Double Fibrations

Dorette Pronk¹ with Geoff Cruttwell,² Michael Lambert, ³ and Martin Szyld¹

¹Dalhousie University

²Mount Allison University

³University of Massachusetts-Boston

CT 2023, UCLouvain, July 2-8, 2022

Pseudo Category Objects

Definition (MF, 2006)

For a 2-category K, a pseudo category object $\mathbb C$ in K consists of a diagram:

$$C_1 \times_{C_0} C_1 \xrightarrow{\otimes} C_1 \xrightarrow{\operatorname{src}} C_0$$

with invertible 2-cells

Cruttwell, Lambert, Pronk, Szyld

Double Categories

 A double category (Ehresmann,'63) and (G-P,'99) C is a pseudo category object in Cat,

$$C_1 \times_{C_0} C_1 \xrightarrow{\otimes} C_1 \xrightarrow{\operatorname{src}} C_0.$$

It has then

- objects (objects of C₀),
- (vertical) arrows (arrows of C_0), denoted dom $(f) \xrightarrow{f} cod(f)$,
- (horizontal) pro-arrows (objects of C_1), denoted $src(m) \xrightarrow{m} tgt(m)$,
- double cells (arrows of C1), denoted

$$\begin{array}{c|c} A \xrightarrow{m} B \\ f & \downarrow \\ f & \downarrow \\ C \xrightarrow{m} D \end{array}$$

where dom
$$(\alpha) = m$$
, cod $(\alpha) = n$, src $(\alpha) = f$, and tgt $(\alpha) = g$.

Example: Monoidal Categories as Double Categories

Just like a category with one object is a monoid, a double category with $C_0 = 1$ is

$$C_1 \times C_1 \xrightarrow{\otimes} C_1 \xrightarrow{\Leftarrow y} 1$$

a monoidal category.

Examples

• For any 2-category K, the double category $\mathbb{Q}(K)$ with cells

$$\begin{array}{ccc} A & \stackrel{m}{\longrightarrow} & B \\ f & & & \\ & \alpha & & \\ C & \stackrel{m}{\longrightarrow} & D \end{array} \quad \text{for each } \alpha \colon gm \Rightarrow nf \text{ in } \mathcal{C}.$$

• For a subcategory $\Sigma \subset K$, $\mathbb{Q}^{\Sigma}(\mathcal{C}) \subseteq \mathbb{Q}(\mathcal{C})$ has cells:

- Rel: sets with functions as arrows and relations as pro-arrows;
- Prof: categories with functors and profunctors;
- Span(A): objects of A with arrows of A and spans in A.

(Pseudo) Double Functors and Transformations

There is a 2-category **DblCat** of pseudo (double=internal) categories, pseudo (double=internal) functors to be defined on the next slide, and (vertical=internal) transformations.

Pseudo Double Functors as Internal Pseudo Functors

A **pseudo functor** $F : \mathbb{C} \to \mathbb{D}$ consists of two arrows $F_0 : C_0 \to D_0$ and $F_1 : C_1 \to D_1$ and comparison invertible 2-cells (+ axioms)

Note that the interaction with src and tgt is required to be **stricter** than that with y and \otimes .

Motivation

The Topic for Today

Define Double Fibrations

Goal: Generalize Various Known Concepts

[1] Discrete Double Fibrations, Lambert (2021).

- [2] Yoneda Theory for Double Categories, Paré (2011).
- [3] Framed Bicategories and Monoidal Fibrations, Shulman (2008).
- [4] Monoidal Grothendieck Construction, Moeller and Vasilakopoulou (2020).
- [5] Double Categories of Open Dynamical Systems, Myers (2021).
- [6] Some Properties of FIB as a Fibred 2-Category, Hermida (1999).
- [7] Fibred 2-Categories and Bicategories, Buckley (2014).

