Categorification in Representation Theory

Vanessa Miemietz

• **Representation theory**: motivated from physics, studying the action of symmetry groups on objects.

- **Representation theory**: motivated from physics, studying the action of symmetry groups on objects.
- First approach: study actions of groups via permutations of sets.

- **Representation theory**: motivated from physics, studying the action of symmetry groups on objects.
- First approach: study actions of groups via permutations of sets.
- Frobenius: study linear representations (i.e. of group algebra on vector spaces) instead.

- **Representation theory**: motivated from physics, studying the action of symmetry groups on objects.
- First approach: study actions of groups via permutations of sets.
- Frobenius: study linear representations (i.e. of group algebra on vector spaces) instead.
- Geometrically, Lie algebras appear → can be studied via their universal enveloping algebra.

- **Representation theory**: motivated from physics, studying the action of symmetry groups on objects.
- First approach: study actions of groups via permutations of sets.
- Frobenius: study linear representations (i.e. of group algebra on vector spaces) instead.
- Geometrically, Lie algebras appear → can be studied via their universal enveloping algebra.
- Study associative algebras in their own right.

- **Representation theory**: motivated from physics, studying the action of symmetry groups on objects.
- First approach: study actions of groups via permutations of sets.
- Frobenius: study linear representations (i.e. of group algebra on vector spaces) instead.
- Geometrically, Lie algebras appear → can be studied via their universal enveloping algebra.
- Study associative algebras in their own right.

Let \Bbbk be a(n algebraically closed) field.

Algebra over \Bbbk : A \Bbbk -linear category \mathcal{A} with one (or finitely many) object(s), say •.

- **Representation theory**: motivated from physics, studying the action of symmetry groups on objects.
- First approach: study actions of groups via permutations of sets.
- Frobenius: study linear representations (i.e. of group algebra on vector spaces) instead.
- Geometrically, Lie algebras appear → can be studied via their universal enveloping algebra.
- Study associative algebras in their own right.

Let \Bbbk be a(n algebraically closed) field.

Algebra over \Bbbk : A \Bbbk -linear category \mathcal{A} with one (or finitely many) object(s), say •. Representation of \mathcal{A} : A \Bbbk -linear functor from \mathcal{A} to $\mathcal{V}ect_{\Bbbk}$.

- **Representation theory**: motivated from physics, studying the action of symmetry groups on objects.
- First approach: study actions of groups via permutations of sets.
- Frobenius: study linear representations (i.e. of group algebra on vector spaces) instead.
- Geometrically, Lie algebras appear ~>> can be studied via their universal enveloping algebra.
- Study associative algebras in their own right.

Let \Bbbk be a(n algebraically closed) field.

Algebra over \Bbbk : A \Bbbk -linear category \mathcal{A} with one (or finitely many) object(s), say •. Representation of \mathcal{A} : A \Bbbk -linear functor from \mathcal{A} to $\mathcal{V}ect_{\Bbbk}$.

Explicitly: $\bullet \mapsto V$, $\operatorname{End}_{\mathcal{A}}(\bullet) \ni a \mapsto \rho(a) \in \operatorname{End}_{\mathcal{V}ect_{\Bbbk}}(V).$

Decategorification: forgetting information

Decategorification: forgetting information

Object	Decategorification
set S	number of elements in S
vector space	dimension
category	set (of isomorphism classes
	of objects)
additive category	(split) Grothendieck group
	$([X \oplus Y] := [X] + [Y])$
monoidal category (2-category)	algebra
<i>n</i> -category	n-1-category

Decategorification: forgetting information

Object	Decategorification
set S	number of elements in S
vector space	dimension
category	set (of isomorphism classes
	of objects)
additive category	(split) Grothendieck group
	$([X \oplus Y] := [X] + [Y])$
monoidal category (2-category)	algebra
<i>n</i> -category	n-1-category

Categorification: the opposite - not constructive!

Observations:

• Translation functors on Category \mathcal{O} of a Lie algebra satisfy relations of a Hecke algebra.

Observations:

- Translation functors on Category ${\cal O}$ of a Lie algebra satisfy relations of a Hecke algebra.
- Certain induction and restriction functors on affine Hecke algebras satisfy relations of a Lie algebra.

