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Categorical logic (after Lawvere)

Algebraization of first-order logic:
• Lindenbaum-Tarski algebras are replaced by syntactic categories Syn(T)
• Quantifiers as adjoints (thus a property, rather than extra structure)
• Models of T as structure-preserving functors defined on Syn(T)

(Boolean) hyperdoctrine associated to T : fiberwise Lindenbaum-Tarski algebras—stratify in
terms of free variables. Studying first-order logic is like studying Boolean algebras in F̂in.

Dual perspective: Joyal’s polyadic spaces, which encode the spaces of n-types of T . (This
viewpoint has been recently exploited and considerably extended by Jérémie Marquès.)

These ideas lead to a syntax-independent view of logic and model theory.
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Categorical logic

Various approaches to categorical model theory, including:
• accessible categories (Adámek, Lair, Makkai, Paré, Rosický,. . . )
• µ-abstract elementary classes (Boney, Grossberg, Lieberman, Rosický, Vasey)
where compactness is replaced by λ-accessibility.

These are powerful tools to investigate infinitary extensions of first-order logic and
non-elementary classes of mathematical structures in a syntax-free way.

We adopt a different perspective: motivated by the needs of finite model theory and
descriptive complexity, we are interested in capturing fine structure “down below”,
typically in fragments of first-order logic.

Desideratum: A structure theory of logical resources in (finite) model theory

This suggests an orthogonal direction: drop compactness altogether.
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Life without compactness

Finite model theory = Model theory − Compactness

A proof that does not use compactness (ultraproducts, saturated extensions, etc.)
• is more likely to admit a relativisation to finite models
• typically carries quantitative information about the complexity of the objects
• often results in stronger conclusions (both for finite and infinite models).

In the absence of compactness, combinatorial and game-theoretic arguments are key tools.

Challenge: Develop an “axiomatic model theory”, based on structural methods, which is
resource-sensitive and well adapted for finite and algorithmic model theory.
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Three examples (I)

Homomorphism preservation theorems relate the syntactic shape of sentences with the
semantic property of being preserved under a certain class of homomorphisms.

Homomorphism Preservation Theorem ( Loś, Lyndon, Tarski, 1950s)
A first-order sentence is preserved under homomorphisms if, and only if, it is equivalent to
an existential positive one.

Using ∧,∨, ∃ but not ¬,∀Equirank HPT (Rossman, 2005)
A first-order sentence of quantifier rank ≤ k is preserved under homomorphisms if, and
only if, it is equivalent to an existential positive sentence of quantifier rank ≤ k.

Maximum nesting of quantifiers
Finite HPT (Rossman, 2005)
A first-order sentence is preserved under homomorphisms between finite structures if, and
only if, it is equivalent over finite structures to an existential positive one.
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Three examples (II)
Modal logic: p | φ ∧ ψ | φ ∨ ψ | ¬φ | □φ | ♢φ

ML FO[x]standard translation

JpKx := P(x)
J□φKx := ∀y.R(x, y) → JφKy

J♢φKx := ∃y.R(x, y) ∧ JφKy

Van Benthem’s theorem characterises the image of the standard translation:

Theorem (van Benthem, 1976)
A first-order formula φ(x) is invariant under bisimulations between Kripke models if, and
only if, it is equivalent to (the standard translation of) a modal formula.

Theorem (Rosen, 1997)
A first-order formula φ(x) of quantifier rank ≤ k is invariant under bisimulations between
Kripke models if, and only if, it is equivalent to a modal formula of modal depth ≤ 2k .

Maximum nesting of modalities □,♢

The same result holds relative to finite Kripke models.
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Three examples (III)

Homomorphism counting results in finite model theory: Two finite relational structures
(e.g., two graphs) satisfy the same properties—expressible in a given logic—exactly when
they are indistinguishable in terms of homomorphism counts.

Gr : category of graphs and graph homomorphisms

FOn(#) : n-variable first-order logic with counting quantifiers

For each i ∈ N, add ∃≥iTheorem (Dvořák, 2010)
The following statements are equivalent for all finite graphs G and H:
1. G ≡FOn(#) H
2. Gr(F ,G) ∼= Gr(F ,H) for all finite graphs F of tree-width < n.

Prototypical hom-counting result: Lovász (1967), generalised in Pultr (1973) and Isbell (1991).
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Games: the case of modal logic

In (finite) model theory, one is typically not interested in objects up to isomorphism,
but only up to definable properties.

Games are a useful tool to establish whether two structures are equivalent with respect to
a certain logic fragment; they are also well-suited for a finer analysis of logical resources.

Bisimulation game for modal logic
Played by Spoiler (S) and Duplicator (D) on two pointed Kripke models (A, a) and (B, b).
Initial position: (a0, b0):=(a, b). At round i, with current position (ai , bi), S picks one of the
models, e.g. A, and ai+1 ∈ A such that ai RA ai+1. D responds with bi+1 ∈ B such that bi RB bi+1.
If D has no such response available, they lose. D wins after k rounds if ai and bi satisfy the
same unary predicates, for all i with 0 ≤ i ≤ k.

