The dependent Gödel fibration

Jonathan Weinberger
jww Davide Trotta \& Valeria de Paiva

Category Theory 2023
Louvain-la-Neuve, Belgium, July 4, 2023

Gödel's Dialectica interpretation

- Gödel '58, in Dialectica journal: Consistency of intuitionistic (Heyting) arithmetic via a new translation into a quantifier-free theory of finite type functionals (Gödel's T)

Gödel's Dialectica interpretation

- Gödel '58, in Dialectica journal: Consistency of intuitionistic (Heyting) arithmetic via a new translation into a quantifier-free theory of finite type functionals (Gödel's T)
- Overall pattern of translation:

$$
\text { (old formula } \varphi) \mapsto\left(\text { new formula } \varphi^{D} \text { of the form } \varphi^{D}=\exists x \forall y \varphi_{D}\right)
$$

Gödel's Dialectica interpretation

- Gödel '58, in Dialectica journal: Consistency of intuitionistic (Heyting) arithmetic via a new translation into a quantifier-free theory of finite type functionals (Gödel's T)
- Overall pattern of translation:

$$
(\text { old formula } \varphi) \mapsto\left(\text { new formula } \varphi^{D} \text { of the form } \varphi^{D}=\exists x \forall y \varphi_{D}\right)
$$

From the Dialectica interpretation...

To define the Dialectica translation for formulas, let $\varphi^{D}=\exists x \forall y \varphi_{D}$ and $\psi^{D}=\exists u \forall v \psi_{D}$, and define inductively:

$$
p \mapsto p^{D}=p \quad \text { (if } p \text { atom) }
$$

From the Dialectica interpretation...

To define the Dialectica translation for formulas, let $\varphi^{D}=\exists x \forall y \varphi_{D}$ and $\psi^{D}=\exists u \forall v \psi_{D}$, and define inductively:

$$
\begin{aligned}
p & \mapsto p^{D}=p \quad \text { (if } p \text { atom) } \\
(\varphi \wedge \psi) & \mapsto(\varphi \wedge \psi)^{D}=\exists x, u \forall y, v\left(\varphi_{D} \wedge \psi_{D}\right)
\end{aligned}
$$

From the Dialectica interpretation...

To define the Dialectica translation for formulas, let $\varphi^{D}=\exists x \forall y \varphi_{D}$ and $\psi^{D}=\exists u \forall v \psi_{D}$, and define inductively:

$$
\begin{aligned}
p & \left.\mapsto p^{D}=p \quad \text { (if } p \text { atom }\right) \\
(\varphi \wedge \psi) & \mapsto(\varphi \wedge \psi)^{D}=\exists x, u \forall y, v\left(\varphi_{D} \wedge \psi_{D}\right) \\
(\varphi \vee \psi) & \mapsto(\varphi \vee \psi)^{D}=\exists z, x, u \forall y, v\left(\left(z=0 \wedge \varphi_{D}\right) \vee\left(z=1 \wedge \psi_{D}\right)\right)
\end{aligned}
$$

From the Dialectica interpretation...

To define the Dialectica translation for formulas, let $\varphi^{D}=\exists x \forall y \varphi_{D}$ and $\psi^{D}=\exists u \forall v \psi_{D}$, and define inductively:

$$
\begin{aligned}
p & \left.\mapsto p^{D}=p \quad \text { (if } p \text { atom }\right) \\
(\varphi \wedge \psi) & \mapsto(\varphi \wedge \psi)^{D}=\exists x, u \forall y, v\left(\varphi_{D} \wedge \psi_{D}\right) \\
(\varphi \vee \psi) & \mapsto(\varphi \vee \psi)^{D}=\exists z, x, u \forall y, v\left(\left(z=0 \wedge \varphi_{D}\right) \vee\left(z=1 \wedge \psi_{D}\right)\right) \\
(\forall z \varphi(z)) & \mapsto(\forall z \varphi(z))^{D}=\forall X \forall z, y \varphi_{D}(X(z), y, z)
\end{aligned}
$$

From the Dialectica interpretation...

To define the Dialectica translation for formulas, let $\varphi^{D}=\exists x \forall y \varphi_{D}$ and $\psi^{D}=\exists u \forall v \psi_{D}$, and define inductively:

$$
\begin{aligned}
p & \mapsto p^{D}=p \quad \text { (if } p \text { atom) } \\
(\varphi \wedge \psi) & \mapsto(\varphi \wedge \psi)^{D}=\exists x, u \forall y, v\left(\varphi_{D} \wedge \psi_{D}\right) \\
(\varphi \vee \psi) & \mapsto(\varphi \vee \psi)^{D}=\exists z, x, u \forall y, v\left(\left(z=0 \wedge \varphi_{D}\right) \vee\left(z=1 \wedge \psi_{D}\right)\right) \\
(\forall z \varphi(z)) & \mapsto(\forall z \varphi(z))^{D}=\forall X \forall z, y \varphi_{D}(X(z), y, z) \\
(\exists z \varphi(z)) & \mapsto(\exists z \varphi(z))^{D}=\exists z, x \forall y \varphi_{D}(x, y, z)
\end{aligned}
$$

From the Dialectica interpretation...