Motivation

Known Properties

In each case, there is:

- A notion of fibration (between 2-categories, monoidal categories, double categories,...)
- A notion of *indexing* (indexed 2-category, indexed span, indexed double category, monoidal indexed category...)
- a Grothendieck/Elements Construction providing an equivalence of categories {Indexed} \rightarrow {Fibrations}

Double Fibrations

Rather than taking double functors and determining when they are fibrations, we will start with fibrations and make them 'double' by considering pseudo category objects in a suitable 2-category of fibrations:

Cat(Fib)

Arrow Categories

For any 2-category K (with 2-pullbacks), there is a 2-category $Arr^{p}(K)$:

- objects are the arrows in K,
- arrows are the squares filled by an *invertible* 2-cell α ,
- 2-cells are given by a pair of 2-cells satisfying an equation:

$$(C, D, f) \xrightarrow[(u_1^\top, u_1^\perp, \alpha_1)]{(u_1^\top, \mu_\perp)} (C', D', f')$$

pasting α_1 with μ^{\top} and pasting μ^{\perp} with α_2 are required to be equal.

In $\operatorname{Arr}^{s}(\mathsf{K}) \subseteq \operatorname{Arr}^{p}(\mathsf{K})$ we require the invertible 2-cells α to be identities.

Internal pseudo categories in $Arr^{p}(K)$ and pseudo functors

A pseudo category object $\mathbb{F} = (F_1, F_0, \operatorname{src}, \operatorname{tgt}, \iota, \phi, \mathfrak{a}, \mathfrak{r}, \mathfrak{l})$ in $\operatorname{Arr}^p(\mathsf{K})$ such that

is the same as a pseudo functor F between two pseudo categories (internal in K):

This restricts: \mathbb{F} pseudo category in $\operatorname{Arr}^{s}(\mathsf{K}) \iff F$ strict functor.

Fibrations

Let $P : \mathscr{E} \longrightarrow \mathscr{B}$ be a functor between categories.

• P is a fibration when:

 $B^* \xrightarrow{u^*E} F \iff B \xrightarrow{u} PF$

(Cartesian lift)

• A cleavage is a choice of a Cartesian lift for each arrow of \mathcal{B} . A cloven fibration is a fibration and a chosen cleavage.

-Any cloven fibration gives rise to an Indexed category $F : \mathscr{B}^{op} \to \mathbf{Cat}$. -Any indexed category gives rise to a cloven fibration by its Grothendieck construction/category of elements.

Morphisms of Fibrations

Given two cloven fibrations $P : \mathscr{E} \longrightarrow \mathscr{B}$ and $P' : \mathscr{E}' \longrightarrow \mathscr{B}'$,

• A morphism *f* between them is: $\begin{array}{c} \mathcal{E} & \xrightarrow{f^{\top}} \mathcal{E}' \\ | & & \downarrow \mathcal{P}' \\ \mathcal{B} & \xrightarrow{f^{\perp}} \mathcal{B}' \end{array}$

where f^{\top} preserves the Cartesian arrows.

- f is said to be cleavage-preserving when f^{\top} maps the arrows of the cleavage of P to arrows in the cleavage of P'.
- This defines 2-categories $cFib \subseteq Fib \subseteq Arr^{s}(Cat)$ (full on 2-cells, with objects the cloven fibrations).

The classical equivalence **Fib** \simeq **ICat** (with pseudo transformations) restricts to $cFib \simeq ICat_t$ (with strict natural transformations.)

What is a Double Fibration?

First idea – worked for discrete double fibrations (Lambert, 2021): A double category is a pseudo category in **Cat** ↔ A double fibration is a pseudo category in **Fib**.

Since **Fib** \subseteq **Arr**^s(**Cat**), the equation (4.1) in this case looks like this:

So a double fibration could be seen, as expected, as a (strict) double functor between double categories, with extra properties.

Cruttwell, Lambert, Pronk, Szyld

Double Fibrations

What is a Double Fibration?

First problem

Fib doesn't have all the 2-pullbacks on the previous slide!

Also, the *fibrational strictness* of src and tgt is the same as that of y and \otimes , which is not in line with the exponential example we saw before.

The solution

A double fibration is a pseudo category in **Fib** such that src and tgt are in cFib (that is, they preserve the chosen cleavages).

This translates into:

Definition of a Double Fibration

A **double fibration** as defined on the previous slide is the same as a (strict) double functor $P : \mathbb{E} \to \mathbb{B}$ between (pseudo) double categories

such that

- P_0 and P_1 are fibrations,
- ${\ensuremath{\mathfrak{O}}}$ they admit a cleavage such that ${\rm src}_{\mathbb E}$ and $tgt_{\mathbb E}$ are cleavage-preserving, and
- $y_{\mathbb{E}}$ and $\otimes_{\mathbb{E}}$ are Cartesian-morphism preserving.

