Coinductive equivalences in algebraic weak ω-categories

Yuki Maehara ${ }^{1}$

Kyushu University

(j/w Soichiro Fujii ${ }^{2}$ and Keisuke Hoshino)

Category Theory 2023

[^0]
Weak ω-categories?

Our weak ω-categories will be globular sets,

Our weak ω-categories will be globular sets, i.e. presheaves over

$$
0 \underset{t}{\stackrel{s}{\rightrightarrows}} 1 \underset{t}{\stackrel{s}{\rightrightarrows}} 2 \underset{t}{\stackrel{s}{\rightrightarrows}} 3 \underset{t}{\stackrel{s}{\rightrightarrows}} \cdots \quad \text { where } s s=t s \text { and } s t=t t,
$$

Our weak ω-categories will be globular sets, i.e. presheaves over

$$
0 \underset{t}{s} 1 \underset{t}{\stackrel{s}{\rightrightarrows}} 2 \underset{t}{s} 3 \underset{t}{s} \cdots \quad \text { where } s s=t s \text { and } s t=t t,
$$

equipped with extra structure encoded by a monad T^{wk}.

Our weak ω-categories will be globular sets, i.e. presheaves over

$$
0 \underset{t}{s} 1 \underset{t}{\stackrel{s}{\rightrightarrows}} 2 \underset{t}{s} 3 \underset{t}{s} \cdots \quad \text { where } s s=t s \text { and } s t=t t,
$$

equipped with extra structure encoded by a monad $T^{\mathrm{w} k}$.

Question

How should we define $T^{w k}$?

0-cells	1-cells	2-cells	3-cells	. .
-	$\bullet \longrightarrow$ •		$\cdots \Rightarrow)^{2}$.	\cdots

Our weak ω-categories will be globular sets, i.e. presheaves over

$$
0 \underset{t}{s} 1 \underset{t}{\stackrel{s}{\rightrightarrows}} 2 \underset{t}{s} 3 \underset{t}{\stackrel{s}{\rightrightarrows}} \cdots \quad \text { where } s s=t s \text { and } s t=t t,
$$

equipped with extra structure encoded by a monad $T^{\mathrm{w} k}$.

Question

How should we define $T^{w k}$?
We should have $\{$ strict ω-cats $\} \subset\{$ weak ω-cats $\}$,

$0-\mathrm{cell}$ s	1-cells	2-cells	3-cells	\ldots
-	$\bullet \longrightarrow$ •		$\cdot \sqrt{r} \Rightarrow)^{\nu}$.	\cdots

Our weak ω-categories will be globular sets, i.e. presheaves over

$$
0 \underset{t}{s} 1 \underset{t}{\stackrel{s}{\rightrightarrows}} 2 \underset{t}{s} 3 \underset{t}{s} \cdots \quad \text { where } s s=t s \text { and } s t=t t,
$$

equipped with extra structure encoded by a monad $T^{\mathrm{w} k}$.

Question

How should we define T^{wk} ?
We should have $\{$ strict ω-cats $\} \subset\{$ weak ω-cats $\}$, or equivalently a monad map $\alpha: T^{\mathrm{w} k} \rightarrow T^{\mathrm{s} t}$.

Pasting Theorem

The definition of $T^{\mathrm{w} k}$ will encode a sort of Pasting Theorem.

Pasting Theorem

The definition of $T^{\mathrm{w} k}$ will encode a sort of Pasting Theorem. Recall:

Pasting Theorem for 2-categories

The definition of $T^{\mathrm{w} k}$ will encode a sort of Pasting Theorem. Recall:

Pasting Theorem for 2-categories

Every pasting diagram e.g.

in a strict 2-category gives rise to a unique 2-cell $h g_{1} f_{1} \rightarrow h g_{3} f_{2}$.

The definition of $T^{\mathrm{w} k}$ will encode a sort of Pasting Theorem. Recall:

Pasting Theorem for 2-categories

Every pasting diagram e.g.

in a strict 2-category gives rise to a unique 2-cell $h g_{1} f_{1} \rightarrow h g_{3} f_{2}$.
In a weak 2-category (bicategory), we similarly get a unique 2-cell but

The definition of $T^{\mathrm{w} k}$ will encode a sort of Pasting Theorem. Recall:

Pasting Theorem for 2-categories

Every pasting diagram e.g.

in a strict 2-category gives rise to a unique 2-cell $h g_{1} f_{1} \rightarrow h g_{3} f_{2}$.
In a weak 2-category (bicategory), we similarly get a unique 2-cell but

$$
\text { " } h g_{1} f_{1} " \quad \text { " } h g_{3} f_{2} "
$$

The definition of $T^{\mathrm{w} k}$ will encode a sort of Pasting Theorem. Recall:

Pasting Theorem for 2-categories

Every pasting diagram e.g.

in a strict 2-category gives rise to a unique 2-cell $h g_{1} f_{1} \rightarrow h g_{3} f_{2}$.
In a weak 2-category (bicategory), we similarly get a unique 2-cell but only after specifying what we mean by " $h g_{1} f_{1}$ " and " $h g_{3} f_{2}$ ".

