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Some very classic results 2

Theorem (Stone (1936))

BooSpop ≃ BA.

Theorem (Stone (1938))

Specop ≃ DL.

Remark
Priestley space = “clopen-separated” partially ordered

compact space.

Definition (Nachbin (1950))
An ordered compact Hausdorff space (X ,≤, τ) consists of a set

X , an order relation ≤ on X and a compact Hausdorff topology

on X so that the set {(x , y) ∈ X × X | x ≤ y} is closed in X × X .
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Theorem (Stone (1936))

BooSpop ≃ BA.

Theorem (Priestley (1970))

Priestop ≃ DL.

Remark
Priestley space = “clopen-separated” partially ordered

compact space.

Definition (Nachbin (1950))
An ordered compact Hausdorff space (X ,≤, τ) consists of a set

X , an order relation ≤ on X and a compact Hausdorff topology

on X so that the set {(x , y) ∈ X × X | x ≤ y} is closed in X × X .

Bottom line
The categories BooSpop and Priestop are Barr-exact.
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About the algebraic character of CompHausop

- CompHausop
hom(−,[0,1])−−−−−−−−−−−→ Set is monadic.

- [0, 1] is ℵ1-ary copresentable in CompHaus. More general, the

ℵ1-ary copresentable compact Hausdorff spaces are precisely

the metrisable ones.

- The algebraic theory of CompHausop can be generated by 5

operations.

- A complete description of the algebraic theory of CompHausop

was obtain by V. Marra and L. Reggio based on the theory of

MV-algebras.

References

Duskin, John (1969). “Variations on Beck’s tripleability crite-

rion”. In: Reports of the Midwest Category Seminar III. Ed. by

Saunders MacLane. Springer Berlin Heidelberg, pp. 74–129.
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About the algebraic character of PosCompop

- [0, 1] is injective with respect to embeddings.

- [0, 1] is a cogenerator with respect to embeddings.

- embedding = regular mono, surjection = epi.

- Hence, PosCompop
is a quasivariety.

- finitely copresentable = finite,

ℵ1-ary copresentable = metrizable;

hence, [0, 1] is ℵ1-ary copresentable.

- PosCompop is exact, hence a ℵ1-ary variety.

References

Nachbin, Leopoldo (1965). Topology and Order. Vol. 4. Van

Nostrand Mathematical Studies. Princeton, N.J.-Toronto,

Ont.-London: D. Van Nostrand. vi + 122. Translated from

the Portuguese by Lulu Bechtolsheim.
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Recall

Priestop DL Ord = 2-Cat
hom(−,2)

- lattice = finitely (co)complete 2-category.

- distributive = arrows into 2 separate points.

And now . . .

PosCompDistop ?? Met = [0, 1]-Cat
“C=hom(−,[0,1])”

We consider

?? = LaxMon([0, 1]-FinSup)op,

that is: finitaly cocomplete metric spaces with a commutative

monoid structure which preserves finite colimits in each variable.
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Theorem
The functor

C : PosCompDistop −→ LaxMon([0, 1]-FinSup)

is fully faithful.
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Theorem
The functor

C : PosCompDistop −→ LaxMon([0, 1]-FinSup)

is fully faithful.

Remark
If we add at the right-hand side

- powers from [0, 1],
- Cauchy completeness (à la Lawvere), and

- enough characters into [0, 1];
then C is an equivalence.
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Theorem
The functor

C : PosCompDistop −→ LaxMon([0, 1]-FinSup)

is fully faithful.

Theorem
Let φ : X −◦−→ Y in PosCompDist. Then φ is a function if and only if

Cφ preserves 1 and ⊗.

Idea.
- 1 −◦−→ X (A ⊆ X closed) ↭ Φ: CX −→ [0, 1].

- A is irreducible ⇐⇒ Φ is in Mon([0, 1]-FinSup).
- Every X in PosComp is sober.

Next
Add metric to left-hand side.
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Theorem (Flagg (1997))
PosComp is equivalent to the category of Eilenberg–Moore

algebras for the “prime filter on upsets monad” on Pos.