Theorem (Hennessy–Milner, 1980)
D has a winning strategy in the k-round bisimulation game if, and only if, (A, a) and (B, b)
satisfy the same modal formulas of depth ≤ k.
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Initial position
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Round 1
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Tree unravelling
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Tree unravelling

The tree unravelling R(A, a) of a Kripke model (A, a) is again a Kripke model, with
distinguished element (a)—the one-element sequence. Moreover, it satisfies:

(⋆) ∀x ∈ R(A, a), there is a unique path from the distinguished element of R(A, a) to x.

Let K be the category of Kripke models, and S its full subcategory defined by the objects
satisfying (⋆). The tree unravelling exhibits S as a coreflective subcategory of K:

S K
⊤
R

The objects of S are called synchronization trees, as they carry a “definable” tree order,
namely the reflexive transitive closure of their Kripke relation.

Similarly, for each positive integer n, the tree unravelling to depth n defines a coreflection
Rn : K → Sn of K onto the full subcategory Sn of synchronization trees of height at most n.
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From unravellings to coverings

The usefulness of unravelling in modal logic has been long recognised.

However, only recently it has emerged that various notions of games can be encoded by
means of comonads on the category of structures [Abramsky, Dawar & Wang, 2017], but
the latter are not idempotent in general.

Given such a game comonad G, we can think of GA as a “covering” of the structure A.

In concrete cases, the universe of GA is the set of plays in A, and the counit

GA

A

sends a play in A, i.e. a finite list (a1, . . . , am), to its last element.
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The Ehrenfeucht-Fräıssé comonad
Ehrenfeucht-Fraı̈ssé (EF) game

Played by S and D on two structures A and B. Adjust the bisimulation game as follows:
No initial position, and S and D are not required to move along any “accessible relation”.
D wins after k rounds if the relation {(ai , bi) | 1 ≤ i ≤ k} is a partial isomorphism.

Theorem (Ehrenfeucht & Fräıssé, 1950s)
D has a winning strategy in the k-round Ehrenfeucht-Fräıssé game if, and only if, A and B
satisfy the same sentences of quantifier rank ≤ k.

Let R be the category of (relational) structures and their homomorphisms. For each k ≥ 1,
we define an EF comonad Ek on R.
• The universe of EkA is

⋃k
i=1 A

i , the set of plays in A of length at most k.
If R is a (say, binary) relation, REkA consists of the pairs of sequences (s, t) such that:
s and t are comparable in the prefix order, and (last(s), last(t)) ∈ RA.

• The counit is lastA : EkA → A, [a1, . . . , am] 7→ am.
• The comultiplication EkA → E2

kA is [a1, . . . , am] 7→ [[a1], [a1, a2], . . . , [a1, . . . , am]].
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The Ehrenfeucht-Fräıssé comonad

The coalgebras for the EF comonads capture the combinatorial parameter of tree-depth:

Theorem (Abramsky & Shah, 2018)
A ∈ R has tree-depth ≤ k just when it admits a coalgebra structure α : A → EkA.

Coalgebras for Ek can be described as objects of R equipped with a compatible forest order
of height ≤ k. Coalgebra morphisms are homomorphisms that preserve the forest order.

Preservation of logic fragments. Denote by FOk first-order logic with quantifier rank ≤k.
In the Kleisli category of Ek ,
• the homomorphism preorder captures preservation of existential positive FOk-sentences
• the isomorphism relation captures equivalence in FOk(#)

Other fragments of FOk can be captured in the Eilenberg–Moore category of Ek .
E.g., equivalence in FOk corresponds to the existence of a span of open maps.
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Categories from games

The ideas just outlined are not specific to EF or bisimulation games and have been
extended to a number of other model comparison games, yielding:

• pebbling comonads
• MSO comonads
• guarded quantifier comonads

• generalized quantifier comonads
• hybrid comonads
• . . .

In each case, we have tight connections, via the categories of coalgebras, with
combinatorial invariants of structures and preservation of corresponding logic fragments.

Starting from concrete notions of games, we build a (resource-indexed) family of comonads
and consider the associated categories of coalgebras.

Can we recognise the comonads arising from games, and their categories of coalgebras?
We can attempt to isolate the fundamental properties of these categories; this leads to an
axiomatic perspective on game comonads.
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Games from categories

Let C be a (well-powered) category equipped with a proper factorisation system (Q,M).

Definition
1. An object P of C is a path provided its poset S P of M-subobjects is a finite chain.
2. A path embedding in C is an M-morphism P ↣ X whose domain is a path.

For any X ∈ C, the sub-poset PX of SX consisting of the path embeddings is a tree.
Further, PX is non-empty if the factorisation system is stable and C has an initial object.

