Sheafification as a geometric tripos-to-topos adjunction

Davide Trotta j.w.w. M.E. Maietti

University of Pisa

 $A^{(-)}$: Set^{op} \longrightarrow Hey is a **localic tripos**

 $P: \mathcal{C}^{op} \longrightarrow$ Hey is a **tripos**

$$A^{(-)} \xrightarrow{T-t-T} Sh(A) \qquad \qquad P \xrightarrow{T-t-T} T_P$$

J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts (1980), *Tripos theory*, Math. Proc. Camb. Phil. Soc. A.M. Pitts (2002), *Tripos theory in retrospect*, Math. Struct. in Comp. Science

 $A^{(-)}$: Set^{op} \longrightarrow Hey is a **localic tripos**

 $P: \mathcal{C}^{op} \longrightarrow Hey$ is a **tripos**

 $A^{(-)}$: Set^{op} \longrightarrow Hey is a **localic tripos**

 $P: \mathcal{C}^{op} \longrightarrow Hey$ is a **tripos**

 $A^{(-)}$: Set^{op} \longrightarrow Hey is a **localic tripos**

 $P: \mathcal{C}^{op} \longrightarrow Hey$ is a \exists -sheaf tripos

Main references

- J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts (1980), Tripos theory, Math. Proc. Camb. Phil. Soc.
- ► A.M. Pitts (2002), Tripos theory in retrospect, Math. Struct. in Comp. Science.
- M. Menni (2003), A characterization of the left exact categories whose exact completions are toposes, J. Pure Appl. Algebra.
- M.E. Maietti and G. Rosolini (2013), Unifying exact completions, Appl. Categ. Structures.
- ▶ J. Frey (2015), Triposes, q-toposes and toposes, Ann. Pure Appl. Log.
- ▶ D. Trotta (2020), The existential completion, *Theory App. Categ.*
- M.E. Maietti and D. Trotta (2023), A characterization of generalized existential completions, Ann. Pure Appl. Log.

Full primary doctrines

Definition (full primary doctrine)

A **full primary doctrine** is a functor $P: \mathcal{C}^{op} \longrightarrow$ InfSl from the opposite of a category \mathcal{C} with finite limits to the category of inf-semilattices.

A **full primary morphism** of doctrines is given by a pair (F, \mathfrak{b})

where $F: \mathcal{C} \longrightarrow \mathcal{D}$ is a finite limits preserving functor and $\mathfrak{b}: P \longrightarrow R \circ F$ is a natural transformation.

Full existential doctrines

Definition (full existential doctrine)

A full primary doctrine $P: \mathcal{C}^{\text{op}} \longrightarrow$ InfSl is called a **full existential doctrine** if for every arrow $f: A \longrightarrow B$ of \mathcal{C} the functor P_f has a left adjoint \exists_f and these satisfy Beck-Chevalley condition and Frobenius reciprocity.

Definition (full existential morphism of doctrines)

Let $P: \mathcal{C}^{\text{op}} \longrightarrow \text{InfSl}$ and $R: \mathcal{D}^{\text{op}} \longrightarrow \text{InfSl}$ be two full existential doctrines. A full primary morphism of doctrines (F, \mathfrak{b}) is said **full existential** if for every arrow $f: A \longrightarrow B$ of \mathcal{C} we have that

$$\exists_{\mathit{Ff}}\mathfrak{b}_{\mathit{A}}(\alpha) = \mathfrak{b}_{\mathit{B}}(\exists_{\mathit{f}}(\alpha))$$

for every element α of P(A).

Full hyperdoctrines and full triposes

Definition (full hyperdoctrine)

A full existential doctrine $P: C^{op} \longrightarrow$ InfSL is said **full hyperdoctrine** if

- ► for every object A of C, the poset P(A) is a Heyting algebra and for every arrow $f: A \longrightarrow B$, $P_f: P(B) \longrightarrow P(A)$ is a morphism of Heyting algebras;
- ► for every arrow $f: A \longrightarrow B$, the functor P_f has a right adjoint \forall_f and these satisfy Beck-Chevalley condition.

Definition (full tripos)

A full hyperdoctrine $P: \mathcal{C}^{\text{op}} \longrightarrow$ InfSl is said **full tripos** if for every object X of \mathcal{C} there exists an object PX and an element \in_X of $P(X \times PX)$ such that for every α of $P(X \times Y)$ there exists an arrow $\{\alpha\}_X: Y \longrightarrow PX$ such that $\alpha = P_{\text{id}_X \times \{\alpha\}_X}(\in_X)$.

Examples

Example

Let A be a locale. The representable functor $A^{(-)}$: Set^{op} \longrightarrow InfSl assigning to a set X the poset A^X of functions from X to A with the pointwise order is a full tripos.