Theorem (Tholen (2009))
OrdCH is equivalent to the category of Eilenberg–Moore

algebras for the ultrafilter monad U on Ord.
Note. x (U≤) y) whenever ∀A,B ∃x , y . x ≤ y .

Definition
Metric compact Hausdorff space = Eilenberg–Moore algebra

for the monad U on Met.
Note. Ud(x, y) = inf

A,B
sup
x,y

d(x , y).

References

Flagg, Robert C. (1997). “Algebraic theories of compact

pospaces”. In: Topology and its Applications 77.(3), pp. 277–

290.
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References

Tholen, Walter (2009). “Ordered topological structures”.

In: Topology and its Applications 156.(12), pp. 2148–2157.
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Theorem (Flagg (1997))
PosComp is equivalent to the category of Eilenberg–Moore

algebras for the “prime filter on upsets monad” on Pos.

Theorem (Tholen (2009))
OrdCH is equivalent to the category of Eilenberg–Moore

algebras for the ultrafilter monad U on Ord.
Note. x (U≤) y) whenever ∀A,B ∃x , y . x ≤ y .

Definition
Metric compact Hausdorff space = Eilenberg–Moore algebra

for the monad U on Met.
Note. Ud(x, y) = inf

A,B
sup
x,y

d(x , y).

Remark
More general, one defines quantale-enriched compact Hausdorff

spaces as the Eilenberg-Moore algebras for the ultrafilter

monad on V-Cat.

“While listening to a 1967 lecture of Richard Swan . . . I

noticed the analogy between the triangle inequality and

a categorical composition law.”a

- order ≤ : X × X −→ 2:

⊤ =⇒ x ≤ x and (x ≤ y & y ≤ z) =⇒ x ≤ z .

- metric d : X × X −→ [0,∞]:

0 ⩾ d(x , x) and d(x , y) + d(y , z) ⩾ d(x , z).

- V-category a : X × X −→ V :

k ≤ a(x , x) and a(x , y)⊗ a(y , z) ≤ a(x , z).

aLawvere, F. William (1973). “Metric spaces, generalized logic, and closed

categories”. In: Rendiconti del Seminario Matemàtico e Fisico di Milano

43.(1), pp. 135–166.
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Theorem (Flagg (1997))
PosComp is equivalent to the category of Eilenberg–Moore

algebras for the “prime filter on upsets monad” on Pos.

Theorem (Tholen (2009))
OrdCH is equivalent to the category of Eilenberg–Moore

algebras for the ultrafilter monad U on Ord.
Note. x (U≤) y) whenever ∀A,B ∃x , y . x ≤ y .

Definition
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for the monad U on Met.
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sup
x,y
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Definition
A V-categorical compact Hausdorff space X is called Priestley

whenever the cone (f : X −→ Vop)f in V-CatCH is point-separating

and initial.
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Theorem
The functor

[0, 1]-PriestDistop
C=hom(−,1)−−−−−−−−−−−→ [0, 1]-FinSup

is fully faithful

and restricts to a fully faithful functor

[0, 1]-Priestop
C=hom(−,[0,1])−−−−−−−−−−−−−→ [0, 1]-FinLat.

References

Hofmann, Dirk and Nora, Pedro (2018). “Enriched Stone-

type dualities”. In: Advances in Mathematics 330, pp. 307–

360.

Hofmann, Dirk and Nora, Pedro (2023). “Duality theory for

enriched Priestley spaces”. In: Journal of Pure and Applied

Algebra 227.(3), p. 107231.
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Theorem
The functor

[0, 1]-PriestDistop
C=hom(−,1)−−−−−−−−−−−→ [0, 1]-FinSup

is fully faithful and restricts to a fully faithful functor

[0, 1]-Priestop
C=hom(−,[0,1])−−−−−−−−−−−−−→ [0, 1]-FinLat.

Idea.
- 1

φ
−◦−→ X (X → [0, 1]) ↭ Φ : CX → [0, 1].