This minimal amount of structure on C allows us to define various abstract notions of
games between objects X , Y by playing on the associated trees PX ,P Y .

Back-and-forth game in C. Played by S and D on objects X and Y . This is essentially the
bisimulation game played on the trees PX and P Y with initial position given by the roots.
The accessibility relation is the immediate-successor relation, and at each round D must
ensure that the selected path embeddings have isomorphic domains.
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Games from categories

The ensuing notion of back-and-forth equivalence on objects of C can be transferred to
other categories E via adjunctions:

C E
⊤
L

R

(�)

For all a, b ∈ E, define a ↔R b just when Ra and Rb are back-and-forth equivalent in C.

All concrete examples of game comonads fit in this framework: E = R is the category of
relational structures, and C is the category of coalgebras for the comonad. The abstract
game in C coincides with the corresponding concrete game (e.g., EF or bisimulation games).

Theorem (LR & Riba)
Suppose that C and E are lfp, paths in C are fp, and the adjunction (�) is finitely accessible. If
L detects path embeddings, then a ↔R b whenever a and b satisfy the same L∞,ω-sentences.

The proof combines Gabriel–Ulmer duality with Hodges’ word-constructions.
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Arboreal categories
In the examples, the categories of coalgebras for game comonads satisfy additional
properties. Most important of all, the full subcategory of paths Cp ↪→ C is dense.

These extra properties lead to the notion of arboreal category [Abramsky & LR, 2021].

In arboreal categories, back-and-forth equivalence coincides with bisimilarity in the sense
of [Joyal, Nielsen & Winskel, 1993]. Let us say that a morphism X → Y in an arboreal
category C is open if it has the right lifting property wrt morphisms between paths.

P X

Q Y

(Tightly related to the concept of open maps
in presheaf toposes [Joyal & Moerdijk, 1994])

Two objects of C are bisimilar if they are connected by a span of open morphisms.

Equivalences wrt resource-indexed logic fragments are obtained by transferring bisimilarity
(homomorphism preorder, isomorphism, . . . ) along an arboreal adjunction C E.⊤

E.g., preservation of existential (resp., existential positive) fragments corresponds to
constructing a compatible cocone of M-morphisms (resp., of morphisms) in C.
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1. Logic, categories, and resources

2. Games: unravelling and covering

3. Counting, definability, and beyond



Homomorphism counting revisited

Theorem (Lovász, 1967)
Finite relational structures A, B ∈ R are isomorphic iff R(C,A) ∼= R(C, B) for all finite C ∈ R.

Generalised to locally finite categories with appropriate factorisation systems in [Pultr, 1973]
and [Isbell, 1991]. The categorical perspective, combined with game comonads, yields a
uniform approach to homomorphism counting results [Dawar, Jakl & LR, 2021].

E.g.,

Theorem (Grohe, 2020)
The following statements are equivalent for all finite A, B ∈ R and all k > 0:
1. A ≡FOk(#) B
2. R(C,A) ∼= R(C, B) for all finite C ∈ R of tree-depth ≤ k.

follows by considering the EF comonads Ek ; similarly, the modal comonads yield a (new)
homomorphism counting result for (graded) modal logic.

When (co)free coalgebras are infinite, a more general approach is available [LR, 2022],
which applies e.g. to lfp categories and is related to [Fiore & Menni, 2005].
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Homomorphism preservation theorems revisited

Using arboreal adjunctions, we get simple proofs of new homomorphism preservation
theorems for modal and guarded logics [Abramsky & LR], along with relativisations to
subclasses of structures, e.g. the finite ones. We also get an axiomatic proof of

Equirank HPT (Rossman, 2005)
A first-order sentence of quantifier rank ≤ k is preserved under homomorphisms if, and
only if, it is equivalent to an existential positive sentence of quantifier rank ≤ k.

The key idea is that of upgrading: given a, b ∈ E,
construct extensions a∗, b∗ ∈ E such that R(a∗) and R(b∗)
are bisimilar whenever Ra and Rb are hom-equivalent.

a∗ ↔R b∗

a ⇆R b

Assuming further properties of the arboreal adjunction, the extensions a∗, b∗ can be
constructed via a small object argument.
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Outlook
What I haven’t mentioned:
• More work on the concrete level: composition methods in finite model theory

(Jakl, Marsden, Shah); other game comonads (Abramsky, Ó Conghaile, Dawar, Marsden,
Montacute, Shah)

• Combinatorial parameters and density comonads (Abramsky, Jakl, Paine)
• . . .

Future directions:
• New examples: applications of arboreal adjunctions beyond (finite) model theory
• Translations between logic fragments: the category of arboreal categories
• Homotopy theory of logical resources

Upgrading arguments, pervasive in (finite) model theory, as instances of fibrant
replacement for an appropriate model category structure on the presheaf category Ĉp.
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