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Summary

Question: how to bicategorify the following structures?

A left strength for a monad (T, µ, η) on a monoidal category (C,⊗, I) is
a natural transformation A⊗ TB → T (A⊗B) subject to coherence laws.

A bistrong monad is a monad with both a left strength tA,B : A⊗ TB →
T (A⊗B) and a right strength sA,B : T (A)⊗B → T (A⊗B), subject to
a compatibility law relating s and t.

Premonoidal categories axiomatise the structure of the Kleisli category
CT when T is bistrong. A strict premonoidal category is a monoid in Cat
with the funny tensor product.

Strategy: equations on 2-cells

1. Start by bicategorifying correspondences from the 1-dimensional setting;

2. Show basic examples and theory also lift;

3. Prove (some) coherence results.

Motivation

Build a framework to capture recent bicategorical models for programming

languages and linear logic (e.g. [11, 4, 6, 1]).

Strengths for pseudomonads

Definition

A left strength for a pseudomonad T on a monoidal bicategory B consists
of a pseudonatural transformation tA,B : A⊗ TB → T (A⊗ B) together
with invertible modifications witnessing the four axioms of a strong monad,
subject to coherence equations.

A bistrong pseudomonad has a left strength and a right strength, related
by an invertible modification satisfying coherence axioms. Every strong
pseudomonad on a symmetric monoidal bicategory is bistrong.

Results mirroring the 1-dimensional setting, and coherence

To give a left strength for a monad (T, µ, η) on (C,⊗, I) is to give a left
action C× CT → CT , such that η ◦ (−) : C → CT is a strict morphism of
actions. A bicategorical correlate:

Proposition.For a pseudomonad T on a monoidal bicategory (B,⊗, I),
there is an equivalence between the category of left strengths on T and
the category of 0-strict morphisms of actions with J = η ◦ (−):

B × B B

B × BT BT

⊗

id×J θ∼= J

▷

A strong monad on V is an internal monad in the 2-category V-Act.
Proposition.A strong pseudomonad on B is precisely an internal pseu-
domonad in the tricategory B-Act (see above right). Hence, by Lack’s
coherence theorem [9], every diagram of structural 2-cells commutes.

Examples

•Any pseudomonad on (Cat,×, 1);
• If B is cartesian closed (×, 1,⇒), the state pseudomonad S ⇒ (S ×−)
and continuation pseudomonad (− ⇒ R) ⇒ R are canonically strong.

•Any pseudomonad wrt coproducts (0,+);
• (−)⊗M for any pseudomonoid M ;
•Any strong monad on C lifts to a strong pseudomonad: on Para(C)
(see e.g. [5]) if C is monoidal; on Span(C) if C is lextensive (see [2]).
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The 1-dimensional story: premonoidal and Freyd structure

Premonoidal categories are weakenings of monoidal categories in which ⊗ is only assumed to be a
functor in each argument separately, i.e. interchange fails.

A binoidal category (P,⋊,⋉) is a category P equipped with a mapping ⊗ : ob(P)× ob(P) → ob(P)
and functors A⋊ (−), (−)⋉B : P → P for every A,B ∈ P, such that A⋊B = A⊗B = A⋉B on
objects. A map f : A → A′ in P is central if for any g : B → B′ interchange holds on both sides:

A⊗B A⊗B′

A′ ⊗B A′ ⊗B′

A⋊g

f⋉B f⋉B′

A′⋊g

B ⊗ A B′ ⊗ A

B ⊗ A′ B′ ⊗ A′

g⋉A

B⋊f B′⋊f

g⋉A′

A premonoidal category (P,⋊,⋉, I) is a binoidal category equipped with a unit I ∈ P and component-
wise central natural isomorphisms α, λ, ρ satisfying triangle and pentagon laws as in a monoidal category.

Actions and extensions for bicategories

V × B V

V × C C

▷

id×J J

▶

θ

A left action of a monoidal bicategory (V ,⊗, I) on a bicategory B is defined as
a degenerate 2-object tricategory (c.f. [7]).

Proposition.There is a tricategory V-Act with objects left V-actions. 1-cells
are pseudofunctors J : B → C with a pseudonatural transformation θ as on
the right and modifications similar to those of a monoidal pseudofunctor, subject to coherence
axioms ( c.f. [3, 12]).

Proposition.For a fixed monoidal V, there is a biequivalence V-Act(B) ≃ MonBicat(V ,Hom(B,B))
between left V-actions on B and monoidal pseudofunctors V → Hom(B,B) (see [3]).

A 0-strict morphism of V-actions is a 1-cell (J, θ) such that θ is invertible, J strictly preserves the
1-cell structural data, and J preserves the 2-cell structural data modulo θ.

Premonoidal bicategories

Binoidal structure

A binoidal bicategory is a bicategory B equipped with a mapping ⊗ : ob(B)× ob(B) → ob(B) and
pseudofunctors A⋊ (−), (−)⋉B : B → B for every A,B ∈ B, such that A⋊B = A⊗B = A⋉B
on objects.

Centrality as data

A central 1-cell is a 1-cell f : A → A′ with 2-cells lcfg and rcfg for each g : B → B′

A⊗B A⊗B′

A′ ⊗B A′ ⊗B′

lcfg∼=

A⋊g

f⋉B f⋉B′

A′⋊g

B ⊗ A B′ ⊗ A

B ⊗ A′ B′ ⊗ A′

rcfg∼=

g⋉A

B⋊f B′⋊f

g⋉A′

such that we get pseudonatural transformations

lcf : A⋊ (−) ⇒ A′ ⋊ (−) , lcfB :=
(
A⋊B = A⋉B

f⋉B−−→ A′ ⋉B = A′ ⋊B
)

rcf : (−)⋉ A ⇒ (−)⋉ A′ , rcfB :=
(
B ⋉ A = B ⋊ A

B⋊f−−→ B ⋊ A′ = B ⋉ A′)
A central 2-cell (f, lcf , rcf) ⇒ (f ′, lcf

′
, rcf

′
) is a 2-cell σ : f ⇒ f ′ such that σ ⋊ (−) and (−)⋉ σ

define modifications between the induced pseudonatural transformations.

Premonoidal structure

A premonoidal bicategory is a binoidal bicategory with a unit I ∈ B, component-wise central
pseudonatural transformations and component-wise central modifications as in a monoidal bicategory.

A subtlety. For the structural modifications that use interchange, we need to use the transformation
given by centrality:

(I ⋊−)⋊B (−⋉B)

I ⋊ (−⋉B)

λ⋉B

αI,−,B

l−,B
λ−⋉B

(IA)⋊ (−) (A⋊−)

I ⋊ (A⋉−)

lcλ

αI,A,−
lA,−

λA⋊−

Examples

•Any monoidal bicategory;
•The Kleisli bicategory BT for a bistrong pseudomonad;
•The bicategory [B, C]unnat of pseudofunctors, unnatural
transformations, and unnatural modifications.

•For any bistrong graded monad T :
E → [C,C]bistrong (c.f. [13, 10, 8]), the
Kleisli bicategoryKT with 1-cellsA ↛ B
given by arrows A → TeB.

See our Arxiv preprint for extension to Freyd bicategories, their relationship to actions, and more!