Example

Given a pca \mathbb{A} , we can consider the realizability tripos $\mathcal{P}_{\mathbb{A}} : \operatorname{Set}^{\operatorname{op}} \longrightarrow \operatorname{InfSl}$ over Set. For each set X, the partial ordered set $(\mathcal{P}_{\mathbb{A}}(X), \leq)$ is defined as the set of functions $P(\mathbb{A})^X$ from X to the powerset $P(\mathbb{A})$ of \mathbb{A} . Given two elements α and β of $\mathcal{P}_{\mathbb{A}}(X)$, we say that $\alpha \leq \beta$ if there exists an element $\overline{a} \in \mathbb{A}$ such that for all $x \in X$ and all $a \in \alpha(x)$, $\overline{a} \cdot a$ is defined and it is an element of $\beta(x)$.

Examples

Example

Let C be a category with finite limits. The full existential doctrine of **weak subobjects (or variations)** is given by the functor

 $\Psi_{\mathcal{C}} \colon \mathcal{C}^{\mathsf{op}} \longrightarrow \mathsf{InfSl}$

where $\Psi_{\mathcal{C}}(A)$ is the poset reflection of the slice category \mathcal{C}/A . For an arrow $B \xrightarrow{f} A$, the homomorphism $\Psi_{\mathcal{D}}([f]) \colon \Psi_{\mathcal{D}}(A) \xrightarrow{} \Psi_{\mathcal{D}}(B)$ is given by the equivalence class of a pullback of an arrow $X \xrightarrow{g} A$ with f. This doctrine is a full tripos if and only if \mathcal{C} has weak dependent products and a generic proof.

Full triposes and Presheaves

Definition

Let $P: \mathcal{C}^{op} \longrightarrow$ InfSl be a full tripos. The **Grothendieck category** \mathcal{G}_P of P is given by the following objects and arrows:

- objects are pairs (A, α), where A is an object of C and $\alpha \in P(A)$;
- a morphism $f: (A, \alpha) \longrightarrow (B, \beta)$ is an arrow $f: A \longrightarrow B$ of C such that $\alpha \leq P_f(\beta)$.

Definition

Let $P: \mathcal{C}^{\text{op}} \longrightarrow$ InfSl be a full tripos. We define the category of *P*-**presheaves** as the category $PSh(P) := (\mathcal{G}_P)_{\text{ex/lex}}$.

Examples

Example

Let A be a locale and the localic tripos $A^{(-)}$: Set^{op} \longrightarrow InfSl. We have the equivalence PSh(A) $\equiv (A_+)_{ex/lex} \equiv (\mathcal{G}_{A^{(-)}})_{ex/lex}$.

Example

Let \mathbb{A} be a pca, and let us consider the realizability tripos $\mathcal{P}: \operatorname{Set}^{\operatorname{op}} \longrightarrow \operatorname{InfSl}$. The category $\mathcal{G}_{\mathcal{P}}$ can be described as follows: they are pairs (X, α) , where X is a set and $\alpha \subseteq X \times \mathbb{A}$ is a relation. A morphism $f: (X, \alpha) \longrightarrow (B, \beta)$ is given by a function $f: X \longrightarrow Y$ such that there exists an element $\alpha \in \mathbb{A}$ that tracks f.

 $\mathrm{RT}(\mathbb{A}) \hookrightarrow (\mathcal{G}_{\mathcal{P}})_{\mathsf{ex/lex}} \equiv \mathsf{PSh}(\mathcal{P}).$

Tripos-to-topos. Given a full tripos $P: \mathcal{C}^{op} \longrightarrow$ InfSl, the topos T_P consists of:

objects: are pairs (A, ρ) where A is an object of C and ρ is an element of P(A × A) satisfying:

- 1. symmetry: $a_1, a_2 : A \mid \rho(a_1, a_2) \vdash \rho(a_2, a_1);$
- 2. transitivity: $a_1, a_2, a_3 : A \mid \rho(a_1, a_2) \land \rho(a_2, a_3) \vdash \rho(a_1, a_3)$;

arrows: $\phi: (A, \rho) \longrightarrow (B, \sigma)$ are objects ϕ of $P(A \times B)$ such that:

1. $a : A, b : B \mid \phi(a, b) \vdash \rho(a, a) \land \sigma(b, b);$ 2. $a_1, a_2 : A, b : B \mid \rho(a_1, a_2) \land \phi(a_1, b) \vdash \phi(a_2, b);$ 3. $a : A, b_1, b_2 : B \mid \sigma(b_1, b_2) \land \phi(a, b_1) \vdash \phi(a, b_2);$ 4. $a : A, b_1, b_2 : B \mid \phi(a, b_1) \land \phi(a, b_2) \vdash \sigma(b_1, b_2);$ 5. $a : A \mid \rho(a, a) \vdash \exists b.\phi(a, b).$

J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts (1980), *Tripos theory*, Math. Proc. Camb. Phil. Soc. A.M. Pitts (2002), *Tripos theory in retrospect*, Math. Struct. in Comp. Science M.E. Maietti and G. Rosolini (2013), *Unifying exact completions*, Appl. Categ. Structures. J. Frey (2015), *Triposes*, *q-toposes and toposes*, Ann. of Pure and Appl. Logic

Full existential completion

Full existential completion. Let $P: \mathcal{C}^{\text{op}} \longrightarrow$ InfSl be a full primary doctrine. For every object A of \mathcal{C} consider the preorder $P^{\exists}(A)$ defined by:

▶ **objects:** pairs
$$(B \xrightarrow{f} A, \alpha)$$
, where $B \xrightarrow{f} A$ is an arrow of C and $\alpha \in P(B)$;
▶ **order:** $(B \xrightarrow{f} A, \alpha) \leq (C \xrightarrow{g} A, \beta)$ if there exists an arrow $h: B \longrightarrow C$

of C such that the diagram

commutes and $\alpha \leq P_h(\beta)$.