Observations:

- Translation functors on Category \mathcal{O} of a Lie algebra satisfy relations of a Hecke algebra.
- Certain induction and restriction functors on affine Hecke algebras satisfy relations of a Lie algebra.

 \rightsquigarrow Categorification in representation theory.

Why?

More information in the higher structure \rightsquigarrow new information about the decategorified object; now have additional information about natural transformations of these functors.

Examples in representation theory

- categorification of Kac–Moody algebras [Khovanov–Lauda, Rouquier] (→ 4-dimensional topological quantum field theories (TQFT)?)
- categorification of Heisenberg algebras [Khovanov]
- categorification of Lie superalgebras [Brundan-Stroppel]
- categorification of Hall algebras (for cyclic quivers) [Stroppel-Webster]
- categorification of Hecke algebras via **Soergel bimodules** [Soergel, *Elias–Williamson*]

Examples in representation theory

- categorification of Kac–Moody algebras [Khovanov–Lauda, Rouquier] (→ 4-dimensional topological quantum field theories (TQFT)?)
- categorification of Heisenberg algebras [Khovanov]
- categorification of Lie superalgebras [Brundan-Stroppel]
- categorification of Hall algebras (for cyclic quivers) [Stroppel-Webster]
- categorification of Hecke algebras via **Soergel bimodules** [Soergel, *Elias–Williamson*]

→→ proof of Broué's abelian defect group conjecture for symmetric groups, proof of Kazhdan–Lusztig conjectures for all Coxeter systems, counterexample to James' conjecture for Hecke algebras, counterexamples to (and refinements of) Lusztig's conjectures

How?

- Algebras often appear as convolution algebras of functions on certain spaces.
- Example: Hecke algebra $\mathcal{H} := \operatorname{Fun}_{B \times B}(G, \mathbb{C})$

G conn. red. alg. group (e.g. GL_n), B Borel (e.g. $\left\{ \begin{pmatrix} * & * & * \\ & \ddots & \\ & & & * \end{pmatrix} \right\}$)

Philosophy: Replace functions by sheaves, which have morphisms between them!

How?

- Algebras often appear as convolution algebras of functions on certain spaces.
- Example: Hecke algebra $\mathcal{H} := \operatorname{Fun}_{B \times B}(G, \mathbb{C})$

G conn. red. alg. group (e.g. GL_n), B Borel (e.g. $\left\{ \begin{pmatrix} * & * & * \\ & & * \\ & & * \end{pmatrix} \right\}$)

Philosophy: Replace functions by sheaves, which have morphisms between them!

Issue: Difficult to work with, so find more algebraic descriptions.

• a class (or set) $\mathscr C$ of objects;

- a class (or set) & of objects;
- for every $i, j \in C$ a small category C(i, j) of morphisms from i to j (objects in C(i, j) are called 1-morphisms of C and morphisms in C(i, j) are called 2-morphisms of C);

- a class (or set) % of objects;
- for every $i,j \in \mathscr{C}$ a small category $\mathscr{C}(i,j)$ of morphisms from i to j (objects in $\mathscr{C}(i,j)$ are called 1-morphisms of \mathscr{C} and morphisms in $\mathscr{C}(i,j)$ are called 2-morphisms of \mathscr{C});
- functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k)$;

- a class (or set) % of objects;
- for every $i,j \in \mathscr{C}$ a small category $\mathscr{C}(i,j)$ of morphisms from i to j (objects in $\mathscr{C}(i,j)$ are called 1-morphisms of \mathscr{C} and morphisms in $\mathscr{C}(i,j)$ are called 2-morphisms of \mathscr{C});
- functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k);$
- identity 1-morphisms 1_i for every i ∈ 𝒞;

- a class (or set) % of objects;
- for every $i,j \in \mathscr{C}$ a small category $\mathscr{C}(i,j)$ of morphisms from i to j (objects in $\mathscr{C}(i,j)$ are called 1-morphisms of \mathscr{C} and morphisms in $\mathscr{C}(i,j)$ are called 2-morphisms of \mathscr{C});
- functorial composition $\mathscr{C}(\mathtt{j},\mathtt{k})\times \mathscr{C}(\mathtt{i},\mathtt{j})\to \mathscr{C}(\mathtt{i},\mathtt{k});$
- identity 1-morphisms 1ⁱ for every i ∈ 𝒞;
- natural (strict) axioms.

