
LATEX TikZposter

A generic congruence theorem for enhanced bisimilarity

Tom Hirschowitz (CNRS and Savoie Mont Blanc Univ.) and Ambroise Lafont (Univ. Cambridge)

A generic congruence theorem for enhanced bisimilarity

Tom Hirschowitz (CNRS and Savoie Mont Blanc Univ.) and Ambroise Lafont (Univ. Cambridge)

Behavioural equivalences

Operational semantics

A set of techniques for constructing mathematical models of programming languages.

General idea:
•Programs ∈ syntax, an inductively-generated object.

(Think initial algebra for some endofunctor Σ.)

•Evaluation steps ≈ (directed) edges between programs.
{ Evaluation graph.

Notions of behavioural equivalence

•Determine when one program fragment may replace another.

•E.g., compilation, optimisations.

Typical choice:

Observational equivalence 𝑃 ≈ 𝑄

Fix some basic type, e.g., the booleans bool.
For all valid contexts 𝐶 of type bool, 𝐶{𝑃}“=”𝐶{𝑄}, i.e.,
• one terminates iff the other does, and

•when they do, they converge to the same boolean.

Problem: hard to establish

Standard idea: find easier-to-establish ∼ such that 𝑃 ∼ 𝑄 =⇒ 𝑃 ≈ 𝑄.

(Enhanced) bisimilarity

Typical choice for ∼: bisimilarity

How to prove 𝑃 ∼ 𝑄?
Exhibit a bisimulation ℛ such that 𝑃 ℛ 𝑄 (which may be a small/tractable relation).

Bisimulation ℛ

𝑃 𝑄

𝑃′ 𝑄′

ℛ

∀step ∃step
ℛ

and
𝑃 𝑄

𝑃′ 𝑄′

ℛ

∃step ∀step
ℛ

Bisimilarity

Largest bisimulation.

In a higher-order setting (e.g., functional programming): enhanced bisimilarity

Enhanced relations

Closed under external operations, typically capture-avoiding substitution:

𝑃 ℛ 𝑄 =⇒ 𝑃[𝜎] ℛ 𝑄 [𝜎],
where 𝜎 : variables → programs.

Enhanced bisimilarity

Largest enhanced bisimulation relation.

In _-calculus: Abramsky’s applicative bisimilarity.

Crucial step for 𝑃 ∼ 𝑄 =⇒ 𝑃 ≈ 𝑄

(Enhanced) bisimilarity is a congruence: ∀𝐶, 𝑃 ∼ 𝑄 =⇒ 𝐶{𝑃} ∼ 𝐶{𝑄}.
Often proved using Howe’s method (not explained here).

This work
A generic congruence theorem for enhanced bisimilarity, covering many existing adaptations of Howe’s method.

Transition contexts
C = (VT, ET, s, t, l) where
• VT category of vertex types,

• ET category of edge types,

• s, t : ET → VT source and target functors,

• l : ET → Fam 𝑓 (VT) label functor.

Example

C0: VT = ET = 1, s = t = !, l(𝛼) = empty family.

Languages as initial algebras
Initial-algebra semantics:

Grammar = (finitary) endofunctor Σ on V̂T.
Language = free monad 𝑆 := Σ∗.

Real object of interest: 𝑆(∅).
Initiality ≈ recursion principle.

Bisimilarity
•Given 𝐺 = (𝑉, 𝐸, 𝜕), a relation 𝑅 ↩→ 𝑉2 is
a bisimulation when,

– for any 𝑒 : 𝑥
𝛼(𝑙1,...,𝑙𝑛𝛼)−−−−−−−→ 𝑥′ and 𝑥 𝑅 𝑦,

– there exists a transition 𝑓 as in
𝑥 𝑅(s(𝛼)) 𝑦

𝑥′ 𝑅(t(𝛼)) 𝑦′,
𝑒 : 𝛼(𝑙1,...,𝑙𝑛𝛼) 𝑓 : 𝛼(𝑙1,...,𝑙𝑛𝛼)

and conversely.

