Strong pseudomonads and premonoidal bicategoriesHugo Paquet1Philip Saville2¹LIPN, Université Sorbonne Paris Nord²University of Oxford

Summary

Question: how to bicategorify the following structures?

A left strength for a monad (T, μ, η) on a monoidal category (\mathbb{C}, \otimes, I) is a natural transformation $A \otimes TB \to T(A \otimes B)$ subject to coherence laws.

A **bistrong monad** is a monad with both a left strength $t_{A,B} : A \otimes TB \rightarrow T(A \otimes B)$ and a right strength $s_{A,B} : T(A) \otimes B \rightarrow T(A \otimes B)$, subject to a compatibility law relating s and t.

Premonoidal categories axiomatise the structure of the Kleisli category

The 1-dimensional story: premonoidal and Freyd structure

Premonoidal categories are weakenings of monoidal categories in which \otimes is only assumed to be a functor in each argument separately, *i.e.* interchange fails.

A binoidal category $(\mathbb{P}, \rtimes, \ltimes)$ is a category \mathbb{P} equipped with a mapping $\otimes : ob(\mathbb{P}) \times ob(\mathbb{P}) \to ob(\mathbb{P})$ and functors $A \rtimes (-), (-) \ltimes B : \mathbb{P} \to \mathbb{P}$ for every $A, B \in \mathbb{P}$, such that $A \rtimes B = A \otimes B = A \ltimes B$ on objects. A map $f : A \to A'$ in \mathbb{P} is **central** if for any $g : B \to B'$ interchange holds on both sides:

 \mathbb{C}_T when T is bistrong. A strict premonoidal category is a monoid in **Cat** with the funny tensor product.

Strategy: equations on 2-cells

Start by bicategorifying correspondences from the 1-dimensional setting;
 Show basic examples and theory also lift;
 Prove (some) coherence results.

Motivation

Build a framework to capture recent bicategorical models for programming languages and linear logic (e.g. [11, 4, 6, 1]).

Strengths for pseudomonads

Definition

A left strength for a pseudomonad T on a monoidal bicategory \mathcal{B} consists of a pseudonatural transformation $t_{A,B} : A \otimes TB \to T(A \otimes B)$ together with invertible modifications witnessing the four axioms of a strong monad, subject to coherence equations.

A **bistrong** pseudomonad has a left strength and a right strength, related by an invertible modification satisfying coherence axioms. Every strong pseudomonad on a symmetric monoidal bicategory is bistrong.

$A' \otimes B \xrightarrow[A' \rtimes g]{} A' \otimes B' \qquad B \otimes A' \xrightarrow[g \ltimes A']{} B' \otimes A'$

A premonoidal category $(\mathbb{P}, \rtimes, \ltimes, I)$ is a binoidal category equipped with a unit $I \in \mathbb{P}$ and componentwise central natural isomorphisms α, λ, ρ satisfying triangle and pentagon laws as in a monoidal category.

Actions and extensions for bicategories

A left action of a monoidal bicategory $(\mathcal{V}, \otimes, I)$ on a bicategory \mathcal{B} is defined as $\mathcal{V} \times \mathcal{B} \xrightarrow{\triangleright} \mathcal{V}$ a degenerate 2-object tricategory (c.f. [7]).

Proposition. There is a tricategory \mathcal{V} -Act with objects left \mathcal{V} -actions. 1-cells are pseudofunctors $J : \mathcal{B} \to \mathcal{C}$ with a pseudonatural transformation θ as on

the right and modifications similar to those of a monoidal pseudofunctor, subject to coherence axioms (c.f. [3, 12]).

Proposition. For a fixed monoidal \mathcal{V} , there is a biequivalence \mathcal{V} -Act $(\mathcal{B}) \simeq \operatorname{MonBicat}(\mathcal{V}, \operatorname{Hom}(\mathcal{B}, \mathcal{B}))$ between left \mathcal{V} -actions on \mathcal{B} and monoidal pseudofunctors $\mathcal{V} \to \operatorname{Hom}(\mathcal{B}, \mathcal{B})$ (see [3]).

A **0-strict morphism of \mathcal{V}-actions** is a 1-cell (J, θ) such that θ is invertible, J strictly preserves the 1-cell structural data, and J preserves the 2-cell structural data modulo θ .

Premonoidal bicategories

Results mirroring the 1-dimensional setting, and coherence

To give a left strength for a monad (T, μ, η) on (\mathbb{C}, \otimes, I) is to give a left action $\mathbb{C} \times \mathbb{C}_T \to \mathbb{C}_T$, such that $\eta \circ (-) : \mathbb{C} \to \mathbb{C}_T$ is a strict morphism of actions. A bicategorical correlate:

Proposition. For a pseudomonad T on a monoidal bicategory $(\mathcal{B}, \otimes, I)$, there is an equivalence between the category of left strengths on T and the category of 0-strict morphisms of actions with $J = \eta \circ (-)$:

A strong monad on \mathbb{V} is an internal monad in the 2-category \mathbb{V} -Act.