- a class (or set) % of objects;
- for every $i,j \in \mathscr{C}$ a small category $\mathscr{C}(i,j)$ of morphisms from i to j (objects in $\mathscr{C}(i,j)$ are called 1-morphisms of \mathscr{C} and morphisms in $\mathscr{C}(i,j)$ are called 2-morphisms of \mathscr{C});
- functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k);$
- identity 1-morphisms 1[⊥]_i for every i ∈ C;
- natural (strict) axioms.

Examples.

• the 2-category Cat of small categories (1-morphisms are functors and 2-morphisms are natural transformations);

- a class (or set) % of objects;
- for every $i,j \in \mathscr{C}$ a small category $\mathscr{C}(i,j)$ of morphisms from i to j (objects in $\mathscr{C}(i,j)$ are called 1-morphisms of \mathscr{C} and morphisms in $\mathscr{C}(i,j)$ are called 2-morphisms of \mathscr{C});
- functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k);$
- identity 1-morphisms 1[⊥]_i for every i ∈ C;
- natural (strict) axioms.

Examples.

• the 2-category Cat of small categories (1-morphisms are functors and 2-morphisms are natural transformations);

Examples.

• the 2-category Cat of small categories (1-morphisms are functors and 2-morphisms are natural transformations);

Examples.

- the 2-category Cat of small categories (1-morphisms are functors and 2-morphisms are natural transformations);
- the 2-category \mathfrak{A}^f_{\Bbbk} whose
 - objects are small idempotent complete k-linear additive categories with finitely many indecomposable objects up to isomorphism and finite-dimensional morphism spaces

(that is, equivalent to the category of finitely generated projective modules over a finite-dimensional k-algebra);

- 1-morphisms are additive k-linear functors;
- 2-morphisms are natural transformations.

A 2-category ${\mathscr C}$ is finitary over \Bbbk if

• & has finitely many objects;

2-categories

- C has finitely many objects;
- each $\mathscr{C}(\mathtt{i},\mathtt{j})$ is in \mathfrak{A}^f_{\Bbbk} ;

2-categories

- C has finitely many objects;
- each $\mathscr{C}(i, j)$ is in \mathfrak{A}^f_{\Bbbk} ;
- composition is biadditive and k-bilinear;

2-categories

- & has finitely many objects;
- each $\mathscr{C}(i, j)$ is in \mathfrak{A}^f_{\Bbbk} ;
- composition is biadditive and k-bilinear;
- identity 1-morphisms are indecomposable.

A 2-category ${\mathscr C}$ is finitary over \Bbbk if

- & has finitely many objects;
- each $\mathscr{C}(i, j)$ is in \mathfrak{A}^f_{\Bbbk} ;
- composition is biadditive and k-bilinear;
- identity 1-morphisms are indecomposable.

Moral: Finitary 2-categories are 2-analogues of finite dimensional algebras.
A 2-category ${\mathscr C}$ is finitary over \Bbbk if

- C has finitely many objects;
- each $\mathscr{C}(i, j)$ is in \mathfrak{A}^f_{\Bbbk} ;
- composition is biadditive and k-bilinear;
- identity 1-morphisms are indecomposable.

Moral: Finitary 2-categories are 2-analogues of finite dimensional algebras.

A 2-category & is fiat (finitary - involution - adjunction - two-category) if

A 2-category ${\mathscr C}$ is finitary over \Bbbk if

- & has finitely many objects;
- each $\mathscr{C}(i, j)$ is in \mathfrak{A}^f_{\Bbbk} ;
- composition is biadditive and k-bilinear;
- identity 1-morphisms are indecomposable.

Moral: Finitary 2-categories are 2-analogues of finite dimensional algebras.

A 2-category ${\mathscr C}$ is flat (finitary - involution - adjunction - two-category) if

• it is finitary;

A 2-category ${\mathscr C}$ is finitary over \Bbbk if

- C has finitely many objects;
- each $\mathscr{C}(i, j)$ is in \mathfrak{A}^f_{\Bbbk} ;
- composition is biadditive and k-bilinear;
- identity 1-morphisms are indecomposable.

Moral: Finitary 2-categories are 2-analogues of finite dimensional algebras.