- 1
φ
−◦−→ X is irreducible ⇐⇒ Φ preserves finite weighted limits.

- Every X in [0, 1]-Priest is sober (Cauchy complete à la Lawvere).
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Proposition
For a V-category (X , a) and a compact Hausdorff space (X , α) with

the same underlying set X , the following assertions are

equivalent.

(i) α : U(X , a) −→ (X , a) is a V-functor.

(ii) a : (X , α)× (X , α) −→ (V, ξ≤) is continuous.

Compare with
For an order relation ≤ and a compact Hausdorff topology α on

a set X , α : U(X ,≤) −→ (X ,≤) is monotone if and only if the order

relation is closed with respect to the product topology of X × X .
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Proposition
For a V-category (X , a) and a compact Hausdorff space (X , α) with

the same underlying set X , the following assertions are

equivalent.

(i) α : U(X , a) −→ (X , a) is a V-functor.

(ii) a : (X , α)× (X , α) −→ (V, ξ≤) is continuous.

Lemma
For f : X −→ Y in MetCHsep,

γf : X × X −→ [0,∞]

(x , y) 7−→ dX (f (x), f (y)).

is a metric, is continuous with respect to the upper topology of

[0,∞] and is below dX , i.e., for all x , y ∈ X , γf (x , y) ≤ dX (x , y).

Proposition
There is a order-isomorphism between such metrics on X and

(isomorphism classes of) quotients X −→ Y in MetCHsep .
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Lemma
For embeddings f0 : X −→ Y0, f1 : X −→ Y1 and their pushout,

X Y1

Y0 P

f1

λ1f0

λ0

⌟

for all i , j ∈ {0, 1}, u ∈ Yi and v ∈ Yj ,

dP(λi (u), λj(v)) =

{
dYi (u, v) if i = j ,

infx∈X (dYi (u, fi (x)) + dYj (fj(x), v)) if i ̸= j .

Proposition
The epimorphisms in MetCHsep are precisely the surjective

morphisms, and the regular monomorphisms are precisely the

embeddings.
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Proposition
The epimorphisms in MetCHsep are precisely the surjective

morphisms, and the regular monomorphisms are precisely the

embeddings.

Proposition
In MetCHsep, the pushout of a regular monomorphism along any

morphims is a regular monomorphism.

Theorem
MetCHop

sep is a regular category.
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Proposition
The epimorphisms in MetCHsep are precisely the surjective

morphisms, and the regular monomorphisms are precisely the

embeddings.

Proposition
In MetCHsep, the pushout of a regular monomorphism along any

morphims is a regular monomorphism.

Theorem
MetCHop

sep is a regular category.
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For a separated metric compact Hausdorff space X , a binary

corelation on X is a quotient
(
q0
q1

)
: X + X −→ S .

A binary corelation on X is called respectively reflexive, symmetric,

transitive provided that it satisfies the properties:

X + X

S X

(q0q1) (1X1X)

d

reflexivity

X + X

S S

(q0q1) (q1q0)

s

symmetry

X S

S P

q1

q0 λ1

λ0

⌟
=⇒

X + X

S P

(q0q1) (λ0◦q0
λ1◦q1)

t

transitivity

Notation
We denote the elements of X + X by (x , i), where x varies in X
and i varies in {0, 1}. Further, i∗ stands for 1 − i .
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For a separated metric compact Hausdorff space X , a binary

corelation on X is a quotient
(
q0
q1

)
: X + X −→ S .

A binary corelation on X is called respectively reflexive, symmetric,

transitive provided that it satisfies the properties:

X + X

S X

(q0q1) (1X1X)

d
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X + X

S S

(q0q1) (q1q0)

s
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X S

S P
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q0 λ1

λ0

⌟
=⇒

X + X

S P

(q0q1) (λ0◦q0
λ1◦q1)

t

transitivity

Notation
We denote the elements of X + X by (x , i), where x varies in X
and i varies in {0, 1}. Further, i∗ stands for 1 − i .
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For a separated metric compact Hausdorff space X , a binary

corelation on X is a quotient
(
q0
q1

)
: X + X −→ S .