To define the Dialectica translation for formulas, let $\varphi^{D}=\exists x \forall y \varphi_{D}$ and $\psi^{D}=\exists u \forall v \psi_{D}$, and define inductively:

$$
\begin{aligned}
p & \mapsto p^{D}=p \quad \text { (if } p \text { atom) } \\
(\varphi \wedge \psi) & \mapsto(\varphi \wedge \psi)^{D}=\exists x, u \forall y, v\left(\varphi_{D} \wedge \psi_{D}\right) \\
(\varphi \vee \psi) & \mapsto(\varphi \vee \psi)^{D}=\exists z, x, u \forall y, v\left(\left(z=0 \wedge \varphi_{D}\right) \vee\left(z=1 \wedge \psi_{D}\right)\right) \\
(\forall z \varphi(z)) & \mapsto(\forall z \varphi(z))^{D}=\forall X \forall z, y \varphi_{D}(X(z), y, z) \\
(\exists z \varphi(z)) & \mapsto(\exists z \varphi(z))^{D}=\exists z, x \forall y \varphi_{D}(x, y, z) \\
(\varphi \rightarrow \psi) & \mapsto(\varphi \rightarrow \psi)^{D}=\exists \boldsymbol{U}, \boldsymbol{Y} \forall x, v\left(\varphi_{D}(x, \boldsymbol{Y}(x, v)) \rightarrow \psi_{D}(\boldsymbol{U}(x), v)\right)
\end{aligned}
$$

From the Dialectica interpretation...

To define the Dialectica translation for formulas, let $\varphi^{D}=\exists x \forall y \varphi_{D}$ and $\psi^{D}=\exists u \forall v \psi_{D}$, and define inductively:

$$
\begin{aligned}
p & \left.\mapsto p^{D}=p \quad \text { (if } p \text { atom }\right) \\
(\varphi \wedge \psi) & \mapsto(\varphi \wedge \psi)^{D}=\exists x, u \forall y, v\left(\varphi_{D} \wedge \psi_{D}\right) \\
(\varphi \vee \psi) & \mapsto(\varphi \vee \psi)^{D}=\exists z, x, u \forall y, v\left(\left(z=0 \wedge \varphi_{D}\right) \vee\left(z=1 \wedge \psi_{D}\right)\right) \\
(\forall z \varphi(z)) & \mapsto(\forall z \varphi(z))^{D}=\forall X \forall z, y \varphi_{D}(X(z), y, z) \\
(\exists z \varphi(z)) & \mapsto(\exists z \varphi(z))^{D}=\exists z, x \forall y \varphi_{D}(x, y, z) \\
(\varphi \rightarrow \psi) & \mapsto(\varphi \rightarrow \psi)^{D}=\exists U, \boldsymbol{Y} \forall x, v\left(\varphi_{D}(x, \boldsymbol{Y}(x, v)) \rightarrow \psi_{D}(\boldsymbol{U}(x), v)\right)
\end{aligned}
$$

Intuition: The new function U assigns to any witness x of φ_{D} a witness $U(x)$ of ψ_{D}. The new function Y assigns to any counterexample v to ψ_{D} a counterexample $Y(x, v)$ to φ_{D}.

... to Dialectica categories and fibrations

- de Paiva '89, PhD thesis: Categorify Gödel's translation by assigning to any finitely complete category C its Dialectica category Dial(C)

... to Dialectica categories and fibrations

- de Paiva '89, PhD thesis: Categorify Gödel's translation by assigning to any finitely complete category C its Dialectica category Dial(C)
- Several variations, involving monoidal structures \rightsquigarrow models of Girard's linear logic

... to Dialectica categories and fibrations

- de Paiva '89, PhD thesis: Categorify Gödel's translation by assigning to any finitely complete category C its Dialectica category Dial(C)
- Several variations, involving monoidal structures \rightsquigarrow models of Girard's linear logic
- Hyland '02: Categorical proof theory via Dialectica construction for fibered preorders

... to Dialectica categories and fibrations

- de Paiva '89, PhD thesis: Categorify Gödel's translation by assigning to any finitely complete category C its Dialectica category Dial(C)
- Several variations, involving monoidal structures \rightsquigarrow models of Girard's linear logic
- Hyland '02: Categorical proof theory via Dialectica construction for fibered preorders
- Biering, Birkedal, Butz, Hyland, van Oosten, Rosolini, Streicher '07: Topos theoretic versions of Dialectica interpretations (unpublished)

... to Dialectica categories and fibrations

- de Paiva '89, PhD thesis: Categorify Gödel's translation by assigning to any finitely complete category C its Dialectica category Dial(C)
- Several variations, involving monoidal structures \rightsquigarrow models of Girard's linear logic
- Hyland '02: Categorical proof theory via Dialectica construction for fibered preorders
- Biering, Birkedal, Butz, Hyland, van Oosten, Rosolini, Streicher '07: Topos theoretic versions of Dialectica interpretations (unpublished)
- Biering '08, PhD thesis: Dialectica for Grothendieck fibrations

... to Dialectica categories and fibrations

- de Paiva '89, PhD thesis: Categorify Gödel's translation by assigning to any finitely complete category C its Dialectica category Dial(C)
- Several variations, involving monoidal structures \rightsquigarrow models of Girard's linear logic
- Hyland '02: Categorical proof theory via Dialectica construction for fibered preorders
- Biering, Birkedal, Butz, Hyland, van Oosten, Rosolini, Streicher '07: Topos theoretic versions of Dialectica interpretations (unpublished)
- Biering '08, PhD thesis: Dialectica for Grothendieck fibrations
- Hofstra '11: (simple) Dialectica fibrations as bicompletion and Kock-Zöberlein algebras; distributive laws