Proposition. A strong pseudomonad on \mathcal{B} is precisely an internal pseudomonad in the tricategory \mathcal{B} -Act (see above right). Hence, by Lack's coherence theorem [9], every diagram of structural 2-cells commutes.

Examples

• Any pseudomonad on $(Cat, \times, 1)$;

If B is cartesian closed (×, 1, ⇒), the state pseudomonad S ⇒ (S × −) and continuation pseudomonad (− ⇒ R) ⇒ R are canonically strong.
Any pseudomonad wrt coproducts (0, +);

Binoidal structure

A **binoidal bicategory** is a bicategory \mathcal{B} equipped with a mapping $\otimes : ob(\mathcal{B}) \times ob(\mathcal{B}) \to ob(\mathcal{B})$ and pseudofunctors $A \rtimes (-), (-) \ltimes B : \mathcal{B} \to \mathcal{B}$ for every $A, B \in \mathcal{B}$, such that $A \rtimes B = A \otimes B = A \ltimes B$ on objects.

Centrality as data

A central 1-cell is a 1-cell $f: A \to A'$ with 2-cells lc_g^f and rc_g^f for each $g: B \to B'$

such that we get pseudonatural transformations

 $\mathsf{lc}^{f} : A \rtimes (-) \Rightarrow A' \rtimes (-) \quad , \qquad \mathsf{lc}^{f}_{B} := \left(A \rtimes B = A \ltimes B \xrightarrow{f \ltimes B} A' \ltimes B = A' \rtimes B \right)$ $\mathsf{rc}^{f} : (-) \ltimes A \Rightarrow (-) \ltimes A' \quad , \qquad \mathsf{rc}^{f}_{B} := \left(B \ltimes A = B \rtimes A \xrightarrow{B \rtimes f} B \rtimes A' = B \ltimes A' \right)$

A central 2-cell $(f, \mathsf{lc}^f, \mathsf{rc}^f) \Rightarrow (f', \mathsf{lc}^{f'}, \mathsf{rc}^{f'})$ is a 2-cell $\sigma : f \Rightarrow f'$ such that $\sigma \rtimes (-) \rtimes \sigma$ define modifications between the induced pseudonatural transformations.

Premonoidal structure

A **premonoidal bicategory** is a binoidal bicategory with a unit $I \in \mathcal{B}$, component-wise central pseudonatural transformations and component-wise central modifications as in a monoidal bicategory. A subtlety. For the structural modifications that use interchange, we need to use the transformation

• (-) $\otimes M$ for any pseudomonoid M;

• Any strong monad on \mathbb{C} lifts to a strong pseudomonad: on Para(\mathbb{C}) (see *e.g.* [5]) if \mathbb{C} is monoidal; on Span(\mathbb{C}) if \mathbb{C} is lextensive (see [2]).

References

J. C. Baez, B. Fong, and B. S. Pollard. A compositional framework for Markov processes. 2016. A. Carboni, S. Lack, and R.F.C. Walters. Introduction to extensive and distributive categories. 1993. E. Cheng and N. Gurski. The periodic table of n-categories II: degenerate tricategories. 2011. J. L. Fiadeiro and V. Schmitt. Structured co-spans: An algebra of interaction protocols. 2007. B. Fong, D. Spivak, and R. Tuyeras. Backprop as functor: A compositional perspective on supervised learning. 2019. F. R. Genovese, J. Herold, F. Loregian, and D. Palombi. A categorical semantics for hierarchical Petri nets. 2021. G. Janelidze and G. M. Kelly. A note on actions of a monoidal category. 2001. S. Katsumata. Parametric effect monads and semantics of effect systems. 2014. S. Lack. A coherent approach to pseudomonads. 2000. P.-A. Melliès. Parametric monads and enriched adjunctions. 2012. P.-A. Melliès. Asynchronous template games and the Gray tensor product of 2-categories. 2021. C. J. Schommer-Pries. The classification of two-dimensional extended topological field theories. 2009. A. L. Smirnov. Graded monads and rings of polynomials. 2008.

Acknowledgements

HP was supported by a Royal Society University Research Fellowship and by a Paris Region Fellowship co-funded by the European Union (Marie Skłodowska-Curie grant agreement 945298). PS was supported by the Air Force Office of Scientific Research under award number FA9550-21-1-0038. Background image byPaulo Henrique Orlandi Mourao.

given by centrality:

Examples

• Any monoidal bicategory;

The Kleisli bicategory \$\mathcal{B}_T\$ for a bistrong pseudomonad;
The bicategory \$[\mathcal{B}, \mathcal{C}]_{unnat}\$ of pseudofunctors, unnatural transformations, and unnatural modifications.

• For any **bistrong graded monad** T: $\mathbb{E} \to [\mathbb{C}, \mathbb{C}]_{\text{bistrong}}$ (*c.f.* [13, 10, 8]), the Kleisli bicategory \mathcal{K}_T with 1-cells $A \not\rightarrow B$ given by arrows $A \to T_e B$.

See our Arxiv preprint for extension to **Freyd bicategories**, their relationship to actions, and more!