Some Examples

- When $\mathcal{E}_0 = \mathcal{B}_0 = 1$, we recover monoidal fibrations [3];
- For any 2-functor P : E → B, we have that P is a 2-fibration [7] if and only if QP : QE → QB is a double fibration;
- When P₀ and P₁ are discrete fibrations, we recover discrete double fibrations [1];
- The double Grothendieck construction in Definition 5.3 of [5] is also a double fibration.
- [1] Discrete Double Fibrations, Lambert (2021).
- [3] Framed Bicategories and Monoidal Fibrations, Shulman (2008).
- [5] Double Categories of Open Dynamical Systems, Myers (2021).
- [7] Fibred 2-Categories and Bicategories, Buckley (2014).

More Examples

• The domain fibration: dom: $\mathbb{D}^2 \to \mathbb{D},$

- $Im: Span \rightarrow \mathbb{R}el$ is a double opfibration.
- \bullet There is a codomain fibration cod: $\mathbb{D}^2 \to \mathbb{D}$ if
 - \mathbb{D}_1 and \mathbb{D}_0 have chosen finite limits,
 - these limits are preserved on the nose by src and tgt
 - and up to iso by y and \otimes .

Double Fibrations are Internal Fibrations

The notion of *internal fibration* for a 2-category was given by Street in 1974. Let **DblCat** be the 2-category of pseudo double categories, pseudo functors and vertical/internal transformations.

Theorem [Cruttwell, Lambert, P., Szyld]

A *strict* double functor $P : \mathbb{E} \to \mathbb{B}$ is an internal fibration in **DblCat** if and only if it is a double fibration

Connection with other known constructions.

In each case, there is:

- A notion of fibration (between 2-categories, monoidal categories, double categories,...)
- an *indexed* notion (indexed 2-category, indexed span, indexed double category, monoidal indexed category...)
- a Grothendieck Construction (a.k.a. Elements Construction) providing an equivalence of categories {Indexed} \rightarrow {Fibrations}

Indexing double functors?

In order to obtain a representation theorem for double fibrations over a given double category, we need to decide on the codomain for the indexing functors.

Categories are Monoids in Span

• Categories:
$$C_1 \times_{C_0} C_1 \xrightarrow{\otimes} C_1 \xrightarrow{\text{src}} C_0$$

• Span has $A \leftarrow S \rightarrow B$ as horizontal arrows, and double cells

 $m: A \longrightarrow A$ corresponds to src : $C_0 \leftarrow C_1 \rightarrow C_0$: tgt μ corresponds to \otimes, ι corresponds to y.

Cruttwell, Lambert, Pronk, Szyld

Lift this to double categories...

In [4] the monoidal indexed categories are obtained by lifting $Fib \simeq ICat$ to $PsMon(Fib, \times) \simeq PsMon(ICat, \times)$.

We use the same strategy, but it requires some tweaking...

We use double 2-categories (i.e. pseudo categories internal to **2Cat**), and pseudo monoids in them. We then show:

Pseudo categories in $K \cong$ Pseudo monoids in a double 2-category Span(K).

Furthermore, most importantly for us:

Pseudo categories in K with source and target in a family of arrows Σ are pseudo monoids in a double 2-category $\mathbb{S}pan_{\Sigma}(K)$ (where the spans are formed by arrows in Σ).

The {Fibrations} $\stackrel{\simeq}{\leftarrow}$ {Indexed} Theorem

Let ISpan(Cat) be the category of contravariant lax pseudo double functors valued in the double 2-category Span(Cat).

The {Fibrations} $\stackrel{\simeq}{\leftarrow}$ {Indexed} Theorem

Let ISpan(Cat) be the category of contravariant lax pseudo double functors valued in the double 2-category Span(Cat).

Theorem [Cruttwell, Lambert, P., Szyld]

There is an equivalence of categories **DblFib** $\simeq ISpan(Cat)$

Idea for the proof: use pseudo monoids in double 2-categories.