... to Dialectica categories and fibrations

- de Paiva '89, PhD thesis: Categorify Gödel's translation by assigning to any finitely complete category C its Dialectica category Dial(C)
- Several variations, involving monoidal structures \rightsquigarrow models of Girard's linear logic
- Hyland '02: Categorical proof theory via Dialectica construction for fibered preorders
- Biering, Birkedal, Butz, Hyland, van Oosten, Rosolini, Streicher '07: Topos theoretic versions of Dialectica interpretations (unpublished)
- Biering '08, PhD thesis: Dialectica for Grothendieck fibrations
- Hofstra '11: (simple) Dialectica fibrations as bicompletion and Kock-Zöberlein algebras; distributive laws
- von Glehn '15, Moss '18, MvG '18: Polynomial/Dialectica models of type theory (PhD theses \& LICS)

... to Dialectica categories and fibrations

- de Paiva '89, PhD thesis: Categorify Gödel's translation by assigning to any finitely complete category C its Dialectica category Dial(C)
- Several variations, involving monoidal structures \rightsquigarrow models of Girard's linear logic
- Hyland '02: Categorical proof theory via Dialectica construction for fibered preorders
- Biering, Birkedal, Butz, Hyland, van Oosten, Rosolini, Streicher '07: Topos theoretic versions of Dialectica interpretations (unpublished)
- Biering '08, PhD thesis: Dialectica for Grothendieck fibrations
- Hofstra '11: (simple) Dialectica fibrations as bicompletion and Kock-Zöberlein algebras; distributive laws
- von Glehn '15, Moss '18, MvG '18: Polynomial/Dialectica models of type theory (PhD theses \& LICS)
- Shulman '18: Polycategorical Dialectica \& Chu construction

... to Dialectica categories and fibrations

- de Paiva '89, PhD thesis: Categorify Gödel's translation by assigning to any finitely complete category C its Dialectica category Dial(C)
- Several variations, involving monoidal structures \rightsquigarrow models of Girard's linear logic
- Hyland '02: Categorical proof theory via Dialectica construction for fibered preorders
- Biering, Birkedal, Butz, Hyland, van Oosten, Rosolini, Streicher '07: Topos theoretic versions of Dialectica interpretations (unpublished)
- Biering '08, PhD thesis: Dialectica for Grothendieck fibrations
- Hofstra '11: (simple) Dialectica fibrations as bicompletion and Kock-Zöberlein algebras; distributive laws
- von Glehn '15, Moss '18, MvG '18: Polynomial/Dialectica models of type theory (PhD theses \& LICS)
- Shulman '18: Polycategorical Dialectica \& Chu construction
- ... and many more ...

Dialectica in many contexts

- Wide range of theory \& application of categorical Dialectica constructions due to ongoing work of de Paiva et al

Dialectica in many contexts

- Wide range of theory \& application of categorical Dialectica constructions due to ongoing work of de Paiva et al
- E.g. realizability \& doctrines, computability theory, complexity theory, cardinal inequalities, Petri nets, categorical cybernetics/systems theory, games, polynomial functors, ...

Dialectica in many contexts

- Wide range of theory \& application of categorical Dialectica constructions due to ongoing work of de Paiva et al
- E.g. realizability \& doctrines, computability theory, complexity theory, cardinal inequalities, Petri nets, categorical cybernetics/systems theory, games, polynomial functors, ...
- AMS Math Research Community 2022 on Applied CT, Dialectica subproject mentored by de Paiva

Dialectica in many contexts

- Wide range of theory \& application of categorical Dialectica constructions due to ongoing work of de Paiva et al
- E.g. realizability \& doctrines, computability theory, complexity theory, cardinal inequalities, Petri nets, categorical cybernetics/systems theory, games, polynomial functors, ...
- AMS Math Research Community 2022 on Applied CT, Dialectica subproject mentored by de Paiva
- cf. Dialectica Categories in Computing (Topos Institute Blog) \& JMM 2023 Special Session, esp. M. Capucci's talk on Dialectica, optics, and lenses

Dialectica in many contexts

- Wide range of theory \& application of categorical Dialectica constructions due to ongoing work of de Paiva et al
- E.g. realizability \& doctrines, computability theory, complexity theory, cardinal inequalities, Petri nets, categorical cybernetics/systems theory, games, polynomial functors, ...
- AMS Math Research Community 2022 on Applied CT, Dialectica subproject mentored by de Paiva
- cf. Dialectica Categories in Computing (Topos Institute Blog) \& JMM 2023 Special Session, esp. M. Capucci's talk on Dialectica, optics, and lenses

Dialectica fibrations = Gödel fibrations (simple case)

- Trotta-Spadetto-de Paiva '21, MFCS: Dialectica fibrations = Gödel fibrations

[^0]
Dialectica fibrations = Gödel fibrations (simple case)

- Trotta-Spadetto-de Paiva '21, MFCS: Dialectica fibrations = Gödel fibrations
- Gödel fibrations := bicomplete fibration with enough quantifier-free objects ${ }^{1}$

[^1]
Dialectica fibrations = Gödel fibrations (simple case)

- Trotta-Spadetto-de Paiva '21, MFCS: Dialectica fibrations = Gödel fibrations
- Gödel fibrations := bicomplete fibration with enough quantifier-free objects ${ }^{1}$
- described completely intrinsically in terms of the bifibrational structure

[^2]
Dialectica fibrations = Gödel fibrations (simple case)

- Trotta-Spadetto-de Paiva '21, MFCS: Dialectica fibrations = Gödel fibrations
- Gödel fibrations := bicomplete fibration with enough quantifier-free objects ${ }^{1}$
- described completely intrinsically in terms of the bifibrational structure
- Hence: Characterization theorem shows that a certain external description (Dialectica fibration as a bicompletion) coincides with an internal one (Gödel fibration via qf objects)