A binary corelation on X is called respectively reflexive, symmetric,

transitive provided that it satisfies the properties:

X + X

S X

(q0q1) (1X1X)

d

reflexivity

X + X

S S

(q0q1) (q1q0)

s

symmetry

X S

S P

q1

q0 λ1

λ0

⌟
=⇒

X + X

S P

(q0q1) (λ0◦q0
λ1◦q1)

t

transitivity

Notation
We denote the elements of X + X by (x , i), where x varies in X
and i varies in {0, 1}. Further, i∗ stands for 1 − i .
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For a separated metric compact Hausdorff space X , a binary

corelation on X is a quotient
(
q0
q1

)
: X + X −→ S (which can be

described by a “quotient metric” γ on X + X).

A binary corelation on X is called respectively reflexive, symmetric,

transitive provided that it satisfies the properties:

X + X

S X

(q0q1) (1X1X)

d

reflexivity

X + X

S S

(q0q1) (q1q0)

s

symmetry

X S

S P

q1

q0 λ1

λ0

⌟
=⇒

X + X

S P

(q0q1) (λ0◦q0
λ1◦q1)

t

transitivity

Notation
We denote the elements of X + X by (x , i), where x varies in X
and i varies in {0, 1}. Further, i∗ stands for 1 − i .
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Lemma
A binary corelational structure γ on a separated metric compact

Hausdorff space X is reflexive if and only if, for all x , y ∈ X and

i , j ∈ {0, 1},
dX (x , y) ≤ γ((x , i), (y , j)).

Lemma
A binary corelational structure γ on a separated metric compact

Hausdorff space X is symmetric if and only if, for all x , y ∈ X and

i , j ∈ {0, 1}, we have

γ((x , i), (y , j)) = γ((x , i∗), (y , j∗)).

Lemma
A reflexive binary corelational structure γ on a separated metric

compact Hausdorff space X is transitive if and only if for all

x , y ∈ X and all i ∈ {0, 1}, we have

γ((x , i), (y , i∗)) = inf
z∈X

γ((x , i), (z , i∗)) + γ((z , i), (y , i∗)).
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Lemma
A binary corelational structure γ on a separated metric compact

Hausdorff space X is reflexive if and only if, for all x , y ∈ X and

i , j ∈ {0, 1},
dX (x , y) ≤ γ((x , i), (y , j)).

Lemma
A binary corelational structure γ on a separated metric compact

Hausdorff space X is symmetric if and only if, for all x , y ∈ X and

i , j ∈ {0, 1}, we have

γ((x , i), (y , j)) = γ((x , i∗), (y , j∗)).

Lemma
A reflexive binary corelational structure γ on a separated metric

compact Hausdorff space X is transitive if and only if for all

x , y ∈ X and all i ∈ {0, 1}, we have

γ((x , i), (y , i∗)) = inf
z∈X

γ((x , i), (z , i∗)) + γ((z , i), (y , i∗)).
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Lemma
A binary corelational structure γ on a separated metric compact

Hausdorff space X is reflexive if and only if, for all x , y ∈ X and

i , j ∈ {0, 1},
dX (x , y) ≤ γ((x , i), (y , j)).

Lemma
A binary corelational structure γ on a separated metric compact

Hausdorff space X is symmetric if and only if, for all x , y ∈ X and

i , j ∈ {0, 1}, we have

γ((x , i), (y , j)) = γ((x , i∗), (y , j∗)).

Lemma
A reflexive binary corelational structure γ on a separated metric

compact Hausdorff space X is transitive if and only if for all

x , y ∈ X and all i ∈ {0, 1}, we have

γ((x , i), (y , i∗)) = inf
z∈X

γ((x , i), (z , i∗)) + γ((z , i), (y , i∗)).
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Lemma
An equivalence corelational structure γ on a separated metric

compact Hausdorff space X is effective if and only if for all

x , y ∈ X and i ∈ {0, 1}, we have

γ((x , i), (y , i∗)) := inf
z∈X,

γ((z,i),(z,i∗))=0

(dX (x , z) + dX (z , y)).