The doctrine $P^{\exists}: \mathcal{C}^{op} \longrightarrow$ InfSl is called the **full existential completion** of *P*.

D. Trotta (2020), The existential completion, Theory and Applications of Categories

Examples of full existential completion

The following doctrines are instances of the full existential completion:

- 1. the **realizability doctrine** $\mathcal{P}_{\mathbb{A}}$: Set^{op} \longrightarrow InfSl (for a given a pca \mathbb{A});
- 2. the **localic doctrine** $A^{(-)}$: Set^{op} \longrightarrow InfSl when A is a supercoherent locale;
- 3. the **weak subobjects doctrine** $\Psi_{\mathcal{C}}: \mathcal{C}^{op} \longrightarrow$ InfSl for a lex category \mathcal{C} .

M.E. Maietti and D. Trotta (2023), , A characterization of generalized existential completions, Ann. Pure Appl. Log.

A characterization of the tripos-to-topos construction

Theorem

Let $P: \mathcal{C}^{op} \longrightarrow$ InfSl be a full tripos. If P is the full existential completion of a full primary doctrine $P': \mathcal{C}^{op} \longrightarrow$ InfSl then:

 $\mathsf{T}_{P}\cong (\mathcal{G}_{P'})_{\mathsf{ex/lex}}.$

Categories obtained as full existential completion + tripos-to-topos:

Example

- realizability toposes RT(A) for a given pca A;
- toposes of presheaves PreSh(A) for a given locale A;
- toposes of sheaves Sh(A) for a given supercoherent locale A;
- ▶ the exact completion (*C*)_{ex/lex} of a lex category *C*.

Sheaf triposes

Definition (3-sheaf tripos)

A full tripos $P: \mathcal{C}^{op} \longrightarrow$ InfSl is said a \exists -**sheaf tripos** if the Grothendieck category \mathcal{G}_P has weak dependent products and a generic proof.

Theorem

Let $P: C^{op} \longrightarrow$ InfSl be a full tripos. Then the following are equivalent:

- **1.** $P: C^{op} \longrightarrow$ InfSl is a \exists -sheaf tripos;
- 2. $\Psi_{\mathcal{G}_P} : \mathcal{G}_P^{op} \longrightarrow$ InfSl is a full tripos;
- 3. $P^{\exists}: C^{op} \longrightarrow InfSl$ is a full tripos;

4. PSh(*P*) is a topos.

Theorem

Let $P: C^{op} \longrightarrow InfSl$ be a \exists -sheaf tripos. Then there is an adjunction of triposes

such that si \cong id_P, and s is a full existential morphism. Moreover, this induces an adjunction of toposes

such that $T(s)T(i) \cong id_{T_P}$.

M.E. Maietti and D. Trotta (2023), , A characterization of generalized existential completions, Ann. Pure Appl. Log. J. Frey (2015), Triposes, *q*-toposes and toposes, Ann. of Pure and Appl. Logic

Tripos-to-topos of ∃-sheaf triposes

Corollary

Let $P: \mathcal{C}^{\text{op}} \longrightarrow$ InfSl be a \exists -sheaf tripos. Then there exists a Lawvere-Tierney topology j^{\exists} on $T_{P^{\exists}}$ such that $T_{P} \equiv Sh_{j^{\exists}}(T_{P^{\exists}})$.

Sufficient conditions for ∃-sheaf triposes

Theorem

Let $P: C^{op} \longrightarrow$ InfSl be a full tripos such that

- C has weak dependent products;
- the weak predicate classifier Ω has a power object in C;
- \blacktriangleright C admits a proper factorization system (\mathcal{E}, \mathcal{M}) and every epi of \mathcal{E} splits.

Then $P: C^{op} \longrightarrow InfSl$ is a \exists -sheaf tripos.

Corollary

Every full tripos whose base category is Set (with the axiom of choice) is a ∃-sheaf tripos.

Example

The localic tripos $A^{(-)}$: Set^{op} \longrightarrow InfSl is a \exists -sheaf tripos. The adjunction

$$PSh(A)$$
 \bot $Sh(A)$

is exactly the so-called sheafification.

Example

The realizability tripos $\mathcal{P}_{\mathbb{A}}$: Set^{op} \longrightarrow InfSl is a \exists -sheaf tripos. Then, we have

$$\mathsf{PSh}(\mathcal{P}_{\mathbb{A}})$$
 \square $\mathsf{RT}(\mathbb{A})$

and hence that $\operatorname{RT}(\mathbb{A}) \equiv \operatorname{Sh}_{j^{\exists}}(\mathsf{T}_{\mathcal{P}_{\mathbb{A}}}^{\exists})$.