[^3]
Dialectica fibrations = Gödel fibrations (dependent case)

- Our work (Trotta-W-de Paiva): Generalize to dependent Dialectica and Gödel fibrations, and prove equivalence

Dialectica fibrations = Gödel fibrations (dependent case)

- Our work (Trotta-W-de Paiva): Generalize to dependent Dialectica and Gödel fibrations, and prove equivalence
w.r.t. to an arbitrary class of display map categories

Dialectica fibrations = Gödel fibrations (dependent case)

- Our work (Trotta-W-de Paiva): Generalize to dependent Dialectica and Gödel fibrations, and prove equivalence
w.r.t. to an arbitrary class of display map categories
- Instead of just product projections $U \times X \rightarrow X$, we work with general maps $U \rightarrow X$ modeling type families $x: X \vdash U(x)$

Dialectica fibrations = Gödel fibrations (dependent case)

- Our work (Trotta-W-de Paiva): Generalize to dependent Dialectica and Gödel fibrations, and prove equivalence
w.r.t. to an arbitrary class of display map categories
- Instead of just product projections $U \times X \rightarrow X$, we work with general maps $U \rightarrow X$ modeling type families $x: X \vdash U(x)$
- Generalizes non-dependent, cartesian closed structure \times and \times by dependent, locally cartesian closed structure Σ and Π, and eventually tricartesian fibration structure \coprod and П

Dialectica fibrations = Gödel fibrations (dependent case)

- Our work (Trotta-W-de Paiva): Generalize to dependent Dialectica and Gödel fibrations, and prove equivalence
w.r.t. to an arbitrary class of display map categories
- Instead of just product projections $U \times X \rightarrow X$, we work with general maps $U \rightarrow X$ modeling type families $x: X \vdash U(x)$
- Generalizes non-dependent, cartesian closed structure \times and \times by dependent, locally cartesian closed structure Σ and Π, and eventually tricartesian fibration structure \coprod and П
- Intuition:

Dialectica categories

- de Paiva '89: Categorification of the Dialectica interpretation

Dialectica categories

- de Paiva '89: Categorification of the Dialectica interpretation
- For a lex category C, the (dependent) Dialectica category Dial(C) is defined to have

Dialectica categories

- de Paiva '89: Categorification of the Dialectica interpretation
- For a lex category C, the (dependent) Dialectica category $\operatorname{Dial}(\mathrm{C})$ is defined to have
- objects:

$$
\left(\alpha \longmapsto U \longrightarrow \quad \begin{array}{l}
p
\end{array} \quad \hat{=} \quad \exists x \forall u \alpha(x, u)\right.
$$

Dialectica categories

- de Paiva '89: Categorification of the Dialectica interpretation
- For a lex category C, the (dependent) Dialectica category $\operatorname{Dial(C)}$ is defined to have
- objects:

$$
\left(\alpha \longmapsto U \longrightarrow \quad \begin{array}{l}
\\
\end{array}\right) \quad \hat{=} \quad \exists x \forall u \alpha(x, u)
$$

- morphisms:

$$
\begin{gathered}
\varphi: \prod_{x: X} \prod_{v: V\left(f_{0}(x)\right)} \alpha\left(x, f_{1}(v)\right) \Longrightarrow \beta\left(f_{0}(x), v\right) \\
f_{1}: \prod_{x: X} V\left(f_{0}(x)\right) \rightarrow U(x) \\
f_{0}: X \rightarrow Y
\end{gathered}
$$

Display map categories

Definition (Display map categories, after Taylor '99)
Let B be a category. A class $\mathcal{F} \subseteq \operatorname{Mor}(\mathrm{B})$ is said to be a class of display maps, if \mathcal{F} contains all isomorphisms in B and is closed under pullbacks along arbitrary maps in B, namely pullbacks along arrows of \mathcal{F} exist and belong to \mathcal{F}. If an arrow $u: K \rightarrow I$ is in \mathcal{F} we write it as $u: K \rightarrow I$. A display map category (dmc) is a pair $\langle\mathrm{B}, \mathcal{F}\rangle$ where B is a category and \mathcal{F} a class of display maps.

Given a display map category $\langle\mathrm{B}, \mathcal{F}\rangle$, we will denote by $\mathcal{F} \rightarrow$ the subcategory of the arrow category $\mathrm{B} \rightarrow$ whose objects are arrows of \mathcal{F}.

Definition

Let $\langle\mathrm{B}, \mathcal{F}\rangle$ be a display map category. We denote by cod: $\mathcal{F} \rightarrow \longrightarrow \mathrm{B}$ the (full) subfibration of the codomain fibration cod: $B \rightarrow B$.

Dialectica fibrations

- Let $\mathrm{p}: \mathrm{E} \longrightarrow \mathrm{B}$ be a Grothendieck fibration over a display map category $\langle\mathrm{B}, \mathcal{F}\rangle$. The category $\mathfrak{D i a l}_{\mathcal{F}}(\mathrm{E})$ has

Dialectica fibrations

- Let $\mathrm{p}: \mathrm{E} \longrightarrow \mathrm{B}$ be a Grothendieck fibration over a display map category $\langle\mathrm{B}, \mathcal{F}\rangle$. The category $\mathfrak{D i a l}_{\mathcal{F}}(\mathrm{E})$ has
- objects:

$$
\left(\alpha===\underset{\substack{\alpha \in \mathrm{E}_{U}\\}}{ } U \xrightarrow{p \in \mathcal{F}} X \xrightarrow{r \in \mathcal{F}} I\right) \quad \hat{=} \quad \exists i, x \forall u \alpha(i, x, u)
$$