Theorem
Every equivalence corelation in MetCHsep is effective.

Theorem
The category MetCHop is exact.
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Lemma
An equivalence corelational structure γ on a separated metric

compact Hausdorff space X is effective if and only if for all

x , y ∈ X and i ∈ {0, 1}, we have

γ((x , i), (y , i∗)) := inf
z∈X,

γ((z,i),(z,i∗))=0

(dX (x , z) + dX (z , y)).

Theorem
Every equivalence corelation in MetCHsep is effective.

Theorem
The category MetCHop is exact.
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Remark
In the sequel, we consider “sufficiently nice” quantales V .

Proposition
For every regular cardinal λ, the forgetful functor

V-CatCH(sep) −→ CompHaus preserves λ-copresentable objects

(since its left adjoint preserves cofiltered limits).

In particular:

1. Every finitely copresentable (separated) V-enriched compact

Hausdorff space is finite

2. Every ℵ1-copresentable (separated) V-enriched compact

Hausdorff space has a metrizable topology.
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Remark
In the sequel, we consider “sufficiently nice” quantales V .

Proposition
For every regular cardinal λ, the forgetful functor

V-CatCH(sep) −→ CompHaus preserves λ-copresentable objects

(since its left adjoint preserves cofiltered limits).

In particular:

1. Every finitely copresentable (separated) V-enriched compact

Hausdorff space is finite

2. Every ℵ1-copresentable (separated) V-enriched compact

Hausdorff space has a metrizable topology.
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Proposition
V-CatCH(sep) is the model category of a countable ℵ1-ary limit

sketch in CompHaus.

Idea.
Use the bijection between the sets

{X −→ V continuous} and {(Bu)u∈D | Bu ⊆ X closed & Bu =
⋂

v≪u

Bv};

(φ : X −→ V) 7−→ (φ−1(↑u)u∈D)

(Bu)u∈D 7−→ (φ : X → V, x 7→
∨

{u ∈ D | x ∈ Bu})

then a continuous map a : (X , α)× (X , α) −→ (V, ξ≤) corresponds to

a family (Ru)u∈D of closed binary relations Ru on X .

Corollary

The category
(
V-CatCH(sep)

)op
is the model category of a colimit

sketch in the locally ℵ1-presentable category CompHausop and

therefore locally presentable (we don’t know the rank).
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Proposition
V-CatCH(sep) is the model category of a countable ℵ1-ary limit

sketch in CompHaus.

Idea.
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∨

{u ∈ D | x ∈ Bu})

then a continuous map a : (X , α)× (X , α) −→ (V, ξ≤) corresponds to

a family (Ru)u∈D of closed binary relations Ru on X .

Corollary

The category
(
V-CatCH(sep)

)op
is the model category of a colimit

sketch in the locally ℵ1-presentable category CompHausop and

therefore locally presentable (we don’t know the rank).
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Proposition
V-CatCH(sep) is the model category of a countable ℵ1-ary limit

sketch in CompHaus.

Lemma
Let λ be a regular cardinal and let S = (C,L, σ) be a λ-small limit

sketch. Then a model of S in a category X is λ-copresentable in

Mod(S,X) provided that each component is λ-copresentable in X.

Corollary

An object is ℵ1-ary copresentable in V-CatCH(sep) if and only if its

underlying compact Hausdorff space is metrizable.

In particular,

Vop is ℵ1-ary copresentable.

If the quantale V is finite, then the finitely copresentable objects

of V-CatCH (respectively V-CatCHsep) are precisely the finite ones.
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Proposition
V-CatCH(sep) is the model category of a countable ℵ1-ary limit

sketch in CompHaus.

Lemma
Let λ be a regular cardinal and let S = (C,L, σ) be a λ-small limit

sketch. Then a model of S in a category X is λ-copresentable in

Mod(S,X) provided that each component is λ-copresentable in X.
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In particular,

Vop is ℵ1-ary copresentable.

