## A GENERIC CONGRUENCE THEOREM FOR ENHANCED BISIMILARITY

Tom Hirschowitz (CNRS and Savoie Mont Blanc Univ.) and Ambroise Lafont (Univ. Cambridge)

## Behavioural equivalences

## Operational semantics

A set of techniques for constructing mathematical models of programming languages. General idea:

- Programs $\in$ syntax, an inductively-generated object.
(Think initial algebra for some endofunctor $\Sigma$.)
- Evaluation steps $\approx$ (directed) edges between programs.
$\leadsto$ Evaluation graph.


## Notions of behavioural equivalence

- Determine when one program fragment may replace another.
- E.g., compilation, optimisations.

Typical choice:

$$
\text { Observational equivalence } P \approx Q
$$

Fix some basic type, e.g., the booleans bool.
For all valid contexts $C$ of type bool, $C\{P\} "=" C\{Q\}$, i.e.,
• one terminates iff the other does, and
• when they do, they converge to the same boolean.
Problem: hard to establish
Standard idea: find easier-to-establish $\sim$ such that $P \sim Q \quad \Longrightarrow \quad P \approx Q$.
(Enhanced) bisimilarity

| Typical choice for $\sim$ : bisimilarity |  |
| :---: | :---: |
| How to prove $P \sim Q$ ? <br> Exhibit a bisimulation $\mathscr{R}$ such that $P \mathscr{R} Q$ (which may | a small/tractable relation). |
| Bisimulation $\mathscr{R}$ | Bisimilarity |
| $P-\mathscr{R} Q \quad P-\mathscr{R}$ | Largest bisimulation. |
|  |  |

In a higher-order setting (e.g., functional programming): enhanced bisimilarity
Enhanced relations
Closed under external operations, typically capture-avoiding substitution:

$$
P \mathscr{R} Q \quad \Longrightarrow \quad P[\sigma] \mathscr{R} Q[\sigma],
$$

where $\sigma$ : variables $\rightarrow$ programs.
Enhanced bisimilarity
Largest enhanced bisimulation relation.
In $\lambda$-calculus: Abramsky's applicative bisimilarity.

$$
\text { Crucial step for } P \sim Q \Longrightarrow P \approx Q
$$

(Enhanced) bisimilarity is a congruence: $\quad \forall C, P \sim Q \Longrightarrow C\{P\} \sim C\{Q\}$.
Often proved using Howe's method (not explained here).

## This work

A generic congruence theorem for enhanced bisimilarity, covering many existing adaptations of Howe's method.

## Transition contexts

$\mathbb{C}=(\mathbb{V} \mathbb{T}, \mathbb{E}, \mathbf{s}, \mathbf{t}, \mathbf{l})$ where

- VT category of vertex types,
- ET category of edge types,
$\bullet \mathbf{s}, \mathbf{t}: \mathbb{E T} \rightarrow \mathbb{V}$ source and target functors,
$\bullet \mathbf{1}: \mathbb{E T} \rightarrow \operatorname{Fam}_{f}(\mathbb{V T})$ label functor.
Example
$\mathbb{C}_{0}: \mathbb{V} \mathbb{T}=\mathbb{E} \mathbb{T}=1, \mathbf{s}=\mathbf{t}=!, \mathbf{l}(\alpha)=$ empty family.

