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Some very classic resutts

Theorem (Stone (I936)

BooSp°? ~ BA.
Theorem (Priestley (I970))

Priest®® ~ DL.

Remark
Priestley space = ‘“clopen-separated” partially ordered
compact space.

Definition (Nachein (1950

An ordered compact Hausdor£f space (X, <,7) consists of a set
X, an order relation < on X and a8 compact -Hausdor$£ topoloay
on X so that the set {(x,y) € X x X | x < y} Is cdlosed in X x X.

Bottom line
The cateaories BooSp°® and Priest®® are Barr-exact.
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Arout the alaerraic character of CompHaus®™

- CompHaus®? M Set is monadic.
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Arout the alaerraic character of CompHaus®™

- CompHaus®? M Set Is monadic.
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Arout the alaerraic character of CompHaus®™

- CompHaus®? M Set Is monadic.
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Arout the alaerraic character of CompHaus®™

- CompHaus®? M Set Is monadic.

- [0,1] is Ny-ary copresentarle in CompHaus. More ceneral, the
Ni-ary copresentakle compact -Hausdorff spaces are precisely
the metrisarle ones.

- The alaerraic theory of CompHaus®® can Be generated By S
operations.

- A complete description of the alcerraic theory of CompHaus®
was OBtain By V. Marra and L. Reaaio rased on the theory of
MV-alaerras.

R eferences
E Marrs, Vincenzo and Reaaio, Luca (20M. "Stone duality arove

dimension zero: Axiomatising the alaeBraic theory of C(X)" In:
Advances in Mathematics 307, pp. 253—281.
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Arout the alaerraic character of PosComp®P
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Arout the alaerraic character of PosComp®P

[0,1] is injective with respect to empreddings.
[0,1] is 8 cogenerator with respect to empeeddings.
emBedding = reaular mono, surjection = epi.

- Hence, PosComp® is a8 Quasivariety.
- finitely copresentarle = finite,

N;-ary copresentarle = metrizarle;
hence, [0,1] is Nj-ary copresentagle.

References

B Hofmann, Dirk, Neves, Renato, and Nora, Pedro (2018).
‘Generating the alaekraic theory of C(X): the case of par-
tially ordered compact spaces” In: Theory and Applications of
Cateaories 33(12), pp. 21—295.
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Arout the alaerraic character of PosComp®P

[0,1] is injective with respect to empreddings.

[0,1] is 8 comenerator with respect to emreddings.
emBedding = reaular mono, surjection = epi.

- Hence, PosComp® is a8 Quasivariety.

- finitely copresentarle = finite,
N;-ary copresentarle = metrizarle;
hence, [0,1] is Nj-ary copresentagle.

- PosComp®? is exact, hence a Nj-ary variety.

References

B Aeradini, Marco (2019). "The dual of compact ordered spaces
is a variety’ In: Theory and Applications of Catecories
34 (4, pp. HOI-H39.

E Arradini, Marco and Reaaio, Luca (202.0). "On the axioma-
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R_ecall

hom(—,1)

PriestDist°? DL, , — Ord =2-Cat

- lattice = finitely (codcomplete 2-catecory.
- distrirutive = arrows into 2 separate points.

And Nnow) ...

" C=hom(—,[0,1])"

PosCompDist®? 7 Met = [0, 1]-Cat
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R_ecall

PriestDist™ — =", D, — Ord = 2-Cat

- lattice = finitely (codcomplete 2-catecory.
- distrirutive = arrows into 2 separate points.

And Nnow) ...

PosCompDist®? feiae B

7 Met = [0, 1]-Cat

We consider
7?7 = LaxMon([0, 1]-FinSup)°®,

that is: finitaly cocomplete metric spaces with a commutative
MOoNOIid structure which preserves finite colimits in each variagle.



A Pfirst result

Theorem
The functor

C: PosCompDist®” — LaxMon([0, 1]-FinSup)
is fully faithful.
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A Pfirst result

Theorem
The functor

C: PosCompDist®” — LaxMon([0, 1]-FinSup)
is fully faithful.

R.emark
I we add at the right-hand side
- powers £rom [0, 1],

- Cauchy completeness (3 Ia Lawvere), and
- enouGh characters into [0, 1];
then C is an equivalence.