The terminal globular set 1 has:

The terminal globular set 1 has:

- a unique 0 -cell x_{0},

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1-cell $x_{1}: x_{0} \rightarrow x_{0}$,

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1-cell $x_{1}: x_{0} \rightarrow x_{0}$,
- a unique 2-cell $x_{2}: x_{1} \rightarrow x_{1}, \ldots$

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1-cell $x_{1}: x_{0} \rightarrow x_{0}$,
- a unique 2-cell $x_{2}: x_{1} \rightarrow x_{1}, \ldots$

In 1, everything is composable along everything.

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1-cell $x_{1}: x_{0} \rightarrow x_{0}$,
- a unique 2 -cell $x_{2}: x_{1} \rightarrow x_{1}, \ldots$

In 1, everything is composable along everything. So

$$
\left(T^{s t} 1\right)_{n}=\{n \text {-dimensional (globular) pasting schemes }\} .
$$

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1-cell $x_{1}: x_{0} \rightarrow x_{0}$,
- a unique 2 -cell $x_{2}: x_{1} \rightarrow x_{1}, \ldots$

In 1, everything is composable along everything. So

$$
\left(T^{s t} 1\right)_{n}=\{n \text {-dimensional (globular) pasting schemes }\} .
$$

e.g.

- $\left(T^{\text {st }} 1\right)_{1}=\{\bullet, \quad \bullet \longrightarrow \bullet, \quad \longrightarrow \bullet \longrightarrow \bullet, \quad \cdots\}$

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1-cell $x_{1}: x_{0} \rightarrow x_{0}$,
- a unique 2 -cell $x_{2}: x_{1} \rightarrow x_{1}, \ldots$

In 1, everything is composable along everything. So

$$
\left(T^{s t} 1\right)_{n}=\{n \text {-dimensional (globular) pasting schemes }\} .
$$

e.g.

- $\left(T^{\text {st }} 1\right)_{1}=\{\bullet, \quad \bullet \longrightarrow \bullet, \quad \longrightarrow \bullet \longrightarrow \bullet, \quad \cdots\}$
- $\left(T^{\text {st }} 1\right)_{2}$ contains cells like

$$
\left(T^{s t} 1\right)_{n}=\{n \text {-dimensional pasting schemes }\}
$$

In the weak case, e.g. $(\rightarrow \rightarrow) \rightarrow$ and $\rightarrow(\rightarrow \rightarrow)$ should be distinct cells in $T^{\mathrm{w} k} 1$.

$$
\left(T^{s t} 1\right)_{n}=\{n \text {-dimensional pasting schemes }\}
$$

In the weak case, e.g. $(\rightarrow \rightarrow) \rightarrow$ and $\rightarrow(\rightarrow \rightarrow)$ should be distinct cells in $T^{\mathrm{w} k} 1$.

$$
\begin{aligned}
\left(T^{\mathrm{st}} 1\right)_{n} & =\{n \text {-dimensional pasting schemes }\} \\
\left(T^{\mathrm{wk}} 1\right)_{n} & =\{n \text {-dimensional pasting instructions }\}
\end{aligned}
$$

In the weak case, e.g. $(\rightarrow \rightarrow) \rightarrow$ and $\rightarrow(\rightarrow \rightarrow)$ should be distinct cells in $T^{\mathrm{w} k} 1$.

$$
\begin{aligned}
\left(T^{\mathrm{st}} 1\right)_{n} & =\{n \text {-dimensional pasting schemes }\} \\
\left(T^{\mathrm{wk}} 1\right)_{n} & =\{n \text {-dimensional pasting instructions }\}
\end{aligned}
$$

Existence part of Pasting Theorem

We ask that any commutative square

admit a chosen diagonal lift for $n \geq 1$.

