A GENERIC CONGRUENCE THEOREM FOR ENHANCED BISIMILARITY Tom Hirschowitz (CNRS and Savoie Mont Blanc Univ.) and Ambroise Lafont (Univ. Cambridge)

Behavioural equivalences

Operational semantics
A set of techniques for constructing mathematical models of programming languages.
General idea:
• Programs \in syntax, an inductively-generated object.
(Think initial algebra for some endofunctor Σ .)
• Evaluation steps \approx (directed) edges between programs.
\rightarrow Evaluation graph.

Notions of behavioural equivalence

- Determine when one program fragment may replace another.
- E.g., compilation, optimisations.

(Enhanced) bisimilarity

Typical choice for ~: **bisimilarity**

How to prove $P \sim Q$?

Exhibit a bisimulation \mathscr{R} such that $P \mathscr{R} Q$ (which may be a small/tractable relation).

In a higher-order setting (e.g., functional programming): enhanced bisimilarity

Enhanced relations

Closed under external operations, typically capture-avoiding substitution:

Typical choice:

Observational equivalence $P \approx Q$

Fix some basic type, e.g., the booleans **bool**. For all valid contexts C of type bool, $C\{P\}$ "="C{Q}, i.e.,

• one terminates iff the other does, and

• when they do, they converge to the same boolean.

Problem: hard to establish

Standard idea: find easier-to-establish ~ such that $P \sim Q \implies$ $P \approx Q$. $P \mathscr{R} Q \implies P[\sigma] \mathscr{R} Q[\sigma],$

where σ : variables \rightarrow programs.

Enhanced bisimilarity

Largest enhanced bisimulation relation.

In λ -calculus: Abramsky's applicative bisimilarity.

Crucial step for $P \sim Q \Longrightarrow P \approx Q$

(Enhanced) bisimilarity is a congruence: $\forall C, P \sim Q \Longrightarrow C\{P\} \sim C\{Q\}.$ Often proved using Howe's method (not explained here).

This work

A generic congruence theorem for enhanced bisimilarity, covering many existing adaptations of Howe's method.

Transition contexts	Labelled graphs as a comma cat	
$\mathbb{C} = (\mathbb{VT}, \mathbb{ET}, \mathbf{s}, \mathbf{t}, \mathbf{l})$ where	C-graph: $G = (V, E, \partial)$ where	Languages as initial algebras
• VT category of vertex types.	• $V \in \widehat{VT}$ vertex object,	Initial-algebra semantics:
• ET category of edge types,	• $E \in \widehat{\mathbb{ET}}$ edge object,	Grammar = (finitary) endofunctor Σ on $\widehat{\mathbb{VT}}$.
• $\mathbf{s}, \mathbf{t} : \mathbb{ET} \to \mathbb{VT}$ source and target functors,	• $\partial : E \to \Delta_{\mathbb{C}}(V)$ border morphism,	Language = free monad $S := \Sigma^*$.
• 1: $\mathbb{ET} \rightarrow \mathbf{Fam}_f(\mathbb{VT})$ label functor.	with $\Delta_{\mathbb{C}}(V)(\alpha) := V(\mathbf{s}(\alpha)) \times \left(\prod_{i=1}^{n_{\alpha}} V(\mathbf{l}_{i}^{\alpha})\right) \times V(\mathbf{t}(\alpha)).$	Real object of interest: $S(\emptyset)$. Initiality \approx recursion principle
Example	Notation	
\mathbb{C}_0 : $\mathbb{VT} = \mathbb{ET} = 1$, $\mathbf{s} = \mathbf{t} = !$, $\mathbf{l}(\alpha) = \text{empty family}$.	$\alpha(l_1, \dots, l_{n_\alpha}) \nu' \text{ for } \partial_{-}(\nu, (l_1, \dots, l_{n_\alpha}))$	External operations

• a \mathbb{C} -graph $\partial : E \to \Delta_{\mathbb{C}}(V)$,
• with ST -algebra structure on V .
\rightsquigarrow category ST -Gph.

Key				
Definition or reference	Emphasis			
Structure or emphasis	Emphasis			
Main contributions				

Conclusion

- Perspectives
- Categorical framework for programming languages as (initial) algebraic graphs. • Generic congruence result for applicative (= enhanced) bisimilarity.
- External operations via distributive laws.
- Congruence from factorisation system.

• Cover Lenglet and Schmitt's (2015) subtle application of Howe's method. • Other variants of bisimilarity, relevant in the presence of effects.

• Apply same techniques to other areas of programming language theory (e.g., type safety).