23
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A first result 2L

Theorem
The functor

C: PosCompDist®” — LaxMon([0, 1]-FinSup)
is fully faithful.

Theorem
Let ¢: X —o» Y in PosCompDist. Then ¢ is 8 function i and only if
Cyp preserves 1 and ®.

ldea.
- 1—-> X (AC X closed) s o: CX — [0,1].

- Alis irreduciele <— ® is in Mon([0, 1]-FinSup).
- Every X in PosComp is sorer.

Next
Add metric to left-hand side.
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alaerras for the "prive fiter on upsets monad” on Pos.

References

B Flaca, Rosert C. (1997
pospaces”.
@)

"Alaerraic theories of compact
In: Topoloay and its Applications TI(3), pp. 2T1—
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Theorem (Flaaa (199

PosComp is equivalent to the catecory of Eileneera—Moore
alaerras for the "prive fiter on upsets monad” on Pos.

Theorem (Tholen (2009))
OrdCH is eauivalent to the catecory of Eileneera—Moore
alaerras for the urtrafilter monad U on Ord.

Note. ¢ (U<) y) whenever VA B3x,y.x <y.
Detinition
Me-tric compact Hausdorff space = Ellenrera—Moore alaerra
for the monad U on Met.
Note. Ud(r,v) = inf sup d(x,y).
AB xy

Remark

More general, one defines Quantale-enriched compact Hausdorsf
spaces as the Eileneera-Moore alaesras for the uktrafitter
monad on V-Cat.



Me-tric compact -Hausdor£$ spaces

7

"While listening to a 1961 lecture of Richard Swan ... |
noticed the analoay Between the trianale inequality and
a categorical composition law."?

- order <: X x X — 2

[v:>X§X and (xgy&ygz):>x<z.]

- metric d: X x X — [0, o<l:

[o >d(x,x) and d(x,y) - d(y,z) > d(x, z).]

- V-category a: X x X — V:

[k <a(x,x) and a(x,y)®a(y,z) < a(x, z)]

Lawvere, F. William (I973). "Metric spaces, aeneralized loaie, and closed
SP catecories” In: Rendiconti del Seminario Matematico e Fisico di Milano

v 430, pp. 35-ILk.

3

£
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Theorem (Flaaa (199

PosComp is equivalent to the catecory of Eileneera—Moore
alaerras for the "prive fiter on upsets monad” on Pos.

Theorem (Tholen (2009

OrdCH is eauivalent to the catecory of Eileneera—Moore
alaerras for the urtrafilter monad U on Ord.

Note. ¢ (U<) y) whenever VA B3x,y.x <y.

Definition

Metric compact Hausdor$f space = Elilenrera—Moore alaekra
for the monad U on Met.

Note. Ud(r,v) = inf sup d(x,y).
AB xy

Detinition

A V-categorical compact -Hausdorff space X is called Priestley
whenever the cone (f: X — V°P)¢ in V-CatCH is point-separating
and initial.
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Theorem
The functor

C=hom(—,1)

[0, 1]-PriestDist’” [0, 1]-FinSup

is fully faithful

References

B Hofmann, Dirk and Nora, Pedro (2018). "Enriched Stone-

type dualities” In: Advances in Mathematics 330, pp. 307T-
3L0.

B Hofmann, Dirk and Nora, Pedro (2023). "Duality theory for
enriched Priestley spaces” [n: Journal of Pure and Applied
Alaerra 2271(3), p. IOT23I.
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Theorem
The functor

C=hom(—,1

[0, 1]-PriestDist” ), 0, 1]-FinSup

is fully faithful and restricts to a fully fairthful functor

[0, 1]-Priest’” G ) [0, 1]-FinLat.

ldea.
-1E6X (X=[0,1D) ew d: CX —[0,1]
- 18 X is irreducigle «— o preserves finite weicghted limits.

- Every X in [0, 1]-Priest is sorer (Cauchy complete 3 la Lawvere).
]



Quotients in MetCH, 36

Proposition

For a V-catesory (X, a) and a compact Hausdorf£ space (X, a) with
the same underlying set X, the following assertions are
eQuivalent.

