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Rig Geometry The Basis Theorem

A more-or-less standard way to build toposes ‘of spaces’

small extensive C � // Gaeta topos G(C) � // Z(C) ⊆ G(C)

Corollary (of the Comparison Lemma)
If every object of C is a finite coproduct of connected objects then
G(C) → Set is essential.

Example: finite posets, affine schemes (over a fixed K).
Non-example: countable non-empyt sets (Bornological topos),
affine C∞-schemes.
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Rig Geometry The Basis Theorem

‘algebraic geometry’

Algebraic categories A such that Afp (or Afg or ...) is coextensive.
So

take C = (Afp)op , then G(C) , then suitable subtoposes , etc. aiming
at something like a cohesive topos.
In this frame of mind:
Is every object of Afp a finite direct product of d.i. objects?

Example
By Hilbert’s Basis Theorem, the answer is YES for (K/Ring)fp, K a field.
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Rig Geometry

Rig is coextensive.

Given an algebraic functor A → Rig, when is A coextensive?
The paper
Lawvere, F. W.
Core varieties, extensivity, and rig geometry.
Theory Appl. Categ. 20, 497-503 (2008).
gives partial answers and several examples
(with emphasis on varieties of the coextensive 2/Rig).
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Rig Geometry The Basis Theorem

Saturated ideals

Lemma
If I is an ideal in a rig A then the kernel of A → A/I is

I = {x ∈ A | (∃s ∈ I)(x + s ∈ I)} ⊆ A

so I ⊆ I

So,

we say that I is saturated if I = I .

Definition
A saturated ideal is essentially f.g. if it is the saturation of a finitely
generated ideal.

Note:a f.g. saturated ideal is essentially f.g.
In Ring, the converse holds because ideals of rings are saturated.
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Rig Geometry The Basis Theorem

Noetherian rigs

Lemma
For a rig A t.f.a.e.:

1 Every sequence I0 ⊆ I1 ⊆ . . . of saturated ideals of A is stationary.
(I.e. there is an m ∈ N s.t. Im = In for every n ≥ m.)

2 Every saturated ideal I ⊆ A is essentially f.g..

So,

we say that A is Noetherian if the above hold.
Also, A is strongly Noetherian of every saturated ideal of A is f.g..

Lemma
Is Noetherian rig then is a finite product of directly indecomposable
(Noetherian) rigs.
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Rig Geometry The Basis Theorem

The ‘lower’ Basis Theorem

For a rig A and x, y ∈ A: x ≤ y iff

(∃d ∈ A)(x + d = y).

Example
Codiscrete in rings. The underlying poset in a lattice.

An ideal I ⊆ A is lower-closed if x ≤ y ∈ I implies x ∈ I.
(Notice that lower-closed implies saturated.)

Theorem (The ‘lower’ Basis Theorem)
If K is s.t. every lower-closed ideal is f.g. then so is every lower-closed
ideal of K[x].
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The 2-basis Theorem

Consider the coextensive 2/Rig. (Rigs with idempotent addition.)

Corollary (The 2-Basis Theorem)
If K is a strongly Noetherian 2-rig then so is K[x].

Proof.
Recall: A rig A is strongly Noetherian if every saturated ideal is f.g..
In a 2-rig, saturated iff lower-closed.

For example? 2

Corollary
Every f.g. 2-rig is a finite product of directly indecomposable f.g. 2-rigs.

M.M. (Conicet & UNLP) A Basis Theorem for 2-rigs July 2023 9 / 14
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Rig Geometry The Basis Theorem

The classifier of coconnected 2-rigs is essential
Is every f.g. 2-rig f.p.?

Lemma
Every f.p. 2-rig is a finite product of directly indecomposable f.p. 2-rigs.

A rig is coconnected if
x + y = 1 ∧ xy = 0 ⊢x,y x = 0 ∨ y = 0

i.e. if it lacks complemented elements.
Corollary
The classifier of coconnected 2-rigs is pre-cohesive.

Proof.
The lemma implies that every object in the extensive site is a finite copro
of connected objects so the topos is essential.
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Is every f.g. 2-rig f.p.?
Lemma
Every f.p. 2-rig is a finite product of directly indecomposable f.p. 2-rigs.

A rig is coconnected if
x + y = 1 ∧ xy = 0 ⊢x,y x = 0 ∨ y = 0

i.e. if it lacks complemented elements.
Corollary
The classifier of coconnected 2-rigs is pre-cohesive.

Proof.
The lemma implies that every object in the extensive site is a finite copro
of connected objects so the topos is essential.
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Rig Geometry The Basis Theorem

‘integral’ rigs

Example (L’2008)
Let iRig → 2/Rig be the subcat of those s.t. 1 + x = 1.
It is (coreflective and) coextensive.

Proposition
The classifier of coconnected irigs is pre-cohesive.

Proof.
Again, we concentrate on essentiality.
Use the good properties of the reflection 2/Rig → iRig to show that every
f.p. irig is a finite direct product of d.i. and f.p. irigs.
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Rig Geometry The Basis Theorem

Positive rigs
A rig is positive if 1 + x is invertible for every x.
Terminology is from: W. Slowikowski and W. Zawadowski.
A generalization of maximal ideals method of Stone and Gelfand.
Fundam. Math., 1955.
Also called ‘real rigs’ in a 2003 mail by Lawvere to the cat-list:

“I believe that Grothendieck’s point of view could be applied to real
algebraic geometry as well, in several ways, including the following:
Noting that within any topos the adjoint is available which assigns the ring
R[−1] to any rig R, let us concentrate on the needed nature of positive
quantities R. To include the advantages of differential calculus based on
nilpotent elements, let us allow that the ideal of all elements having
negatives can be non-trivial, and indeed include many infinitesimals,
without disqualifying R from being ‘nonnegative’. [...]
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Rig Geometry The Basis Theorem

Positive rigs (cont.)

Note: positive rigs need not be 2-rigs.

Theorem
The classifier of coconnected positive rigs is essential.

Proof.
Lemma: In a positive rig, negative and complemented implies 0.
So, if we let A → LA be the (local) integral reflection of the positive A
then PA → P(LA) is monic in Bool. (It has trivial kernel by the Lemma.)
The left adjoint L : pRig → iRig preserves finite presentability and so, for
positive f.p. A, finite P(LA) implies finite PA.
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Positive rigs (cont.)

Note: positive rigs need not be 2-rigs.

Theorem
The classifier of coconnected positive rigs is essential.

Proof.

Lemma: In a positive rig, negative and complemented implies 0.
So, if we let A → LA be the (local) integral reflection of the positive A
then PA → P(LA) is monic in Bool. (It has trivial kernel by the Lemma.)
The left adjoint L : pRig → iRig preserves finite presentability and so, for
positive f.p. A, finite P(LA) implies finite PA.
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Positive rigs (cont.)
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Proof.
Lemma: In a positive rig, negative and complemented implies 0.

So, if we let A → LA be the (local) integral reflection of the positive A
then PA → P(LA) is monic in Bool. (It has trivial kernel by the Lemma.)
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Positive rigs (cont.)

Note: positive rigs need not be 2-rigs.
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Positive rigs (cont.)

Note: positive rigs need not be 2-rigs.
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