Strong pseudomonads and premonoidal bicategories

Hugo Paquet ${ }^{1}$
${ }^{1}$ LIPN, Université Sorbonne Paris Nord

Philip Saville ${ }^{2}$
${ }^{2}$ University of Oxford

Summary

Question: how to bicategorify the following structures?
A left strength for a monad (T, μ, η) on a monoidal category (\mathbb{C}, \otimes, I) is a natural transformation $A \otimes T B \rightarrow T(A \otimes B)$ subject to coherence laws.
A bistrong monad is a monad with both a left strength $t_{A, B}: A \otimes T B \rightarrow$ $T(A \otimes B)$ and a right strength $s_{A, B}: T(A) \otimes B \rightarrow T(A \otimes B)$, subject to a compatibility law relating s and t.
Premonoidal categories axiomatise the structure of the Kleisli category \mathbb{C}_{T} when T is bistrong. A strict premonoidal category is a monoid in Cat with the funny tensor product

Strategy: equations on 2 -cells

1. Start by bicategorifying correspondences from the 1-dimensional setting; 2. Show basic examples and theory also lift;
2. Prove (some) coherence results.

Motivation
Build a framework to capture recent bicategorical models for programming languages and linear logic (e.g. [11, 4, 6, 1])

Strengths for pseudomonads

Definition

A left strength for a pseudomonad T on a monoidal bicategory \mathcal{B} consists of a pseudonatural transformation $t_{A, B}: A \otimes T B \rightarrow T(A \otimes B)$ together with invertible modifications witnessing the four axioms of a strong monad, subject to coherence equations
A bistrong pseudomonad has a left strength and a right strength, related by an invertible modification satisfying coherence axioms. Every strong pseudomonad on a symmetric monoidal bicategory is bistrong.

Results mirroring the 1-dimensional setting, and coherence

To give a left strength for a monad (T, μ, η) on (\mathbb{C}, \otimes, I) is to give a left action $\mathbb{C} \times \mathbb{C}_{T} \rightarrow \mathbb{C}_{T}$, such that $\eta \circ(-): \mathbb{C} \rightarrow \mathbb{C}_{T}$ is a strict morphism of actions. A bicategorical correlate:
Proposition. For a pseudomonad T on a monoidal bicategory $(\mathcal{B}, \otimes, I)$, there is an equivalence between the category of left strengths on T and the category of 0 -strict morphisms of actions with $\mathrm{J}=\eta \circ(-)$:

A strong monad on \mathbb{V} is an internal monad in the 2-category \mathbb{V}-Act
Proposition. A strong pseudomonad on \mathcal{B} is precisely an internal pseudomonad in the tricategory \mathcal{B}-Act (see above right). Hence, by Lack's coherence theorem [9], every diagram of structural 2-cells commutes.

Examples

- Any pseudomonad on (Cat, $\times, 1$);
- If \mathcal{B} is cartesian closed $(\times, 1, \Rightarrow)$, the state pseudomonad $S \Rightarrow(S \times-)$ and continuation pseudomonad $(-\Rightarrow R) \Rightarrow R$ are canonically strong.
- Any pseudomonad wrt coproducts $(0,+)$;
$\bullet(-) \otimes M$ for any pseudomonoid M;
- Any strong monad on \mathbb{C} lifts to a strong pseudomonad: on Para(\mathbb{C} (see e.g. [5]) if \mathbb{C} is monoidal; on $\operatorname{Span}(\mathbb{C})$ if \mathbb{C} is lextensive (see [2]).

The 1-dimensional story: premonoidal and Freyd structure

Premonoidal categories are weakenings of monoidal categories in which \otimes is only assumed to be a functor in each argument separately, i.e. interchange fails
A binoidal category $(\mathbb{P}, \rtimes, \ltimes)$ is a category \mathbb{P} equipped with a mapping $\otimes: o b(\mathbb{P}) \times o b(\mathbb{P}) \rightarrow o b(\mathbb{P})$ and functors $A \rtimes(-),(-) \ltimes B: \mathbb{P} \rightarrow \mathbb{P}$ for every $A, B \in \mathbb{P}$, such that $A \rtimes B=A \otimes B=A \ltimes B$ on objects. A map $f: A \rightarrow A^{\prime}$ in \mathbb{P} is central if for any $g: B \rightarrow B^{\prime}$ interchange holds on both sides