(i) a: U(X,a) — (X,a) is 8 V-functor.
(ii) a: (X, @) x (X,a) — (V,{<) is continuous.

Compare with

For an order relation < and a8 compact -Hausdor$f topoloay o on
aset X, a: U(X, <) — (X, <) is monotone if and only i£ the order
relation is closed with respect to the product topoloay of X x X.



Quotients in MetCH, 31

Proposition

For a V-catesory (X, a) and a compact Hausdorf£ space (X, a) with
the same underlying set X, the following assertions are
eQuivalent.

(i) a: U(X,a) — (X,a) is 8 V-functor.
(ii) a: (X, @) x (X,a) — (V,{<) is continuous.

Lenmma
For f: X — Y in MetCH.

vr: X x X — [0, o]
(x,y) — dx(f(x), f(¥))-

is 8 metrie, is continuous with respect to the upper topoloay Of
[0,00] aNd is Below dyx, ie., £or all x,y € X, yr(x, y) < dx(x,y).
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Proposition
For a V-catesory (X, a) and a compact Hausdorf£ space (X, a) with

the same underlying set X, the following assertions are
eQuivalentt.

(i) a: U(X,a) — (X,a) is 8 V-functor.
(ii) a: (X, @) x (X,a) — (V,{<) is continuous.

Lenmma
For f: X — Y in MetCH.

vr: X x X — [0, o]
(x,y) — dx(f(x), f(¥))-

is 8 metrie, is continuous with respect to the upper topoloay Of
[0,00] aNd is Below dyx, ie., £or all x,y € X, yr(x, y) < dx(x,y).

Proposition
There is a order-isomorphism Between such metrics on X and
(isomorphisv classes of) Quotients X — Y in MetCH__ .



Epis are surjective

Lenma
For emereddings fy: X — Yo, fi: X — Y; and their pushout,

P Yy,

4 b

Vo ——
Ao

forall i,je{0,1}, ue Yiand v € Y],

pa ) — dyl.(U,V) |-PI:_/,
dp(Ni(u), Ai(v)) = {infxex(dw(wfi(x))+dyj(,5.(x), v)) i8]

39



Epis are surjective

Lenma
For emereddings fy: X — Yo, fi: X — Y; and their pushout,

P Yy,

4 b

Vo ——
Ao

forall i,je{0,1}, ue Yiand v € Y],

pa ) — dyl.(U,V) |-PI:_/,
dp(Ni(u), Ai(v)) = {infxex(dw(wfi(x))+dyj(,5.(x), v)) i8]

Proposition

The epimorphisms in MetCH,, are precisely the surjective

MOrPhisms, and the recular MmonomorpPhisms are precisely the
empeddings.



R eaularity o

Proposition
The epimorphisms in MetCH_ | are precisely the surjective
MOorphisms, and the regular MoNoMmorphisms are precisely the

emeeddings.
Proposition

In MetCH,,, the pushout of a reaular monomorphism alona any
MOrpPhims is a8 reaular monomorphism.
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Proposition
The epimorphisms in MetCH_ | are precisely the surjective

MOorphisms, and the regular MoNoMmorphisms are precisely the
empeeddings.

Proposition

In MetCH,,, the pushout of a reaular monomorphism alona any
MOrpPhims is a8 reaular monomorphism.

Theorem

MetCHCY ) is 8 reaular catecory.
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Euivalence corelations )

For a separated metric compact -Hausdorsf space X, a Binary
corelation on X is 8 @uotient (;"1’): X+X—S8S.

A Binary corelation on X is called respectively reflexive, symmetric,
transitive provided that it satisfies the properties:

X+ X ) X+ X
iy %) iy (&)
R L > X S -t L > S

reflexivity symmetry

i e g 3 JARE :

o A = qg %204(1)

ql ) l / \
G e S » P

transitivity

Notation

We denote the elements of X + X By (x, i), where x varies in X
and i varies in {0,1}. Further, i* stands for 1 — 1.



EQuivalence corelations YL

For a separated metric compact -Hausdorsf space X, a Binary
corelation on X is 8 @uotient (3‘1’) : X+ X — S (Which can re
descrired By a8 "Quotient metric” v on X + X).