Definition (Leinster)

$T^{\mathrm{w} k}$ is the monad over $T^{\text {st }}$ such that

- $\alpha_{1}: T^{\mathrm{wk}} 1 \rightarrow T^{\mathrm{st}} 1$ satisfies the existence part of the Pasting Theorem, and

Definition (Leinster)

$T^{\mathrm{w} k}$ is the monad over $T^{\text {st }}$ such that

- $\alpha_{1}: T^{\mathrm{wk}} 1 \rightarrow T^{\mathrm{st}} 1$ satisfies the existence part of the Pasting Theorem, and

Definition (Leinster)

$T^{\mathrm{w} k}$ is the monad over $T^{\text {st }}$ such that

- $\alpha_{1}: T^{\mathrm{wk}} 1 \rightarrow T^{\mathrm{st}} 1$ satisfies the existence part of the Pasting Theorem, and
- for any globular set X,

is a pullback.

Definition (Leinster)

$T^{\mathrm{w} k}$ is the initial monad over T^{st} such that

- $\alpha_{1}: T^{\mathrm{wk}} 1 \rightarrow T^{\mathrm{st}} 1$ satisfies the existence part of the Pasting Theorem, and
- for any globular set X,

is a pullback.

Definition (Leinster)

$T^{\mathrm{w} k}$ is the initial monad over $T^{\text {st }}$ such that

- $\alpha_{1}: T^{\mathrm{wk}} 1 \rightarrow T^{\text {st }} 1$ satisfies the existence part of the Pasting Theorem, and
- for any globular set X,

is a pullback.
By a weak ω-category, we mean a $T^{w k}$-algebra.

Definition (Leinster)

$T^{\mathrm{w} k}$ is the initial monad over $T^{\text {st }}$ such that

- $\alpha_{1}: T^{\mathrm{wk}} 1 \rightarrow T^{\mathrm{st}} 1$ satisfies the existence part of the Pasting Theorem, and
- for any globular set X,

is a pullback.
By a weak ω-category, we mean a T^{wk}-algebra.
We get:
- identities \& compositions from the existence part,

Definition (Leinster)

$T^{\mathrm{w} k}$ is the initial monad over $T^{\text {st }}$ such that

- $\alpha_{1}: T^{\mathrm{wk}} 1 \rightarrow T^{\mathrm{st}} 1$ satisfies the existence part of the Pasting Theorem, and
- for any globular set X,

is a pullback.
By a weak ω-category, we mean a T^{wk}-algebra.
We get:
- identities \& compositions from the existence part, and
- axioms \& coherence from the uniqueness part.

Definition (Leinster)

$T^{\mathrm{w} k}$ is the initial monad over $T^{\text {st }}$ such that

- $\alpha_{1}: T^{\mathrm{wk}} 1 \rightarrow T^{\mathrm{st}} 1$ satisfies the existence part of the Pasting Theorem, and
- for any globular set X,

is a pullback.
By a weak ω-category, we mean a T^{wk}-algebra.
We get:
- identities \& compositions from the existence part, and
- axioms \& coherence from the uniqueness (up to equivalence) part.

What should we mean by "equivalence" in this context?

What should we mean by "equivalence" in this context?
Finite dimensional case
In an n-category, an "equivalence k-cell" should be something that is:

What should we mean by "equivalence" in this context?
Finite dimensional case
In an n-category, an "equivalence k-cell" should be something that is:

- strictly invertible for $k=n$,

What should we mean by "equivalence" in this context?
Finite dimensional case
In an n-category, an "equivalence k-cell" should be something that is:

- strictly invertible for $k=n$,
- invertible up to equivalence n-cell for $k=n-1$,

What should we mean by "equivalence" in this context?
Finite dimensional case
In an n-category, an "equivalence k-cell" should be something that is:

- strictly invertible for $k=n$,
- invertible up to equivalence n-cell for $k=n-1$,
- invertible up to equivalence $(n-1)$-cell for $k=n-2$,
- ...

What should we mean by "equivalence" in this context?
Finite dimensional case
In an n-category, an "equivalence k-cell" should be something that is:

- strictly invertible for $k=n$,
- invertible up to equivalence n-cell for $k=n-1$,
- invertible up to equivalence $(n-1)$-cell for $k=n-2$,
- ...

When $n=\omega$, we can't define it inductively because there is no top dimension;

What should we mean by "equivalence" in this context?

Finite dimensional case

In an n-category, an "equivalence k-cell" should be something that is:

- strictly invertible for $k=n$,
- invertible up to equivalence n-cell for $k=n-1$,
- invertible up to equivalence $(n-1)$-cell for $k=n-2$,
- ...

When $n=\omega$, we can't define it inductively because there is no top dimension; but we can define it coinductively.

