BIASED ELEMENTARY DOCTRINES AND QUOTIENT COMPLETIONS

Cipriano Junior Cioffo Università degli Studi di Padova

Category Theory 2023 Université catholique de Louvain, July 7th

Outline

- Part 1
- 2 Part 2

Elementary doctrines

$$P: \mathscr{C}^{op} \to \mathsf{InfSL}$$

- \(\mathcal{C} \) has (strong) finite products
- For every $X \in \mathscr{C}$ there exists an element $\delta_X \in P(X \times X)$ with

$$\mathsf{P}(Y\times X) \xrightarrow[]{P_{<1,2>}(-)\wedge P_{<2,3>}\delta_X} \\ \vdash \\ P_{\langle 1,2,2\rangle} \\ \mathsf{P}(Y\times X\times X)$$

Equivalently¹:

$$1 \top_X \leq \mathsf{P}_{\Delta_X}(\delta_X) \qquad \qquad \vdash x = x$$

2
$$P(X) = Des(\delta_X)$$
 $A(x_1), x_1 = x_2 \vdash A(x_2)$

3
$$\delta_X \boxtimes \delta_Y \le \delta_{X \times Y}$$
 $x_1 = x_2, y_1 = y_2 \vdash (x_1, y_1) = (x_2, y_2)$

¹[MR12], [EPR20].

Part 1 CT2023

Examples

• (Variations) If \mathscr{C} has (strong) finite products and weak pullbacks then

$$\Psi_\mathscr{C}:\mathscr{C}^{op}\to\mathsf{InfSL}$$

$$\Psi_{\mathscr{C}}(X) := (\mathscr{C}/X)_{po}$$

$$\Psi_{\mathscr{C}}(f) := f^*$$

$$\delta_X = \lfloor \Delta_X \rceil$$

$$\begin{array}{ccc}
P & \xrightarrow{f'} & M \\
f^*m \downarrow & & \downarrow m \\
Y & \xrightarrow{f} & X
\end{array}$$

• (Subobjects) If & is a lex category

$$\mathsf{Sub}_\mathscr{C}:\mathscr{C}^{op}\to\mathsf{InfSL}$$

$$Sub_{\mathscr{C}}(X) := \{ \lfloor m \rceil \mid m : M \rightarrowtail X \}$$

$$Sub_{\mathscr{C}}(f) := f^*$$

$$\delta_X = \lfloor \Delta_X \rceil$$

CT2023

Examples from type theory

 Let ML be the category of closed types and terms up to f.e. of intensional MITT

$$F^{ML}: \mathbf{ML}^{op} \to \mathsf{InfSL}$$

$$F^{ML}(X) := \{x : X \vdash B(x), \text{up to equiprovability}\}\$$

 $F^{ML}(t)(B(x)) := B(t(y)), \text{ for a term } y : Y \vdash t(y) : X$

CT2023

Examples from type theory

 Let ML be the category of closed types and terms up to f.e. of intensional MITT

$$F^{ML}: \mathbf{ML}^{op} \to \mathsf{InfSL}$$

$$F^{ML}(X) := \{x : X \vdash B(x), \text{ up to equiprovability}\}\$$

 $F^{ML}(t)(B(x)) := B(t(y)), \text{ for a term } y : Y \vdash t(y) : X$

• Let \mathbf{mTT} be the intensional level of the Minimalist Foundation² and \mathcal{CM} the syntactic category of *collections*

$$G^{\mathbf{mTT}}: \mathcal{CM}^{op} \to \mathsf{InfSL}$$

Rmk. $\delta_X = Id_X$

Obs.: \mathcal{CM} and **ML** have (strong) finite products and weak pullbacks.

Obs.: $F^{ML} \cong \Psi_{ML}$.