A Binary corelation on X is called respectively reflexive, symmetric,
transitive provided that it satisfies the properties:

X+ X ) X+ X
iy %) iy (&)
R L > X S -t L > S

reflexivity symmetry

i e g 3 JARE :

o A = qg %204(1)

ql ) l / \
G e S » P

transitivity

Notation

We denote the elements of X + X By (x, i), where x varies in X
and i varies in {0,1}. Further, i* stands for 1 — 1.
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Lenma

A Binary corelational structure v on a separated metric compact

Hausdor$f space X is reflexive if and only i, for all x,y € X and
i,j € {0,1},

dX(X,y) < '7((X7 i)7 (Yaf))
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Lenma

A Binary corelational structure v on a separated metric compact
Hausdor$f space X is reflexive if and only i, for all x,y € X and
i,j €{0,1},

dX(X,y) < '7((X7 i)7 (Yaf))

Lenmma

A Binary corelational structure v on a separated metric compact
Hausdor£f space X is symmetric if and only i£, for all x,y € X and
i,j € {0,1}, we have

(% 1); (v,4)) = (%, %), (v, J7))-
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Lemma
A Binary corelational structure v on a separated metric compact
Hausdor$f space X is reflexive if and only i, for all x,y € X and
i,j €{0,1},

dX(X,y) < '7((X7 i)7 (Yaf))

Lemma

A Binary corelational structure v on a separated metric compact
Hausdor£f space X is symmetric if and only i£, for all x,y € X and
i,j € {0,1}, we have

Y01, (y5d)) = (0%, 7), (v, 57))-
Lemma
A reflexive Binary corelational structure v on a separated metric

compact -Hausdor£$ space X is transitive if and only i£ for all
x,y € X and all i € {0,1}, we have

(61, 0,17)) = inf A%, 1), (2,7%)) + (2 1), (7).



Exactness S0

Lenmma

An equivalence corelational structure v on a separated metric
compact Hausdor£f space X is effective if and only if for all
x,y € X and i € {0,1}, we have

06 0), (v, ™) = inf o (dx(x,2) + dx(z,y))-

z€E

Y((2,i),(2,i*))=0



Exactness S

Lenmma

An equivalence corelational structure v on a separated metric
compact Hausdor£f space X is effective if and only if for all
x,y € X and j € {0,1}, we have

06 0), (v, ™) = inf o (dx(x,2) + dx(z,y))-

z€E

Y((2,i),(2,i*))=0

Theorem
Every equivalence corelation in MetCH,, is effective.

Theorem
The cateaory MetCHP is exact.



AROut copresentarle spaces

Remark
In the sequel, we consider "sufficiently nice" Quantales V.

=74
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Remark
In the sequel, we consider "sufficiently nice" Quantales V.

Proposition

For every reaular cardinal \, the foreetful functor
V-CatCH,.,) — CompHaus preserves A\-copresentasle ojects
(since its left adjoint preserves cofittered limits).

I particular:

1. Every finitely copresentarle (separated) V-enriched compact
Hausdor$f space is finite

2. BEvery N;-copresentarle (separated) V-enriched compact
Hausdor$f space has a metrizagle topoloay.



Using limit sketches Sy

Proposition

V-CatCH ) Is the model cateaory of a countasle Ni-ary limit
sketch in CompHaus.

[dea.
Use the Bijection petween the sets

{X — V continucus} and {(B.)uep | Bu C X closed & B, = ﬂ B,};
vKu
(p: X — V) — (9" (Tu)ueb)

(Bu)uen — (0: X =V, x = \[{ue D|x € B,})

then a continuous map a: (X, a) x (X,a) — (V,£<) corresponds to
a family (R,)uep OF closed Rinary relations R, on X. O



Using limit sketches ==

Proposition

V-CatCH ) Is the model cateaory of a countasle Ni-ary limit
sketch in CompHaus.

[dea.
Use the Bijection petween the sets

{X — V continucus} and {(B.)uep | Bu C X closed & B, = ﬂ B,};
vKu
(p: X — V) — (9" (Tu)ueb)

(Bu)uen — (0: X =V, x = \[{ue D|x € B,})
then a continuous map a: (X, a) x (X,a) — (V,£<) corresponds to
a family (R,)uep OF closed Rinary relations R, on X. O

Corollary

The catecory (V-CatCH,,,))” is the model catecory of a colimit
sketch in the locally Ni-presentarle cateaory CompHaus®™ and
therefore locally presentasle (we dont know the rank).
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Proposition

V-CatCH ) Is the model cateaory of a countasle Ni-ary limit
sketch in CompHaus.