Dialectica fibrations

- Let $\mathrm{p}: \mathrm{E} \longrightarrow \mathrm{B}$ be a Grothendieck fibration over a display map category $\langle\mathrm{B}, \mathcal{F}\rangle$. The category $\mathfrak{D i a l}_{\mathcal{F}}(\mathrm{E})$ has
- objects:

$$
\left(\alpha===\underset{\substack{\alpha \in \mathrm{E}_{U} \\=====:}}{ } U \xrightarrow{p \in \mathcal{F}} X \xrightarrow{r \in \mathcal{F}} I\right) \quad \hat{=} \quad \exists i, x \forall u \alpha(i, x, u)
$$

- morphisms:

Dialectica fibrations (cont'd)

- The (dependent) Dialectica fibration $\mathfrak{D i a l}_{\mathcal{F}}(\mathrm{p}): \mathfrak{D i a l}_{\mathcal{F}}(\mathrm{E}) \longrightarrow B$ is defined as the first projection

$$
\mathfrak{D i a l}_{\mathcal{F}}(\mathrm{E})(I, U, X, \alpha):=I, \quad \mathfrak{D i a l}_{\mathcal{F}}(\mathfrak{p})\left(f, f_{0}, f_{1}, \varphi\right):=f .
$$

Dialectica fibrations (cont'd)

- The (dependent) Dialectica fibration $\mathfrak{D i a l}_{\mathcal{F}}(\mathrm{p}): \mathfrak{D i a l}_{\mathcal{F}}(\mathrm{E}) \longrightarrow \mathrm{B}$ is defined as the first projection

$$
\mathfrak{D i a l}_{\mathcal{F}}(\mathrm{E})(I, U, X, \alpha):=I, \quad \mathfrak{D i a l}_{\mathcal{F}}(\mathfrak{p})\left(f, f_{0}, f_{1}, \varphi\right):=f .
$$

- We obtain the classical dependent Dialectica category $\operatorname{Dial}(\mathrm{C})$ as the fiber over 1 of the Dialectica fibration of the subobject (or mono) fibration of C (with $\mathcal{F}=\operatorname{Mor}(\mathrm{C})$).

Dialectica fibrations (cont'd)

- The (dependent) Dialectica fibration $\mathfrak{D i a l}_{\mathcal{F}}(\mathrm{p}): \mathfrak{D i a l}_{\mathcal{F}}(\mathrm{E}) \longrightarrow \mathrm{B}$ is defined as the first projection

$$
\mathfrak{D i a l}_{\mathcal{F}}(\mathrm{E})(I, U, X, \alpha):=I, \quad \mathfrak{D i a l}_{\mathcal{F}}(\mathfrak{p})\left(f, f_{0}, f_{1}, \varphi\right):=f .
$$

- We obtain the classical dependent Dialectica category $\operatorname{Dial}(\mathrm{C})$ as the fiber over 1 of the Dialectica fibration of the subobject (or mono) fibration of C (with $\mathcal{F}=\operatorname{Mor}(\mathrm{C})$).
- The Dialectica fibration is bicomplete, i.e., it possesses fibered coproducts and products along maps in \mathcal{F}.

Dialectica fibrations (cont'd)

- The (dependent) Dialectica fibration $\mathfrak{D i a l}_{\mathcal{F}}(\mathrm{p}): \mathfrak{D i a l}_{\mathcal{F}}(\mathrm{E}) \longrightarrow \mathrm{B}$ is defined as the first projection

$$
\mathfrak{D i a l}_{\mathcal{F}}(\mathrm{E})(I, U, X, \alpha):=I, \quad \mathfrak{D i a l}_{\mathcal{F}}(\mathfrak{p})\left(f, f_{0}, f_{1}, \varphi\right):=f .
$$

- We obtain the classical dependent Dialectica category $\operatorname{Dial}(\mathrm{C})$ as the fiber over 1 of the Dialectica fibration of the subobject (or mono) fibration of C (with $\mathcal{F}=\operatorname{Mor}(\mathrm{C})$).
- The Dialectica fibration is bicomplete, i.e., it possesses fibered coproducts and products along maps in \mathcal{F}.
- In fact, it arises by iterating free completions w.r.t. those, cf. Hofstra, von Glehn, Moss

Dialectica fibrations (cont'd)

- The (dependent) Dialectica fibration $\mathfrak{D i a l}_{\mathcal{F}}(\mathrm{p}): \mathfrak{D i a l}_{\mathcal{F}}(\mathrm{E}) \longrightarrow \mathrm{B}$ is defined as the first projection

$$
\mathfrak{D i a l}_{\mathcal{F}}(\mathrm{E})(I, U, X, \alpha):=I, \quad \mathfrak{D i a l}_{\mathcal{F}}(\mathfrak{p})\left(f, f_{0}, f_{1}, \varphi\right):=f .
$$

- We obtain the classical dependent Dialectica category $\operatorname{Dial}(\mathrm{C})$ as the fiber over 1 of the Dialectica fibration of the subobject (or mono) fibration of C (with $\mathcal{F}=\operatorname{Mor}(\mathrm{C})$).
- The Dialectica fibration is bicomplete, i.e., it possesses fibered coproducts and products along maps in \mathcal{F}.
- In fact, it arises by iterating free completions w.r.t. those, cf. Hofstra, von Glehn, Moss (though it is not the free bicompletion).