Fib \simeq **ICat** restricts to c**Fib** \simeq **ICat**_t, so $\mathbb{S}pan_c(\mathbf{Fib}) \simeq \mathbb{S}pan_t(\mathbf{ICat})$. Now we lift:

DblFib := $\mathsf{PsMon}(\mathsf{Span}_{c}(\mathsf{Fib})) \simeq \mathsf{PsMon}(\mathsf{Span}_{t}(\mathsf{ICat})) \simeq \mathsf{ISpan}(\mathsf{Cat}))$

Restricting (to monoidal or to discrete fibrations) we recover the theorems in [1,4]. The right-to-left functor restricts to the constructions spelled out in [2,5] (double category of elements, double Grothendieck construction).

Cruttwell, Lambert, Pronk, Szyld

Connection with known constructions.

We establish an {Indexed} $\xrightarrow{\simeq}$ {Fibrations} theorem for double fibrations. It *restricts* to the theorems that were shown for monoidal fibrations [4] and for discrete double fibrations [1].

The functor is given by a more general elements construction for an object of {Indexed}, that *restricts* to the known elements constructions [2,5].

The Double 2-Category Span(**Cat**)

- Objects: Categories A, B, ...
- Arrows: Functors $F: \mathcal{A} \rightarrow \mathcal{B}$
- **Pro-Arrows**: Spans $\mathcal{S} \xleftarrow{S} \mathcal{A} \xrightarrow{T} \mathcal{T}$
- Double 2-Cells: Commutative diagrans

• Double 3-Cells:

The Double Category of Elements

- Let $F : \mathbb{D}^{op} \to \mathbb{S}pan(\mathbf{Cat})$ be a lax double pseudo functor.
- Its components are pseudofunctors

 $F_0: D_0 \to \mathbb{S}pan(\mathbf{Cat})_0 = \mathbf{Cat} \text{ and } F_1: D_1 \to \mathbb{S}pan(\mathbf{Cat})_1.$

- There is a further induced functor $D_1^{op} \xrightarrow{F_1} Span(Cat)_1 \xrightarrow{apx} Cat$.
- Now apply the ordinary elements construction to F_0 and $apx \circ F_1$.
- This gives us cloven fibrations

$$\mathbb{E}I(F)_0 \to D_0 \text{ and } \mathbb{E}I(F)_1 \to D_1$$

that are part of a double fibration $\mathbb{E}I(F) \to \mathbb{D}$.

Example - Decorated Cospans (Patterson, 2023)

Set-Up:

- \mathcal{A} a category with pushouts and $\mathbb{C}sp(\mathcal{A})$ the double category of cospans.
- The decorations are given by a lax double pseudo functor

 $F \colon \mathbb{C}\mathsf{sp}(\mathcal{A}) \to \mathbb{S}\mathsf{pan}(\mathbf{Cat})$

Definition (Patterson, 2023)

The double category F- \mathbb{C} sp is the double category of elements $\mathbb{E}I(F)$.

- This slightly generalizes the definition given by (Baez-Courser-Vasilakopoulou), allowing for decorations on both spans and objects.
- This would allow for a new way to model open systems in classical mechanics (Baez, Weisbart, Yassine, 2021).

Cruttwell, Lambert, Pronk, Szyld

Example - Open Dynamical Systems (D.J. Myers, 2020)

- D.J. Myers introduced a double Grothendieck construction ∫ ∫ F for a double functor F: D → Prof.
- There is a double functor J: Prof → Span(Cat) which is the identity on objects and arrows and sends each pro-arrow (profunctor)
 A → B to the span of projections

$$\mathcal{A} \longleftarrow \mathsf{disc}\left(\coprod_{a \in \mathcal{A}, b \in \mathcal{B}} P(a, b)\right) \longrightarrow \mathcal{B}$$

• Then $\mathbb{E}I(JF) = \int \int F$.

Oplax Colimit? (Work in Progress)

- The classical category of elements is an oplax colimit for the diagram defined by the indexing functor.
- This result cannot work for the current set-up because the objects of Span(Cat) are categories rather than double categories.
- There is a one-to-one correspondence of indexing functors between lax double pseudo functors

$$F: \mathbb{D} \to \mathbb{S}pan(\mathbf{Cat})$$

and normal lax double pseudo functors

$$\tilde{F} : \mathbb{D} \to \mathbb{P}$$
rof(**DblCat**)

Conjecture: El(F) is the oplax double colimit (in the arrow direction) of F̃.

Cruttwell, Lambert, Pronk, Szyld

Thank you!