²[MS05] [Mai09]

Part 1 CT2023

Elementary quotient completion³

If $P: \mathscr{C}^{op} \to \mathsf{InfSL}$ is an elementary doctrine:

- A P-eq. relation on $X \in \mathscr{C}$ is an element $\rho \in P(X \times X) + \text{ref.} + \text{sym.} + \text{trans.}$
- A quotient of ρ is an arrow $q: X \to C$ s.t. $\rho(x_1, x_2) \vdash q(x_1) = q(x_2) + \text{universal property}$

$$\overline{\mathsf{P}}:\overline{\mathscr{C}}^{\mathit{op}}\to\mathsf{InfSL}$$

$$\overline{\mathscr{C}} \qquad \overline{\mathsf{P}} \\
\mathsf{Obj.} \qquad (X, \rho) \qquad \overline{\mathsf{P}}(X, \rho) := \mathsf{Des}(\rho)^* \\
\mathsf{Arr.} \qquad \lfloor f \rceil : (X, \rho) \to (Y, \sigma) \qquad \overline{\mathsf{P}} \lfloor f \rceil := \mathsf{P}_f$$

*
$$Des(\rho) = \{A(x) \in P(X) | \rho(x_1, x_2), A(x_1) \vdash A(x_2) \}$$

Rmk. $\overline{\mathscr{C}}$ is not necessarily exact!

²[MR13]

Examples

• If \mathscr{C} has (strong) finite products and weak pullbacks then:

$$\Psi_\mathscr{C}:\mathscr{C}^{\mathit{op}}\to\mathsf{InfSL}\qquad \overline{\Psi_\mathscr{C}}\cong\mathsf{Sub}_{\mathscr{C}_{\mathsf{ex}/\mathit{wlex}}}:\mathscr{C}^{\mathit{op}}_{\mathsf{ex}/\mathit{wlex}}\to\mathsf{InfSL}$$

Pseudo eq. relations

$$R \xrightarrow{r_1} X$$

 $\longleftrightarrow \frac{\Psi_{\mathscr{C}}\text{-eq. relations}}{|\langle r_1, r_2 \rangle : R \to X \times X|}$

7 / 21

- ② $\overline{G^{mTT}}: \overline{\mathcal{CM}}^{op} \to InfSL$ provides the main example of e.q.c. that is not an exact completion. G^{mTT} describes the interpretation of (extensional level) emTT into mTT.
- $\overline{F^{ML}}: \overline{\mathbf{ML}}^{op} \to \mathsf{InfSL}$ \bullet $F^{ML}: \mathbf{ML}^{op} \to \mathsf{InfSI}$ $(\overline{\mathsf{ML}}\cong\mathsf{Std})$

CT2023

My problem

- Q1. If $P: \mathscr{C}^{op} \to \mathsf{InfSL}$ is an elementary doctrine, can I add "well-behaved" quotients to the slices of \mathscr{C} ?
- Q2. Can I consider the "slice doctrine" $P_{/A}: \mathscr{C}/A^{op} \to InfSL$ for every $A \in \mathscr{C}$?
- Q3. Do we have (strong) finite products in \mathscr{C}/A ?

8 / 21

Part 1 CT2023

My problem

- Q1. If P: $\mathscr{C}^{op} \to InfSL$ is an elementary doctrine, can I add "well-behaved" quotients to the slices of \mathscr{C} ?
- Q2. Can I consider the "slice doctrine" $P_{/A}: \mathscr{C}/A^{op} \to InfSL$ for every $A \in \mathscr{C}$?
- Q3. Do we have (strong) finite products in \mathscr{C}/A ?
- P. We may have just weak pullbacks!

$$\sum_{s':S} Id_X(f(s),g(s')) \longrightarrow S$$

$$\downarrow \qquad \qquad \downarrow^f$$

$$S \longrightarrow X$$

8 / 21

CT2023

The categorical gap

Thm. (Carboni-Vitale '98) If $\mathscr C$ weakly lex the precomposition with Γ

gives an equivalence

$$Lco(\mathscr{C}, E) \cong EX(\mathscr{C}_{ex/wlex}, E)$$

Thm. (Maietti-Rosolini '13) If $P: \mathscr{C}^{op} \to \mathsf{InfSL}$ is elementary the pre-composition with (J,j)

gives a natural equivalence

$$EqD(P,R) \cong QED(\overline{P},R)$$

9 / 21

$$\mathscr{C} \xrightarrow{\hspace{1cm}\mathsf{Only in \ case \ of}} \Psi_\mathscr{C}:\mathscr{C}^{op} o \mathsf{InfSL}$$

Part 1 CT2023

Outline

- Part 1
- 2 Part 2

From now on $\mathscr C$ has weak finite products.

Part 2 CT2023 11 / 21

From now on $\mathscr C$ has weak finite products.