Fibered coproducts in a fibration

Definition (Fibered \mathcal{F}-coproducts in a fibration)
Consider a display map category $\langle B, \mathcal{F}\rangle$ and a Gothendieck p: $\mathrm{E} \longrightarrow \mathrm{B}$ be a Grothendieck fibration. Then p is said to have (fibered or internal) \mathcal{F}-coproducts if:
(1) p is also an opfibration, so any $f: J \rightarrow I$ gives rise to an adjunction $\coprod_{f} \dashv f^{*}$,
(2) satisfying the Beck-Chevalley conditions (BCC): for each pullback in B of the form

where $u, v \in \mathcal{F}$ the canonical natural transformation $\coprod_{u} g^{*} \Longrightarrow f^{*} \coprod_{v}$ is an isomorphism.

Family fibration

Definition (Family fibration)

Let $\langle\mathrm{B}, \mathcal{F}\rangle$ be a display map category and $\mathrm{p}: \mathrm{E} \longrightarrow \mathrm{B}$ a fibration. The family fibration of p relative to \mathcal{F} is the functor $\Sigma_{\mathcal{F}}(\mathrm{p})$ constructed as follows:

Family fibration as cocompletion

- The family construction is the free cocartesian fibration of a given functor.

Family fibration as cocompletion

- The family construction is the free cocartesian fibration of a given functor.
- If the input functor is already a cartesian fibration, it acts as the free completion by fibered coproducts along \mathcal{F}.

Family fibration as cocompletion

- The family construction is the free cocartesian fibration of a given functor.
- If the input functor is already a cartesian fibration, it acts as the free completion by fibered coproducts along \mathcal{F}.
- B has \mathcal{F}-dependent coproducts if and only if the codomain fibration cod: $\mathcal{F} \rightarrow \mathrm{B}$ has \mathcal{F}-coproducts.

Family fibration as cocompletion

- The family construction is the free cocartesian fibration of a given functor.
- If the input functor is already a cartesian fibration, it acts as the free completion by fibered coproducts along \mathcal{F}.
- B has \mathcal{F}-dependent coproducts if and only if the codomain fibration cod: $\mathcal{F} \rightarrow \mathrm{B}$ has \mathcal{F}-coproducts.
- A category C has small Set-indexed coproducts if and only if the fibration Fam(C) \rightarrow Set has fibered coproducts.

Dependent products in a dmc

Definition (\mathcal{F}-dependent products in a dmc)
Let B be a category and let \mathcal{F} be a class of display maps. An \mathcal{F}-dependent product of an arrow $f: K \rightarrow I$ of \mathcal{F} along an arrow $g: I \rightarrow J$ of \mathcal{F} consists of a commutative diagram as below left, such that:

Fibered products in a fibration

Definition (Fibered \mathcal{F}-products in a fibration)
A fibration $\mathrm{p}: \mathrm{E} \longrightarrow \mathrm{B}$ over a display map category $\langle\mathrm{B}, \mathcal{F}\rangle$ has fibered \mathcal{F}-products if and only if the dual fibration $\mathrm{p}^{(\mathrm{op})}: \mathrm{E}^{(\mathrm{op})} \longrightarrow \mathrm{B}$ has fibered \mathcal{F}-coproducts.

- The above condition can be phrased in terms of exponential diagrams, generalizing the notion from the previous slide.

Fibered products in a fibration

Definition (Fibered \mathcal{F}-products in a fibration)
A fibration $\mathrm{p}: \mathrm{E} \longrightarrow \mathrm{B}$ over a display map category $\langle\mathrm{B}, \mathcal{F}\rangle$ has fibered \mathcal{F}-products if and only if the dual fibration $\mathrm{p}^{(\mathrm{op})}: \mathrm{E}^{(\mathrm{op})} \longrightarrow \mathrm{B}$ has fibered \mathcal{F}-coproducts.

- The above condition can be phrased in terms of exponential diagrams, generalizing the notion from the previous slide.
- The product completion $\Pi_{\mathcal{F}}(\mathrm{p}): \Pi_{\mathcal{F}}(\mathrm{E}) \longrightarrow \mathrm{B}$ arises as $\left(\Sigma_{\mathcal{F}}\left(p^{(\mathrm{op})}\right)\right)^{\text {(op) }}$ (up to fibered isomorphism over B)

Fibered products in a fibration

Definition (Fibered \mathcal{F}-products in a fibration)
A fibration $\mathrm{p}: \mathrm{E} \longrightarrow \mathrm{B}$ over a display map category $\langle\mathrm{B}, \mathcal{F}\rangle$ has fibered \mathcal{F}-products if and only if the dual fibration $\mathrm{p}^{(\mathrm{op})}: \mathrm{E}^{(\mathrm{op})} \longrightarrow \mathrm{B}$ has fibered \mathcal{F}-coproducts.

- The above condition can be phrased in terms of exponential diagrams, generalizing the notion from the previous slide.
- The product completion $\Pi_{\mathcal{F}}(\mathrm{p}): \Pi_{\mathcal{F}}(\mathrm{E}) \longrightarrow \mathrm{B}$ arises as $\left(\Sigma_{\mathcal{F}}\left(p^{(\mathrm{op})}\right)\right)^{\text {(op) }}$ (up to fibered isomorphism over B)
- B has dependent \mathcal{F}-products if and only if the codomain fibration cod: $\mathcal{F} \rightarrow \mathrm{B}$ has fibered \mathcal{F}-products.

Dialectica fibrations as completions

Theorem (after e.g. Hofstra '11)
Let $\langle\mathrm{B}, \mathcal{F}\rangle$ be a display map category and $\mathrm{p}: \mathrm{E} \longrightarrow \mathrm{B}$ be a Grothendieck fibration. Then there is a fibered isomorphism $\mathfrak{D i a l}_{\mathcal{F}}(\mathrm{p}) \cong \Sigma_{\mathcal{F}}\left(\Pi_{\mathcal{F}}(\mathrm{p})\right)$.