Lenmma

Let ) Be a reaular cardinal and let S = (C, £,0) Be 8 A\-small limit
sketch. Then a model of S in a8 cateaory X is A-copresentarle in
Mod(S, X) provided that each component is A-copresentaele in X
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Proposition

V-CatCH ) Is the model cateaory of a countasle Ni-ary limit
sketch in CompHaus.

Lenmma

Let ) Be a reaular cardinal and let S = (C, £,0) Be 8 A\-small limit
sketch. Then a model of S in a8 cateaory X is A-copresentarle in
Mod(S, X) provided that each component is A-copresentaele in X

Corollary

An oBject is Ni-ary copresentaele in V-CatCH ., i# and only if its
underlyinGg compact Hausdorff space is metrizagle.



Using limit sketches 58

Proposition

V-CatCH ) Is the model cateaory of a countasle Ni-ary limit
sketch in CompHaus.

Lenmma

Let ) Be a reaular cardinal and let S = (C, £,0) Be 8 A\-small limit
sketch. Then a model of S in a8 cateaory X is A-copresentarle in
Mod(S, X) provided that each component is A-copresentaele in X

Corollary

An oBject is Ni-ary copresentaele in V-CatCH ., i# and only if its
underlying compact Hausdor£$ space is metrizaele. In particular,
VP is Ni-ary copresentarle.
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Proposition

V-CatCH ) Is the model cateaory of a countasle Ni-ary limit
sketch in CompHaus.

Lenmma

Let ) Be a reaular cardinal and let S = (C, £,0) Be 8 A\-small limit
sketch. Then a model of S in a8 cateaory X is A-copresentarle in
Mod(S, X) provided that each component is A-copresentaele in X

Corollary

An oBject is Ni-ary copresentaele in V-CatCH ., i# and only if its
underlying compact Hausdor£$ space is metrizaele. In particular,
VP is Ni-ary copresentarle.

£ the Quantale V is finite, then the finitely copresentarle orjects
of V-CatCH (respectively V-CatCH__ ) are precisely the finite ones.

—Sep



Passing to Priestley spaces

Proposition

The reflection functor mg: V-CatCH — V-Priest preserves
N;—cofiltered limits (and even cotfittered limits i£ V is finite).

0
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Proposition

The reflection functor mg: V-CatCH — V-Priest preserves
N;—cofiltered limits (and even cotfittered limits i£ V is finite).

Corollary

1. An oBject is Nj-ary copresentarle in V-Priest if and only if its
underlying compact Hausdor£$ space is metrizarle. In
particular, V°P is Nj-ary copresentarle in V-Priest.



Passina to Priestley spaces L2

Proposition

The reflection functor mg: V-CatCH — V-Priest preserves
N;—cofiltered limits (and even cotfittered limits i£ V is finite).

Corollary

1. An oBject is Nj-ary copresentarle in V-Priest if and only if its
underlying compact Hausdor£$ space is metrizarle. In
particular, V°P is Nj-ary copresentarle in V-Priest.

2. Assumie that V is finite. Then an oBject is finitely

copresentaile in V-Priest i£ and only i it is finite. In particular,
VP is finitely copresentarle in V-Priest.
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Proposition

The reflection functor mg: V-CatCH — V-Priest preserves
N;—cofiltered limits (and even cotfittered limits i£ V is finite).

Corollary

1. An oBject is Nj-ary copresentarle in V-Priest if and only if its
underlying compact Hausdor£$ space is metrizarle. In
particular, V°P is Nj-ary copresentarle in V-Priest.

2. Assumie that V is finite. Then an oBject is finitely

copresentaile in V-Priest i£ and only i it is finite. In particular,
VP is finitely copresentarle in V-Priest.

Theorem

The cateaory V-Priest is Iocally Ri-ary copresentarle (and even
locally finite copresentagrle i£ V is finite).