Definition

A functor $P: \mathscr{C}^{op} \to \mathsf{InfSL}$ is a biased elementary doctrine if for every $X \in \mathscr{C}$ and for every weak product $X \overset{\mathsf{p}_1}{\leftarrow} W \overset{\mathsf{p}_2}{\rightarrow} X$ there exists an element $\delta^{(\mathsf{p}_1,\mathsf{p}_2)} \in \mathsf{P}(W)$ satisfying:

Part 2 CT2023 11 / 21

From now on $\mathscr C$ has weak finite products.

Definition

A functor $P: \mathscr{C}^{op} \to \mathsf{InfSL}$ is a biased elementary doctrine if for every $X \in \mathscr{C}$ and for every weak product $X \overset{p_1}{\leftarrow} W \overset{p_2}{\to} X$ there exists an element $\delta^{(p_1,p_2)} \in P(W)$ satisfying:

1) For every commutative diagram

11 / 21

 $\top_X \leq \mathsf{P}_d \delta^{(\mathsf{p}_1,\mathsf{p}_2)}$.

Part 2 CT2023

From now on $\mathscr C$ has weak finite products.

Definition

A functor $P: \mathscr{C}^{op} \to \mathsf{InfSL}$ is a biased elementary doctrine if for every $X \in \mathscr{C}$ and for every weak product $X \stackrel{\mathsf{p}_1}{\leftarrow} W \stackrel{\mathsf{p}_2}{\rightarrow} X$ there exists an element $\delta^{(\mathsf{p}_1,\mathsf{p}_2)} \in \mathsf{P}(W)$ satisfying:

2) $P(X) = Des(\delta^{(p_1,p_2)})$, i.e. for every $\alpha \in P(X)$

$$P_{p_1}\alpha \wedge \delta^{(p_1,p_2)} \leq P_{p_2}\alpha.$$

Part 2 CT2023 11 / 21

From now on $\mathscr C$ has weak finite products.

Definition

A functor $P: \mathscr{C}^{op} \to \mathsf{InfSL}$ is a biased elementary doctrine if for every $X \in \mathscr{C}$ and for every weak product $X \overset{p_1}{\leftarrow} W \overset{p_2}{\to} X$ there exists an element $\delta^{(p_1,p_2)} \in P(W)$ satisfying:

3) For any weak product $X' \stackrel{p'_1}{\leftarrow} W' \stackrel{p'_2}{\rightarrow} X'$ and for every commutative diagram

$$W' \xrightarrow{p'_{1} \atop p_{1} \atop p_{2} \atop p_{2}$$

we have $\delta^{(p'_1,p'_2)} \leq P_{\sigma}\delta^{(p_1,p_2)}$.

Part 2 CT2023

From now on $\mathscr C$ has weak finite products.

Definition

A functor $P: \mathscr{C}^{op} \to \mathsf{InfSL}$ is a biased elementary doctrine if for every $X \in \mathscr{C}$ and for every weak product $X \overset{\mathsf{p}_1}{\leftarrow} W \overset{\mathsf{p}_2}{\to} X$ there exists an element $\delta^{(\mathsf{p}_1,\mathsf{p}_2)} \in \mathsf{P}(W)$ satisfying:

4) For every commutative diagram where $W \stackrel{r_1}{\leftarrow} U \stackrel{r_2}{\rightarrow} W$ is a weak product $V \stackrel{r_1}{\leftarrow} V \stackrel{p_2}{\rightarrow} V \stackrel{p_1}{\rightarrow} X$ $V \stackrel{p_2}{\rightarrow} V \stackrel{p_2}{\rightarrow} X$

we have
$$\delta^{(p_1,p_2)} \in Des(P_t \delta^{(p_1,p_2)} \wedge P_{t'} \delta^{(p_1,p_2)})$$
, i.e.
$$P_{r_1} \delta^{(p_1,p_2)} \wedge P_t \delta^{(p_1,p_2)} \wedge P_{t'} \delta^{(p_1,p_2)} \leq P_{r_2} \delta^{(p_1,p_2)}.$$

Part 2 CT2023

Examples I

1 Every elementary doctrine P is a biased elementary doctrine. If $X \stackrel{p_1}{\leftarrow} W \stackrel{p_2}{\rightarrow} X$ is a weak product then there exists a unique arrow < p₁, p₂ >: W → X × X

$$\delta^{(\mathsf{p}_1,\mathsf{p}_2)} := \mathsf{P}_{<\mathsf{p}_1,\mathsf{p}_2>} \delta_X$$

② If $\mathscr C$ is wlex then the functor $\Psi_\mathscr C:\mathscr C^{op}\to \mathsf{InfSL}$ is a biased elementary doctrine and

$$\delta^{(\mathsf{p}_1,\mathsf{p}_2)} := |e|$$

where

$$E \stackrel{e}{\longrightarrow} W \stackrel{p_1}{\xrightarrow{p_2}} X$$

is a weak equalizer of p_1, p_2 .