Quantifier-freeness: Intuitition

- An element α in a fiber of \mathbf{p} is quantifier-free if: Given a proof π of a statement $\exists i \beta(i)$, then there exists a witness t, which depends on the proof π, together with a proof of $\beta(t)$.

Quantifier-freeness: Intuitition

- An element α in a fiber of \mathbf{p} is quantifier-free if: Given a proof π of a statement $\exists i \beta(i)$, then there exists a witness t, which depends on the proof π, together with a proof of $\beta(t)$.
- Substitution-stability: If $\alpha(x)$ is quantifier-free then $\alpha(x)[y / x]=\alpha(y)$ is quantifier-free.

Quantifier-freeness: Intuitition

- An element α in a fiber of \mathbf{p} is quantifier-free if: Given a proof π of a statement $\exists i \beta(i)$, then there exists a witness t, which depends on the proof π, together with a proof of $\beta(t)$.
- Substitution-stability: If $\alpha(x)$ is quantifier-free then $\alpha(x)[y / x]=\alpha(y)$ is quantifier-free.
- Covering property: For every formula $\alpha(i)$ there exists an equivalent quantifier-free formula $\beta(i, a, b)$.

Quantifier-freeness: Intuitition

- An element α in a fiber of \mathbf{p} is quantifier-free if: Given a proof π of a statement $\exists i \beta(i)$, then there exists a witness t, which depends on the proof π, together with a proof of $\beta(t)$.
- Substitution-stability: If $\alpha(x)$ is quantifier-free then $\alpha(x)[y / x]=\alpha(y)$ is quantifier-free.
- Covering property: For every formula $\alpha(i)$ there exists an equivalent quantifier-free formula $\beta(i, a, b)$.
- This has been categorified, in the non-dependent case, by Spadetto-Trotta-de Paiva.

Quantifier-freeness: Intuitition

- An element α in a fiber of \mathbf{p} is quantifier-free if: Given a proof π of a statement $\exists i \beta(i)$, then there exists a witness t, which depends on the proof π, together with a proof of $\beta(t)$.
- Substitution-stability: If $\alpha(x)$ is quantifier-free then $\alpha(x)[y / x]=\alpha(y)$ is quantifier-free.
- Covering property: For every formula $\alpha(i)$ there exists an equivalent quantifier-free formula $\beta(i, a, b)$.
- This has been categorified, in the non-dependent case, by Spadetto-Trotta-de Paiva.
- We're presenting a dependent generalization, subsuming the notion of decomposable object in a cocomplete category (cf. e.g. Carboni-Vitale '98).

Quantifier splittings

Definition ((\mathcal{F}, \coprod)-quantifier splitting objects)
Let p: $\mathrm{E} \longrightarrow \mathrm{B}$ be a fibration with all \mathcal{F}-coproducts. For $A \in \mathrm{~B}$, an object $\alpha \in \mathrm{E}_{A}$ in the fiber is called (generalised) (\mathcal{F}, \coprod)-quantifier splitting he following holds:

- Given $\beta \in \mathrm{E}_{B}$ for some $B \in \mathrm{~B}$,
- together with a vertical map $h \in \mathrm{E}_{A}\left(\alpha, \coprod_{u} \beta\right)$, where $u: B \rightarrow A$ is an arrow of \mathcal{F}
there uniquely exist the following:
(1) a section $g: A \rightarrow B$ of $u: B \rightarrow A$
(2) and a vertical arrow $\bar{h}: \alpha \rightarrow g^{*} \beta$ in E_{A} such that the vertical arrow h decomposes as

Quantifier-free elements

Definition $((\mathcal{F}, \coprod)$-quantifier free objects)

Let p: $\mathrm{E} \longrightarrow \mathrm{B}$ be a fibration with all \mathcal{F}-coproducts. For $A \in \mathrm{~B}$, an object $\alpha \in \mathrm{E}_{A}$ in the fibre is called (generalised) (\mathcal{F}, \coprod)-quantifier free if for every arrow $f: I \rightarrow A$, the reindexing $f^{*} \alpha$ is (\mathcal{F}, \coprod)-quantifier splitting.

Definition (Enough (\mathcal{F}, \coprod)-quantifier free objects)
Let $\langle\mathrm{B}, \mathcal{F}\rangle$ be a display map category. A fibration $\mathrm{p}: \mathrm{E} \longrightarrow \mathrm{B}$ is said to have enough
(\mathcal{F}, \coprod)-quantifier free objects if it has all \mathcal{F}-coproducts and the following property holds: for all $I \in \mathrm{~B}$ and $\alpha \in \mathrm{E}_{I}$ there exists some object $A \in \mathrm{~B}$, an arrow $f: A \rightarrow I$ in \mathcal{F}, and $\beta \in \mathrm{E}_{A}$ such that $\alpha \cong \coprod_{f}(\beta)$.