If the quantale V is finite, then the finitely copresentable objects

of V-CatCH (respectively V-CatCHsep) are precisely the finite ones.
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Proposition
V-CatCH(sep) is the model category of a countable ℵ1-ary limit

sketch in CompHaus.

Lemma
Let λ be a regular cardinal and let S = (C,L, σ) be a λ-small limit

sketch. Then a model of S in a category X is λ-copresentable in

Mod(S,X) provided that each component is λ-copresentable in X.

Corollary

An object is ℵ1-ary copresentable in V-CatCH(sep) if and only if its

underlying compact Hausdorff space is metrizable. In particular,

Vop is ℵ1-ary copresentable.

If the quantale V is finite, then the finitely copresentable objects

of V-CatCH (respectively V-CatCHsep) are precisely the finite ones.
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Proposition
V-CatCH(sep) is the model category of a countable ℵ1-ary limit

sketch in CompHaus.

Lemma
Let λ be a regular cardinal and let S = (C,L, σ) be a λ-small limit

sketch. Then a model of S in a category X is λ-copresentable in

Mod(S,X) provided that each component is λ-copresentable in X.

Corollary

An object is ℵ1-ary copresentable in V-CatCH(sep) if and only if its

underlying compact Hausdorff space is metrizable. In particular,

Vop is ℵ1-ary copresentable.

If the quantale V is finite, then the finitely copresentable objects

of V-CatCH (respectively V-CatCHsep) are precisely the finite ones.
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Proposition
The reflection functor π0 : V-CatCH −→ V-Priest preserves

ℵ1-cofiltered limits (and even cofiltered limits if V is finite).

Corollary

1. An object is ℵ1-ary copresentable in V-Priest if and only if its

underlying compact Hausdorff space is metrizable. In

particular, Vop is ℵ1-ary copresentable in V-Priest.
2. Assume that V is finite. Then an object is finitely

copresentable in V-Priest if and only if it is finite. In particular,

Vop is finitely copresentable in V-Priest.

Theorem
The category V-Priest is locally ℵ1-ary copresentable (and even

locally finite copresentable if V is finite).
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Proposition
The reflection functor π0 : V-CatCH −→ V-Priest preserves

ℵ1-cofiltered limits (and even cofiltered limits if V is finite).

Corollary

1. An object is ℵ1-ary copresentable in V-Priest if and only if its
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particular, Vop is ℵ1-ary copresentable in V-Priest.

2. Assume that V is finite. Then an object is finitely

copresentable in V-Priest if and only if it is finite. In particular,

Vop is finitely copresentable in V-Priest.

Theorem
The category V-Priest is locally ℵ1-ary copresentable (and even

locally finite copresentable if V is finite).
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Proposition
The reflection functor π0 : V-CatCH −→ V-Priest preserves

ℵ1-cofiltered limits (and even cofiltered limits if V is finite).

Corollary

1. An object is ℵ1-ary copresentable in V-Priest if and only if its

underlying compact Hausdorff space is metrizable. In

particular, Vop is ℵ1-ary copresentable in V-Priest.
2. Assume that V is finite. Then an object is finitely

copresentable in V-Priest if and only if it is finite. In particular,

Vop is finitely copresentable in V-Priest.

Theorem
The category V-Priest is locally ℵ1-ary copresentable (and even

locally finite copresentable if V is finite).
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Proposition
The reflection functor π0 : V-CatCH −→ V-Priest preserves

ℵ1-cofiltered limits (and even cofiltered limits if V is finite).

Corollary

1. An object is ℵ1-ary copresentable in V-Priest if and only if its

underlying compact Hausdorff space is metrizable. In

particular, Vop is ℵ1-ary copresentable in V-Priest.
2. Assume that V is finite. Then an object is finitely

copresentable in V-Priest if and only if it is finite. In particular,

Vop is finitely copresentable in V-Priest.

Theorem
The category V-Priest is locally ℵ1-ary copresentable (and even

locally finite copresentable if V is finite).