Part 2 CT2023

Examples II

③ If P : \mathscr{C}^{op} → InfSL is a (biased) elementary doctrine with weak comprehensions and comprehensive diagonals and $A \in \mathscr{C}$ then the *slice doctrine* is a biased elementary doctrine:

$$\mathsf{P}_{/A}:\mathscr{C}/A^{op}\to\mathsf{InfSL}$$

$$P_{/A}(x:X\to A):=P(X)$$

$$P_{/A}(f:y\to x):=P_f$$

$$\mathsf{P}_{/A}(w) = \mathsf{P}(X \times_A X)$$

where $w := x\pi_1 = y\pi_2$ and

$$\delta^{(\pi_1,\pi_2)} := \mathsf{P}_{<\pi_1,\pi_2>}\delta_{\mathsf{X}}$$

13 / 21

Part 2 CT2023

Key differences with (strong) elementary doctrines

- Two weak products $X \stackrel{p_1}{\leftarrow} W \stackrel{p_2}{\rightarrow} Y$ and $X \stackrel{p_1'}{\leftarrow} W' \stackrel{p_2'}{\rightarrow} Y$ are not necessarily isomorphic.
- The fibers P(W) and P(W') are not necessarily isomorphic.

 $Z \xrightarrow{f} X$ $Z \xrightarrow{f} W \xrightarrow{p_1} p_2$

The reindexings P_h and $P_{h'}$ are not necessarily equal.

• We have only the inequality

$$\delta_{X \times Y} \leq \delta_X \boxtimes \delta_Y$$

Intuition:
$$x_1 = x_2, y_1 = y_2 \Rightarrow ((x_1, y_1), p) = ((x_2, y_2), q)$$

 $\delta_{X \times Y} \sim \text{proof-relevant}$ equality $\delta_X \boxtimes \delta_Y \sim \text{proof-irrelevant}$ or component-wise equality

Part 2 CT2023

Proof-irrelevant elements

Definition

 $X \stackrel{p_1}{\leftarrow} W \stackrel{p_2}{\rightarrow} Y$ weak product. The *proof-irrelevant* elements of W are the sub-poset of P(W) given by P-Irr $(W) := Des(\delta_X \boxtimes \delta_Y)^4$

• Different weak products (of X, Y) have isomorphic proof-irrelevant elements: take an arrow $W' \xrightarrow{h} W$ s.t. $p_i \circ h = p'_i$

$$\begin{array}{ccc}
\mathsf{P-Irr}(\mathsf{W}) & \stackrel{\cong}{\longrightarrow} & \mathsf{P-Irr}(W') \\
\downarrow & & \downarrow \\
\mathsf{P}(W) & \stackrel{\mathsf{P}_b}{\longrightarrow} & \mathsf{P}(W')
\end{array}$$

- Up to iso: we denote proof-irrelevant elements of X and Y with $P^s([X,Y])$.
- Proof-irrelevant elements are reindexed by projections.

 4 Some work to prove that the definition depends only on W.

Main examples

• In $F_{/A}^{ML}: \mathbf{ML}/A^{op} \to \mathsf{InfSL}$, if

$$W := \sum_{x:X,y:Y} \operatorname{Id}_{A}(f(x),g(y)) \longrightarrow Y$$

$$\downarrow g$$

$$X \xrightarrow{f} A$$

$$F_{/A}^{ML}$$
-Irr $(W) = \{(x, y, p) : W \vdash R(x, y, p) | "proof-irrelevant"\}$

• If $\mathscr C$ is wlex and $X \overset{p_1}{\leftarrow} W \overset{p_2}{\rightarrow} Y$ is a weak product, the proof-irrelevant elements of $\Psi_{\mathscr C}(W)$ are:

Theorem

If \mathscr{C} is weakly left exact, then

$$\Psi_{\mathscr{C}}$$
-Irr $(W)\cong (\mathscr{C}/(X,Y))_{po}$.