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

To exhibit a 1-cell $f: x \rightarrow y$ as an equivalence, we must provide

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

To exhibit a 1-cell $f: x \rightarrow y$ as an equivalence, we must provide

- a 1-cell $g: y \rightarrow x$,
- an equivalence 2 -cell $h: g f \rightarrow 1_{x}$,
- an equivalence 2 -cell $k: f g \rightarrow 1_{y}$,

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

To exhibit a 1-cell $f: x \rightarrow y$ as an equivalence, we must provide

- a 1-cell $g: y \rightarrow x$,
- an equivalence 2 -cell $h: g f \rightarrow 1_{x}$,
- a 2-cell $h^{\prime}: 1_{x} \rightarrow g f$,
- an equivalence 3 -cell $h^{\prime} h \rightarrow 1_{g f}$,
- an equivalence 3 -cell $h h^{\prime} \rightarrow 1_{1_{x}}$,
- an equivalence 2 -cell $k: f g \rightarrow 1_{y}$,

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

To exhibit a 1-cell $f: x \rightarrow y$ as an equivalence, we must provide

- a 1-cell $g: y \rightarrow x$,
- an equivalence 2 -cell $h: g f \rightarrow 1_{x}$,
- a 2-cell $h^{\prime}: 1_{x} \rightarrow g f$,
- an equivalence 3 -cell $h^{\prime} h \rightarrow 1_{g f}$,
- an equivalence 3 -cell $h h^{\prime} \rightarrow 1_{1_{x}}$,
- an equivalence 2 -cell $k: f g \rightarrow 1_{y}$,
- a 2-cell $k^{\prime}: 1_{y} \rightarrow f g$,
- an equivalence 3 -cell $k^{\prime} k \rightarrow 1_{f g}$,
- an equivalence 3 -cell $k k^{\prime} \rightarrow 1_{1_{y}}$,

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

To exhibit a 1-cell $f: x \rightarrow y$ as an equivalence, we must provide

- a 1-cell $g: y \rightarrow x$,
- an equivalence 2 -cell $h: g f \rightarrow 1_{x}$,
- a 2-cell $h^{\prime}: 1_{x} \rightarrow g f$,
- an equivalence 3 -cell $h^{\prime} h \rightarrow 1_{g f}$, a 3 -cell $1_{g f} \rightarrow h^{\prime} h$, equivalence 4 -cells...
- an equivalence 3 -cell $h h^{\prime} \rightarrow 1_{1_{x}}$, a 3 -cell $1_{1_{x}} \rightarrow h h^{\prime}$, equivalence 4 -cells...
- an equivalence 2 -cell $k: f g \rightarrow 1_{y}$,
- a 2-cell $k^{\prime}: 1_{y} \rightarrow f g$,
- an equivalence 3 -cell $k^{\prime} k \rightarrow 1_{f g}$, a 3 -cell $1_{f g} \rightarrow k^{\prime} k$, equivalence 4 -cells...
- an equivalence 3 -cell $k k^{\prime} \rightarrow 1_{1_{y}}$, a 3 -cell $1_{1_{y}} \rightarrow k k^{\prime}$, equivalence 4 -cells...

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

To exhibit a 1-cell $f: x \rightarrow y$ as an equivalence, we must provide

- a 1-cell $g: y \rightarrow x$,
- an equivalence 2 -cell $h: g f \rightarrow 1_{x}$,
- a 2-cell $h^{\prime}: 1_{x} \rightarrow g f$,
- an equivalence 3 -cell $h^{\prime} h \rightarrow 1_{g f}$, a 3 -cell $1_{g f} \rightarrow h^{\prime} h$, equivalence 4 -cells...
- an equivalence 3 -cell $h h^{\prime} \rightarrow 1_{1_{x}}$, a 3 -cell $1_{1_{x}} \rightarrow h h^{\prime}$, equivalence 4 -cells...
- an equivalence 2 -cell $k: f g \rightarrow 1_{y}$,
- a 2-cell $k^{\prime}: 1_{y} \rightarrow f g$,
- an equivalence 3 -cell $k^{\prime} k \rightarrow 1_{f g}$, a 3 -cell $1_{f g} \rightarrow k^{\prime} k$, equivalence 4 -cells...
- an equivalence 3 -cell $k k^{\prime} \rightarrow 1_{1_{y}}$, a 3 -cell $1_{1_{y}} \rightarrow k k^{\prime}$, equivalence 4 -cells...
" f is an equivalence" means " f admits such an infinite hierarchy of witnesses"

Uniqueness part

Uniqueness part of Pasting Theorem (Fujii-Hoshino-M.)
Let $\left(X, T^{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $u / / v$ in $\left(T^{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(u)=\alpha_{X}(v)$ then there is an equivalence $(n+1)$-cell $\xi(u) \rightarrow \xi(v)$ in X.

