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Univalent foundations for the formalization of (higher)
category theory

Univalent foundations A particular foundation of mathematics,
developed by V. Voevodsky and others

Formalization Formulation of reasoning in a precise (possibly
machine-checkable) format⇝ computer proof
assistants

Category theory . . .

Goal of my talk
Show how univalent foundations provide a suitable foundation for
(computer) formalization of category theory



Univalent foundations for category theory — in a nutshell

1. Sameness is a fundamental concept in mathematics
2. Set-theoretic equality is often not the desired notion of

sameness
3. Category theory provides a suitable notion of sameness —

isomorphism — for mathematical objects
4. Univalent foundations allow one to express reasoning exactly

modulo this kind of sameness

In short
In set theory foundational and mathematical sameness diverge

In UF foundational and mathematical sameness coincide



Good vs Evil

Good category theory
Objects: up to isomorphism

Sameness: equivalence of categories

Evil category theory
Objects: up to equality

Sameness: isomorphism of categories

How to know good from evil?
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Separating Sense from Nonsense

• Blanc, Freyd: first-order logic which is invariant under
equivalence of categories
• Makkai’s FOLDS: language on top of set theory for good

statements

Makkai, Towards a Categorical Foundation of Mathematics
The basic character of the Principle of Isomorphism is that
of a constraint on the language of Abstract Mathematics;
a welcome one, since it provides for the separation of sense
from nonsense.



Univalent foundations and the univalence principle

Vladimir Voevodsky’s vision
• Univalent Foundations as an “invariant language”
• Any construction on objects in UF can be transported along

equivalences of objects

UP for groups (Coquand, Danielsson, 2012)

(G∼= H) → ∀P, (P(G)↔ P(H))

UP for categories (A., Kapulkin, Shulman, 2013)

(A≃ B) → ∀P, (P(A)↔ P(B))

In this talk
UP for mathematical structures specified by a theory
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Overview of univalent foundations
• Primitive objects are∞-groupoids/types/spaces A, B,. . .
• Objects/0-cells

x : A,y : B, . . .

• Higher cells

f , f ′ : x =A x′

α : f =(x=x′) f ′

x =A x′ the “identity type” from x to x′

• Type A→ B of functions/functors
• Type U (“universe”) of types

Homotopy levels: stratification of types (A,=A,==A
, . . .)

• Propositions are types with at most one object
• Sets are discrete types
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Voevodsky’s Univalence Axiom

Constructions are invariant under identities

transport : x = y→
∏

B:A→U

�

B(x)≃ B(y)
�

Univalence axiom
Specifies the identity type of a universe:

(X =U Y)→ (X ≃ Y)
refl(X) 7→ 1X

is an equivalence

Constructions are invariant under equivalence of types

transport : (X ≃ Y)→
∏

B:U→U

�

B(X)≃ B(Y)
�
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Definition of category, set-based

A strict category C is given by
• a set C0 :U of objects
• for any a,b :C0, a set C (a,b) :U of morphisms
• operations: identity & composition

1a :C (a,a)
(◦)a,b,c :C (b, c)→C (a,b)→C (a, c)

• axioms: unitality & associativity

1 ◦ f = f f ◦ 1= f (h ◦ g) ◦ f = h ◦ (g ◦ f)



Definition of category, space-based

A univalent category C is given by
• a space C0 :U of objects
• for any a,b :C0, a space C (a,b) :U of morphisms
• operations: identity & composition
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• C (a,b) is a discrete space (a set in the sense of UF)
• completeness: a= b→ iso(a,b) is an equivalence
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Categories in univalent foundations

In UF, we have two kinds of categories:
Strict: category whose objects and morphisms consist of

discrete spaces
• Come with equality on objects
• Sameness of categories: isomorphism

Univalent: objects are given by a 1-groupoid, morphisms are
discrete spaces
• Do not come with equality on objects
• Sameness of categories: equivalence



Univalence principle for univalent categories

Univalence Principle (A., Kapulkin, Shulman)

(A= B) ≃ (A≃ B)

(A≃ B) →
∏

T:uCat→U

�

T(A)≃ T(B)
�

Univalent category theory is automatically good.

Remarks
• Many categories (sets, groups, . . . ) are univalent
• “Free completion” operation to build univalent categories
• Ess. surj. and f. f. functor admits a quasi-inverse without AC
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How to generalize UP from categories to other things
The Univalence Principle (A., North, Shulman, Tsementzis)
• Signature
⇝ Structures of a signature
⇝ Equivalence (≃) of structures
⇝ Univalence of structures
+ Notion of axiom⇝ Theory and models

Theorem (Univalence Principle)
Given a theory T and univalent models M, N of T ,

(M = N) ≃ (M ≃ N)

Example (Theory of categories)
• Equivalences: essentially surjective and fully faithful functors
• Univalent models: univalent categories



Signatures for mathematical structures

Two notions of signature
Diagram • Sorts and dependencies between them

• Inspired by Makkai’s FOLDS signatures
Functorial • In terms of functors and natural transformations

• More general than diagram signatures

Example (Signatures for univalent and strict categories)

