u) → ξ(v) in X.

Proof.

We proceed by coinduction. Obtain w : u → v as

∂Gn+1 TwkX

Gn+1 T stX

(u,v)

αX

identity on αX (u)

w

and similarly w′ : v → u. Then we have w′w//1u and ww′//1v in (TwkX)n+1,
and αX(w′w) = 1αX (u) = αX(1u) and αX(ww′) = 1αX (v) = αX(1v).
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