•Bisimilarity := largest bisimulation.

language

language with external operations

bisimilarity

dynamics (labelled graph)

enhanced bisimilarity

congruence of enhanced bisimilarity

algebraic graph

Labelled graphs as a comma cat
C-graph: 𝐺 = (𝑉, 𝐸, 𝜕) where
•𝑉 ∈ V̂T vertex object,

• 𝐸 ∈ ÊT edge object,

• 𝜕 : 𝐸 → ΔC(𝑉) border morphism,

with ΔC(𝑉) (𝛼) := 𝑉 (s(𝛼)) ×
(∏𝑛𝛼

𝑖=1𝑉 (l𝛼
𝑖
)
)
×𝑉 (t(𝛼)).

Notation

𝑒 : 𝑣
𝛼(𝑙1,...,𝑙𝑛𝛼)−−−−−−−→ 𝑣′ for 𝜕𝛼(𝑒) = (𝑣, (𝑙1, . . . , 𝑙𝑛𝛼), 𝑣′).

Example

For C0, we get usual graphs (a.k.a. quivers).

Form a category C -Gph := ÊT ↓ ΔC

� presheaf cat (Carboni and Johnstone, 1995).

Examples

• y𝑣 walking vertex of type 𝑣, for any 𝑣 ∈ VT.

• y𝛼 walking edge of type 𝛼, for any 𝛼 ∈ ET.

External operations via

distributive laws
Motivation

•Usual (𝛽) rule: (_𝑥.𝑒) 𝑣 → 𝑒[𝑣].
• In the syntax: _ and application.

•On the syntax: substitution.

A theory of external operations

•Arity of external ops: Γ : V̂T
2 → V̂T.

(first argument = recursive argument).

•Let 𝑇 := (𝑉 ↦→ Γ(𝑉, 𝑆(𝑉)))∗.
•Recursive equations given as distribu-
tive law 𝛿 : 𝑇𝑆 → 𝑆𝑇 .

•We impose Γ cocontinuous in first argu-
ment =⇒ 𝑇 (∅) � ∅ =⇒

𝑆(∅) is a 𝑇 -algebra via

𝑇 (𝑆(∅)) 𝛿∅−→ 𝑆(𝑇 (∅)) � 𝑆(∅).

Algebraic graphs
𝑆𝑇 -graph:

• a C-graph 𝜕 : 𝐸 → ΔC(𝑉),
•with 𝑆𝑇 -algebra structure on 𝑉 .

{ category 𝑆𝑇 -Gph.

Key

Definition or reference Emphasis
Structure or emphasis Emphasis

Main contributions

Enhanced bisimilarity
Enhanced relation: ℛ such that Γ(ℛ,ℛ) ⊆ ℛ.
Enhanced bisimilarity ∼Γ: largest enhanced bisimulation.

Congruence of enhanced bisimilarity from factorisation system
Specifying dynamics

•Endofunctor Σ1 on 𝑆𝑇 -Gph.

•Preserving vertex object.

•Operational semantics = ini-
tial (vertical) Σ1-algebra.

Example: big-step 𝛽

𝑒1
𝜏−→ 𝑒3 𝑒3[𝑒2]

𝜏−→ 𝑒4

𝑒1 𝑒2
𝜏−→ 𝑒4

Arrow arities

If Σ1 suitably familial: arrow arity of a rule.

Example, using left adjoint ℒ : C -Gph → 𝑆𝑇 -Gph

ℒ(y0) ℒ(y𝜏)

ℒ(y0 + y0) ℒ(y𝜏 + y0) 𝐴

𝐺

ℒ(𝑠+y0)

[𝑒1,𝑒2]

ℒ(𝑠)

“𝑒3[𝑒2]”

ℒ(𝑠)

[premise 1,𝑒2]

premise 2

Arrow arity = green composite.

Main result

Cellularity

Arrow arities are cofibrations in the
factorisation system generated by
[source,labels] morphisms.

Theorem

Cellularity =⇒ enhanced bisimilar-
ity is a congruence, i.e., 𝑆(∼Γ) ⊆ ∼Γ.

Proof: Howe’s method (abstract).

Conclusion

•Categorical framework for programming languages as (initial) algebraic graphs.

•Generic congruence result for applicative (= enhanced) bisimilarity.

•External operations via distributive laws.

•Congruence from factorisation system.

Perspectives

•Cover Lenglet and Schmitt’s (2015) subtle application of Howe’s method.

•Other variants of bisimilarity, relevant in the presence of effects.

•Apply same techniques to other areas of programming language theory (e.g., type safety).