Skolem fibrations

We want to recover a categorified version of the Skolem principle

$$
\forall x \exists y \varphi(x, y) \leftrightarrow \exists f \forall x \varphi(x, f x),
$$

Definition (Skolem fibration)
Let $\langle\mathrm{B}, \mathcal{F}\rangle$ be a display map category. A fibration $\mathrm{p}: \mathrm{E} \longrightarrow \mathrm{B}$ is called a (dependent) Skolem fibration if

- its base category B has dependent products along \mathcal{F};

Skolem fibrations

We want to recover a categorified version of the Skolem principle

$$
\forall x \exists y \varphi(x, y) \leftrightarrow \exists f \forall x \varphi(x, f x),
$$

Definition (Skolem fibration)
Let $\langle\mathrm{B}, \mathcal{F}\rangle$ be a display map category. A fibration $\mathrm{p}: \mathrm{E} \longrightarrow \mathrm{B}$ is called a (dependent) Skolem fibration if

- its base category B has dependent products along \mathcal{F};
- the fibration p has fibred products and coproducts along \mathcal{F};

Skolem fibrations

We want to recover a categorified version of the Skolem principle

$$
\forall x \exists y \varphi(x, y) \leftrightarrow \exists f \forall x \varphi(x, f x),
$$

Definition (Skolem fibration)
Let $\langle\mathrm{B}, \mathcal{F}\rangle$ be a display map category. A fibration $\mathrm{p}: \mathrm{E} \longrightarrow \mathrm{B}$ is called a (dependent) Skolem fibration if

- its base category B has dependent products along \mathcal{F};
- the fibration p has fibred products and coproducts along \mathcal{F};
- the fibration p has enough (\mathcal{F}, \coprod)-quantifier-free objects;

Skolem fibrations

We want to recover a categorified version of the Skolem principle

$$
\forall x \exists y \varphi(x, y) \leftrightarrow \exists f \forall x \varphi(x, f x),
$$

Definition (Skolem fibration)

Let $\langle\mathrm{B}, \mathcal{F}\rangle$ be a display map category. A fibration $\mathrm{p}: \mathrm{E} \longrightarrow \mathrm{B}$ is called a (dependent) Skolem fibration if

- its base category B has dependent products along \mathcal{F};
- the fibration p has fibred products and coproducts along \mathcal{F};
- the fibration p has enough (\mathcal{F}, \coprod)-quantifier-free objects;
- $(\mathcal{F}, \coprod$)-quantifier free objects are stable under \mathcal{F}-products, i.e., if for any (\mathcal{F}, \coprod)-quantifier free object $\alpha \in \mathrm{E}_{I}, I \in \mathrm{~B}$, the object $\prod_{f}(\alpha) \in \mathrm{E}_{J}$ is (\mathcal{F}, \coprod)-quantifier free, too, for any map $f: I \rightarrow J$ in \mathcal{F}.

Skolemization

Theorem (Skolemization, Trotta-W-de Paiva)
Let $\langle\mathrm{B}, \mathcal{F}\rangle$ be a display map category and $\mathrm{p}: \mathrm{E} \longrightarrow \mathrm{B}$ a Skolem fibration over it. Let $g: A \rightarrow S$ and $f: B \rightarrow A$ be maps in \mathcal{F}. Consider the \mathcal{F}-dependent product of f along g, as given by the diagram:

Then there is a natural isomorphism

$$
\prod_{g} \amalg_{J} \cong=\coprod_{n} \prod_{g^{e}}
$$

between functors from E_{B} to E_{S}.

Gödel fibrations

Following the non-dependent setting of Spadetto-Trotta-de Paiva, we introduce, a dependent notion of Gödel fibration. The idea is to consider Skolem fibrations with the additional property that every formula $\alpha(i)$ can be brought to prenex normal form, i.e., there exists a quantifier-free formula $\beta(x, y, i)$ s.t. $\alpha(i) \cong \beta(x, y, i)$.

Definition (Dependent Gödel fibration)

Let $\langle\mathrm{B}, \mathcal{F}\rangle$ be a dmc and $\mathrm{p}: \mathrm{E} \longrightarrow \mathrm{B}$ be a Skolem fibration over it. Then p is called a (dependent) Gödel fibration if its subfibration of (\mathcal{F}, \coprod)-quantifier free elements has enough $\left(\mathcal{F}, \prod\right)$-quantifier free objects.

Main result: Dependent Gödel = dependent Dialectica

With Davide Trotta and Valeria de Paiva we are currently working towards the following results:
Theorem (Internal characterization of $\Sigma_{\mathcal{F}}$)
A fibration with \mathcal{F}-coproducts is an instance of an \mathcal{F}-coproduct completion if and only if it has enough (\mathcal{F}, \coprod)-quantifier free objects.

Theorem (Gödel = Dialectica, dependently)
Let $\langle\mathrm{B}, \mathcal{F}\rangle$ be a dmc such that B has dependent \mathcal{F}-products. Consider a fibration $\mathrm{p}: \mathrm{E} \longrightarrow \mathrm{B}$ a fibration with \mathcal{F}-products and \mathcal{F}-coproducts.
Then the following are equivalent:
(1) There exists a fibration p^{\prime} over $\langle\mathrm{B}, \mathcal{F}\rangle$ such that $\mathrm{p} \cong \mathfrak{D i a l}_{\mathcal{F}}\left(\mathrm{p}^{\prime}\right)$.
(2) p is a Gödel fibration.

[^0]: ${ }^{1}$ called " \exists-prime" in work of Frey, Categories of partial equivalence relations as localizations, JPAA, vol 227, 8, 2023

[^1]: ${ }^{1}$ called " \exists-prime" in work of Frey, Categories of partial equivalence relations as localizations, JPAA, vol 227, 8, 2023

[^2]: ${ }^{1}$ called " \exists-prime" in work of Frey, Categories of partial equivalence relations as localizations, JPAA, vol 227, 8, 2023

[^3]: ${ }^{1}$ called " \exists-prime" in work of Frey, Categories of partial equivalence relations as localizations, JPAA, vol 227, 8, 2023

