D-K theorem for model categories

joint work with David White

Boris Chorny chorny@math.haifa.ac.il

Introduction: Classical result

Theorem 1 (Dwyer-Kan, [1]). Let $f: (A, U) \to (B, V)$ be a map of relative categories, then the adjunction $\operatorname{Lan}_f : \mathcal{S}^{A,U} \to \mathcal{S}^{B,V} : f^*$ between the categories of homotopy functors is a Quillen equivalence iff the induced map of simplicial localizations $Lf: L(A, U) \rightarrow L(B, V)$ is an r-equivalence of simplicial categories.

Definition 2. A map $f: A \to B$ of simplicial categories is an *r*-*equivalence* if

- $\forall a_1, a_2 \in A$, the induced map $\hom_A(a_1, a_2) \rightarrow \hom_B(fa_1, fa_2)$ is a weak equivalence, and
- $\forall b \in \pi_0 B$ $\exists a \in \pi_0 A$, s.t. b is a retract of fa.

Preliminaries: Induced Quillen maps

Let $L: \mathcal{A} \to \mathcal{B}$ be a simplicial *accessible* functor between simplicial *combinatorial* model categories, then there is an adjunction

 $\operatorname{Lan}_{L}: \mathcal{S}^{\mathcal{A}} \leftrightarrows \mathcal{S}^{\mathcal{B}}: L^{*}$

Moreover, the adjunction $Lan_L \dashv L^*$ is a Quillen map if the categories of *small functors* equipped with

Generalizing Homotopy functors

Classical case: All objects are cofibrant

Homotopy functors are functors preserving weak equivalences. Let A be a model category, if we localize the projective model structure on $\mathcal{S}^{\mathcal{A}}$ with respect to

 $\mathcal{F}_{\mathcal{A}} = \{ \hom(a_1, -) \to \hom(a_2, -) \mid a_1 \tilde{\to} a_2 \},\$

then the local objects are precisely the fibrant homotopy functors. **Theorem 3.** Let A be a simplicial combinatorial model category with all objects cofibrant, then there exists the left Bousfield localization $\mathcal{S}^{\mathcal{A}}[\mathcal{F}_{\mathcal{A}}^{-1}]$, s.t. *{fibrant objects}={proj. fibrant homotopy functors}.*

• the projective model structure;

- the fibrant-projective model structure iff L preserves fibrant objects;
- the bifibrant-projective model structure if L preserves both fibrant and cofibrant objects.

General case: Not all objects are cofibrant

More generally, $\forall F \in S^{\mathcal{A}}$ there is an $\mathcal{F}_{\mathcal{A}}$ -equivalence $F \to QF$ with QF a homotopy functor.

Conjecture 4. For every simplicial combinatorial model category A there exists the homotopy model structure on $\mathcal{S}^{\mathcal{A}}$.

Assuming the above conjecture,

Theorem 5. Let A be a simplicial combinatorial model, then there is a Quillen equivalence

 $\mathrm{Id}\colon \mathcal{S}^{\mathcal{A}}_{bifib-proj} \leftrightarrows \mathcal{S}^{\mathcal{A}}_{ho} : \mathrm{Id}$

Main result: Dwyer-Kan theorem for model categories

Definition 6. A simplicial functor $f : \mathcal{A} \to \mathcal{B}$ between simplicial model categories is an *r-equivalence* if

• $\forall a_1, a_2 \in \mathcal{A}$ bifibrant, hom $(a_1, a_2) \xrightarrow{\sim} hom(f(a_1), f(a_2))$;

• $\forall b \in \mathcal{B}$ bifibrant $\exists a \in \mathcal{A}$, s.t. b is a homotopy retract of f(a).

Example 7. Let $L: \mathcal{A} \leftrightarrows \mathcal{B} : R$ be a Quillen equivalence of simplicial combinatorial model categories. Then $f = \hat{L}$ is an *r*-equivalence.

Theorem 8 ([2]). Let $f: \mathcal{A} \to \mathcal{B}$ be an accessible functor between simplicial combinatorial model categories preserving fibrant and cofibrant objects. Then the Quillen pair

$$\operatorname{Lan}_{f} \colon \mathcal{S}_{bifib-proj}^{\mathcal{A}} \leftrightarrows \mathcal{S}_{bifib-proj}^{\mathcal{B}} \colon f^{*}$$

is a Quillen equivalence iff f is an r-equivalence.

Application: Invariance of Goodwillie calculus under Quillen equivalence

Theorem 9. *Let* $L: \mathcal{A} \leftrightarrows \mathcal{B}: R$ *be a Quillen equivalence between simplicial* combinatorial model categories. Put $f = \hat{L}$. Then

is a Quillen equivalence of bifibrant-projective model structures. Moreover, if we localize both sides so that the local objects are the n-excisive functors and the adjunction $\operatorname{Lan}_f \dashv f^*$ is a Quillen equivalence between the *n*-polynomial functors on A and B taking values in simplicial sets.

$$\operatorname{Lan}_f\colon \mathcal{S}^{\mathcal{A}} \leftrightarrows \mathcal{S}^{\mathcal{B}} : f^*$$

References

[1] W. G. Dwyer and D. M. Kan. Equivalences between homotopy theories of diagrams. In Algebraic topology and algebraic K-theory (Princeton, N.J., 1983), volume 113 of Ann. of Math. Stud., pages 180–205. Princeton Univ. Press, Princeton, NJ, 1987.

[2] B. Chorny and D. White. A variant of Dwyer-Kan Theorem for model categories. *Algebraic and Geometric Topology*, to appear.