T I E

A

O

T I E

A E

O



Structures of the signature of univalent categories
T I E

A

O

Structure M consists of

O :U
A : O×O→U

I :
∏

x:O
A(x,x)→U

T :
∏

x,y,z:O
A(x,y)× A(y, z)× A(x, z)→U

E :
∏

x,y,z:O
A(x,y)× A(x,y)→U

A category is a

univalent

structure M satisfying the
axioms:
1. Existence & uniqueness of

composition
2. Existence of identity arrows
3. Categorical axioms
4. E is congruence for I, T
5. E is =
6. I, T, E pointwise

propositions
7. A is pointwise discrete
8. (a= b)≃ (a∼= b) for a,b : O



Structures of the signature of univalent categories
T I E

A

O

Structure M consists of

O :U
A : O×O→U

I :
∏

x:O
A(x,x)→U

T :
∏

x,y,z:O
A(x,y)× A(y, z)× A(x, z)→U

E :
∏

x,y,z:O
A(x,y)× A(x,y)→U

A category is a univalent
structure M satisfying the
axioms:
1. Existence & uniqueness of

composition
2. Existence of identity arrows
3. Categorical axioms
4. E is congruence for I, T

5. E is =
6. I, T, E pointwise

propositions
7. A is pointwise discrete
8. (a= b)≃ (a∼= b) for a,b : O



Steps to defining univalence for structures

1. Reformulate the type of isomorphisms a∼= b in a category
⇝ Indiscernibilities a≍ b
• Definition of indiscernibility only depends on the signature of

categories

2. Definition of indiscernibilities can be applied to each sort in
any signature

3. Define univalence for models of any theory by requiring

(a= b)→ (a≍ b)

to be an equivalence



Given a,b : O, what is an indiscernibility i : a≍ b?
1. For each x : O, an equivalence φx• : A(x,a)≃ A(x,b).
2. For each z : O, an equivalence φ•z : A(a, z)≃ A(b, z).
3. An isomorphism φ•• : A(a,a)≃ A(b,b).

Tx,y,a(f ,g,h)≃ Tx,y,b(f ,φy•(g),φx•(h))
Tx,a,z(f ,g,h)≃ Tx,b,z(φx•(f),φ•z(g),h)
Ta,z,w(f ,g,h)≃ Tb,z,w(φ•z(f),g,φ•w(h))
Tx,a,a(f ,g,h)≃ Tx,b,b(φx•(f),φ••(g),φx•(h))
Ta,x,a(f ,g,h)≃ Tb,x,b(φ•x(f),φx•(g),φ••(h))
Ta,a,x(f ,g,h)≃ Tb,b,x(φ••(f),φ•x(g),φ•x(h))
Ta,a,a(f ,g,h)≃ Tb,b,b(φ••(f),φ••(g),φ••(h))

Ia,a(f)≃ Ib,b(φ••(f))
Ex,a(f ,g)≃ Ex,b(φx•(f),φx•(g))
Ea,x(f ,g)≃ Eb,x(φ•x(f),φ•x(g))
Ea,a(f ,g)≃ Eb,b(φ••(f),φ••(g))
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Indiscernibilities and univalence condition

“Definition”
Given a signature L with a sort K, and a structure M of L and
a,b : K, an indiscernibility i : a≍ b is a family of equivalences of
fibers over a and b in M.

Example (Indiscernibilities in a category)
• For a,b : O in a category, (a≍ b)≃ (a∼= b)
• For f ,g : A(a,b), (f ≍ g)≃ E(f ,g)
• For p,q : T(f ,g,h), (p≍ q)≃ 1

Definition (Univalence of structures)
Given an L -structure M and sort K of L , M is univalent at K if for
any a,b : K, the function (a= b) → (a≍ b) is an equivalence.



Univalent categories
Example
A structure for categories is univalent if
• For a,b : O in a category, (a= b)≃ (a∼= b)
• For f ,g : A(a,b), (f = g)≃ E(f ,g)
• For p,q : T(f ,g,h), (p= q)≃ 1

Given a model M for the theory of categories,
5. E is =
6. I, T, E pointwise propositions
7. A is pointwise discrete
8. (a= b)≃ (a∼= b) for any a,b : O

follow from M being univalent at I, T, E, A, and O.

Theorem
The univalent models of the theory of categories are exactly univalent
categories as defined by AKS13.



Univalence principle and examples
Theorem (Univalence Principle)
Given a theory T and univalent models M, N of T ,

(M = N) ≃ (M ≃ N)

• First-order logic (with equality)
• Higher-order logic, e.g., topological spaces, suplattices
• Categories
• Dagger categories
• (Ana)functors
• Profunctors
• Displayed categories / Fibrations
• Bicategories
• Double (bi)categories
• . . .



Conclusion

Summary
• Univalence Principle: constructions in UF are invariant under

equivalence of univalent structures
• Univalence condition on structures encompasses completeness

condition (a= b)≃ (a∼= b) for categories
• Many proofs by induction on height of a signature

Open questions
• Completion operation for structures other than categories?
• What about structures of infinite height?

Thanks for your attention!
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