A premonoidal category $(\mathbb{P}, \rtimes, \ltimes, I)$ is a binoidal category equipped with a unit $I \in \mathbb{P}$ and componentwise central natural isomorphisms α, λ, ρ satisfying triangle and pentagon laws as in a monoidal category

Actions and extensions for bicategories

A left action of a monoidal bicategory $(\mathcal{V}, \otimes, I)$ on a bicategory \mathcal{B} is defined as a degenerate 2-object tricategory (c.f. [7]).
Proposition. There is a tricategory \mathcal{V}-Act with objects left \mathcal{V}-actions. 1-cells are pseudofunctors $\mathrm{J}: \mathcal{B} \rightarrow \mathcal{C}$ with a pseudonatural transformation θ as on
 the right and modifications similar to those of a monoidal pseudofunctor, subject to coherence axioms (c.f. [3, 12]).
Proposition. For a fixed monoidal \mathcal{V}, there is a biequivalence $\mathcal{V}-\operatorname{Act}(\mathcal{B}) \simeq \operatorname{MonBicat}(\mathcal{V}, \operatorname{Hom}(\mathcal{B}, \mathcal{B})$ between left \mathcal{V}-actions on \mathcal{B} and monoidal pseudofunctors $\mathcal{V} \rightarrow \operatorname{Hom}(\mathcal{B}, \mathcal{B})$ (see [3])
A 0 -strict morphism of \mathcal{V}-actions is a 1 -cell (J, θ) such that θ is invertible, J strictly preserves the
1 -cell structural data, and J preserves the 2 -cell structural data modulo θ.

Premonoidal bicategories

Binoidal structure

A binoidal bicategory is a bicategory \mathcal{B} equipped with a mapping $\otimes: o b(\mathcal{B}) \times o b(\mathcal{B}) \rightarrow o b(\mathcal{B})$ and pseudofunctors $A \rtimes(-),(-) \ltimes B: \mathcal{B} \rightarrow \mathcal{B}$ for every $A, B \in \mathcal{B}$, such that $A \rtimes B=A \otimes B=A \ltimes B$ on objects.

Centrality as data

A central 1-cell is a 1-cell $f: A \rightarrow A^{\prime}$ with 2-cells $\mathbf{~ c}_{g}^{f}$ and $\mathbf{r c}_{g}^{f}$ for each $g: B \rightarrow B^{\prime}$
such that we get pseudonatural transformations

$$
\begin{array}{ll}
\mathrm{Ic}^{f}: A \rtimes(-) \Rightarrow A^{\prime} \rtimes(-), & \mathrm{Ic}_{B}^{f}:=\left(A \rtimes B=A \ltimes B \xrightarrow{\text { f®B }} A^{\prime} \ltimes B=A^{\prime} \rtimes B\right) \\
\mathrm{rc}^{f}:(-) \ltimes A \Rightarrow(-) \ltimes A^{\prime} & ,
\end{array} \mathrm{rc}_{B}^{f}:=\left(B \ltimes A=B \rtimes A \xrightarrow{B \rtimes f} B \rtimes A^{\prime}=B \ltimes A^{\prime}\right)
$$

A central 2-cell $\left(f, \mathrm{lc}^{f}, \mathrm{rc}^{f}\right) \Rightarrow\left(f^{\prime}, \mathrm{lc}^{f^{\prime}}, \mathrm{rc}^{f^{\prime}}\right)$ is a 2 -cell $\sigma: f \Rightarrow f^{\prime}$ such that $\sigma \rtimes(-)$ and $(-) \ltimes \sigma$ define modifications between the induced pseudonatural transformations

Premonoidal structure

A premonoidal bicategory is a binoidal bicategory with a unit $I \in \mathcal{B}$, component-wise central pseudonatural transformations and component-wise central modifications as in a monoidal bicategory A subtlety. For the structural modifications that use interchange, we need to use the transformation given by centrality

Examples

- Any monoidal bicategory;
- The Kleisli bicategory \mathcal{B}_{T} for a bistrong pseudomonad
- The bicategory $[\mathcal{B}, \mathcal{C}]_{\text {unnat }}$ of pseudofunctors, unnatural transformations, and unnatural modifications.
- For any bistrong graded monad T $\mathbb{E} \rightarrow[\mathbb{C}, \mathbb{C}]_{\text {bistrong }}(c . f .[13,10,8])$, the Kleisli bicategory \mathcal{K}_{T} with 1-cells $A \nrightarrow B$ given by arrows $A \rightarrow T_{e} B$.