Uniqueness part

Uniqueness part of Pasting Theorem (Fujii-Hoshino-M.)
Let $\left(X, T^{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $u / / v$ in $\left(T^{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(u)=\alpha_{X}(v)$ then there is an equivalence $(n+1)$-cell $\xi(u) \rightarrow \xi(v)$ in X.

Instances of this result yield:

$$
h(g f) \sim(h g) f, \quad 1 f \sim f \sim f 1 \quad \text { etc. }
$$

Uniqueness part of Pasting Theorem (Fujii-Hoshino-M.)

Let $\left(X, T^{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $u / / v$ in $\left(T^{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(u)=\alpha_{X}(v)$ then there is an equivalence $(n+1)$-cell $\xi(u) \rightarrow \xi(v)$ in X.

Instances of this result yield:

$$
h(g f) \sim(h g) f, \quad 1 f \sim f \sim f 1 \quad \text { etc. }
$$

For more non-trivial things, we need:

Theorem (Fujii-Hoshino-M.)

The class of equivalence n-cells in a weak ω-category is closed under pastings.

Uniqueness part of Pasting Theorem (Fujii-Hoshino-M.)

Let $\left(X, T^{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $u / / v$ in $\left(T^{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(u)=\alpha_{X}(v)$ then there is an equivalence $(n+1)$-cell $\xi(u) \rightarrow \xi(v)$ in X.

Instances of this result yield:

$$
h(g f) \sim(h g) f, \quad 1 f \sim f \sim f 1 \quad \text { etc. }
$$

For more non-trivial things, we need:

Theorem (Fujii-Hoshino-M.)

The class of equivalence n-cells in a weak ω-category is closed under pastings.
Using these facts, we can treat weak ω-categories just like strict ones.

Uniqueness part of Pasting Theorem (Fujii-Hoshino-M.)

Let $\left(X, T^{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $u / / v$ in $\left(T^{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(u)=\alpha_{X}(v)$ then there is an equivalence $(n+1)$-cell $\xi(u) \rightarrow \xi(v)$ in X.

Instances of this result yield:

$$
h(g f) \sim(h g) f, \quad 1 f \sim f \sim f 1 \quad \text { etc. }
$$

For more non-trivial things, we need:

Theorem (Fujii-Hoshino-M.)

The class of equivalence n-cells in a weak ω-category is closed under pastings.
Using these facts, we can treat weak ω-categories just like strict ones...???

Uniqueness part of Pasting Theorem (Fujii-Hoshino-M.)

Let $\left(X, T^{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $u / / v$ in $\left(T^{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(u)=\alpha_{X}(v)$ then there is an equivalence $(n+1)$-cell $\xi(u) \rightarrow \xi(v)$ in X.

Instances of this result yield:

$$
h(g f) \sim(h g) f, \quad 1 f \sim f \sim f 1 \quad \text { etc. }
$$

For more non-trivial things, we need:

Theorem (Fujii-Hoshino-M.)

The class of equivalence n-cells in a weak ω-category is closed under pastings.
Using these facts, we can treat weak ω-categories just like strict ones...???
Thank you!

Let $\left(X, T^{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category and $x \in X_{n-1}$.
We can define $1_{x} \in X_{n}$ by applying ξ to the lift in

Similarly, given n-cells $x \xrightarrow{f} y \xrightarrow{g} z$, we can define $g f \in X_{n}$ using

Uniqueness part of Pasting Theorem

Let $\left(X, T^{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $u / / v$ in $\left(T^{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(u)=\alpha_{X}(v)$ then there is an equivalence $(n+1)$-cell $\xi(u) \rightarrow \xi(v)$ in X.

Proof.

We proceed by coinduction. Obtain $w: u \rightarrow v$ as

and similarly $w^{\prime}: v \rightarrow u$. Then we have $w^{\prime} w / / 1_{u}$ and $w w^{\prime} / / 1_{v}$ in $\left(T^{\mathrm{w} k} X\right)_{n+1}$, and $\alpha_{X}\left(w^{\prime} w\right)=1_{\alpha_{X}(u)}=\alpha_{X}\left(1_{u}\right)$ and $\alpha_{X}\left(w w^{\prime}\right)=1_{\alpha_{X}(v)}=\alpha_{X}\left(1_{v}\right)$.

[^0]: ${ }^{1}$ Supported by JSPS KAKENHI Grant Number JP21K20329 \& JP23K12960
 ${ }^{2}$ Supported by JSPS Overseas Research Fellowship and Australian Research Council Discovery Project DP190102432