Part 2 CT2023

Strictification...

If $\mathscr C$ is a category, we can freely⁵ add (strong) finite products and obtain the category $\mathscr C_s$:

Obj. are finite lists $[X_i]_{i \in [n]}$

Arr.
$$(f, \hat{f}) : [X_i]_{i \in [n]} \to [Y_j]_{j \in [m]}$$

If $P: \mathscr{C}^{op} \to \mathsf{InfSL}$ is a b.e.d. then we can build P^s using p.i. elements

Theorem

If P is a b. e. d. then $\mathsf{P}^s \in \mathbf{ED}$. Vice versa, if $R: \mathscr{C}^{op}_s \to \mathsf{InfSL}$ in \mathbf{ED} , the pre-composition $R \circ S: \mathscr{C}^{op} \to \mathsf{InfSL}$ is a b. e. d.

Obs: Weak products are neither preserved nor "strictified" by S.

Part 2 CT2023

Extending elementary quotient completion

If $P: \mathscr{C}^{op} \to \mathsf{InfSL}$ is a b.e.d. a P-eq. relation⁶ over $X \in \mathscr{C}$ is a $\rho \in \mathsf{P}^{\mathsf{s}}[X,X]$ satisfying ref., sym. and tra.. The category $\overline{\mathscr{C}}$:

Obj. Pairs (X, ρ)

Arr. $\lfloor f \rceil : (X, \rho) \to (Y, \sigma)$ are $f : X \to Y$ s.t. $\rho \leq \mathsf{P}^s_{\lceil f \rceil \times \lceil f \rceil}(\sigma)$.

Theorems

- 1) $\overline{P}^{\flat} \in \mathbf{QED}$
- 2) $\circ (J,j) : \mathbf{QED}(\overline{P}^{\flat},R) \cong \mathbf{Lco}(P,R)$, for every $R \in \mathbf{QED}$

Obs: $\overline{P}^{\flat} \ncong \overline{P^s}$.

Part 2 CT2023

⁶The usual notion relies on (strong) fine products!

Applications and further results

- (Elimination of the problem) Thm. $\overline{P}_{/A} \cong \overline{P}_{/(A,\delta_{[A]})}$.
- (Filling the gap) $\mathscr{C}_{\text{ex/wlex}}$ and the e.q.c. are instances of this construction since $\Psi_{\mathscr{C}}$ -eq. relation coincides with per (cones + ref. + sym. + trans.)
- We can define \implies , \exists and \forall -biased elementary doctrines.
- Full generalization of the result of Carboni, Rosolini and Emmenegger about the lcc of the *ex/wlex* exact completion.

Part 2 CT2023 19 / 21

References I

- [Cio22] C. J. Cioffo. "Homotopy setoids and generalized quotient completion". PhD thesis. Università degli Studi di Milano, 2022.
- [Cio23] C. J. Cioffo. Biased elementary doctrines and quotient completions. 2023. arXiv: 2304.03066 [math.CT].
- [EPR20] J. Emmenegger, F. Pasquali, and G. Rosolini. "Elementary doctrines as coalgebras". In: Journal of Pure and Applied Algebra 224.12 (2020), p. 106445.
- [Mai09] M. E. Maietti. "A minimalist two-level foundation for constructive mathematics". In: Ann. Pure Appl. Logic 160.3 (2009), pp. 319–354.
- [MR12] M. E. Maietti and G. Rosolini. "Elementary quotient completion". In: Theory Appl. Categ. 27 (2012), Paper No. 17, 463.

References CT2023

References II

- [MR13] M. E. Maietti and G. Rosolini. "Quotient completion for the foundation of constructive mathematics". In: Log. Univers. 7.3 (2013), pp. 371–402.
- [MS05] M. E. Maietti and G. Sambin. "Toward a minimalist foundation for constructive mathematics". In: From sets and types to topology and analysis. Vol. 48. Oxford Logic Guides. Oxford Univ. Press, Oxford, 2005, pp. 91–114.
- [MLS84] P. Martin-Löf and G. Sambin. Intuitionistic type theory. Vol. 9. Bibliopolis Naples, 1984.

References CT2023