A 2-category \mathscr{C} is fiat (finitary - involution - adjunction - two-category) if

- it is finitary;
- there is a weak involutive equivalence $(-)^* : \mathscr{C} \to \mathscr{C}^{\mathrm{op,op}}$ such that there exist adjunction morphisms $F \circ F^* \to \mathbb{1}_i$ and $\mathbb{1}_j \to F^* \circ F$.

(W,S) Coxeter group,

(W,S) Coxeter group, $W = \langle s_i |, s_i \in S, s_i^2 = 1, (s_i s_j)^{m_{ij}} = 1 \rangle$, $m_{ij} \ge 2$

$$(W,S)$$
 Coxeter group, $W = \langle s_i |, s_i \in S, s_i^2 = 1, (s_i s_j)^{m_{ij}} = 1 \rangle$, $m_{ij} \ge 2$

V reflection representation

$$(W,S)$$
 Coxeter group, $W=\langle s_i|,s_i\in S,s_i^2=1,(s_is_j)^{m_{ij}}=1\rangle$, $m_{ij}\geq 2$

- \boldsymbol{V} reflection representation
- $R = \mathbb{C}[V]/(\mathbb{C}[V]^W)_+$ coinvariant algebra (assume W finite)

$$(W,S)$$
 Coxeter group, $W=\langle s_i|,s_i\in S,s_i^2=1,(s_is_j)^{m_{ij}}=1\rangle$, $m_{ij}\geq 2$

- \boldsymbol{V} reflection representation
- $R = \mathbb{C}[V]/(\mathbb{C}[V]^W)_+$ coinvariant algebra (assume W finite)
- $R_i := R \otimes_{R^{s_i}} R \text{ for } s_i \in S$

$$(W,S)$$
 Coxeter group, $W = \langle s_i |, s_i \in S, s_i^2 = 1, (s_i s_j)^{m_{ij}} = 1 \rangle$, $m_{ij} \ge 2$

V reflection representation

 $R = \mathbb{C}[V]/(\mathbb{C}[V]^W)_+$ coinvariant algebra (assume W finite)

 $R_i := R \otimes_{R^{s_i}} R \text{ for } s_i \in S$

The 2-category $\mathscr{S} = \mathscr{S}_{W,S,V}$ of Soergel bimodules or Hecke 2-category has

• one object \varnothing (identified with *R*-proj);

$$(W,S) \text{ Coxeter group, } W = \langle s_i |, s_i \in S, s_i^2 = 1, (s_i s_j)^{m_{ij}} = 1 \rangle, \ m_{ij} \geq 2$$

 \boldsymbol{V} reflection representation

 $R = \mathbb{C}[V]/(\mathbb{C}[V]^W)_+$ coinvariant algebra (assume W finite)

 $R_i := R \otimes_{R^{s_i}} R$ for $s_i \in S$

The 2-category $\mathscr{S} = \mathscr{S}_{W,S,V}$ of Soergel bimodules or Hecke 2-category has

- one object Ø (identified with R-proj);
- 1-morphisms are endofunctors of Ø isomorphic to tensoring with direct summands of direct sums of finite tensor products (over R) of the R_i;

$$(W,S) \text{ Coxeter group, } W = \langle s_i |, s_i \in S, s_i^2 = 1, (s_i s_j)^{m_{ij}} = 1 \rangle, \ m_{ij} \geq 2$$

 \boldsymbol{V} reflection representation

 $R = \mathbb{C}[V]/(\mathbb{C}[V]^W)_+$ coinvariant algebra (assume W finite)

 $R_i := R \otimes_{R^{s_i}} R \text{ for } s_i \in S$

The 2-category $\mathscr{S} = \mathscr{S}_{W,S,V}$ of Soergel bimodules or Hecke 2-category has

- one object \varnothing (identified with *R*-proj);
- 1-morphisms are endofunctors of Ø isomorphic to tensoring with direct summands of direct sums of finite tensor products (over R) of the R_i;
- 2-morphisms are all natural transformations (bimodule morphisms).

$$(W,S) \text{ Coxeter group, } W = \langle s_i |, s_i \in S, s_i^2 = 1, (s_i s_j)^{m_{ij}} = 1 \rangle, \ m_{ij} \geq 2$$

 \boldsymbol{V} reflection representation

 $R = \mathbb{C}[V]/(\mathbb{C}[V]^W)_+$ coinvariant algebra (assume W finite)

 $R_i := R \otimes_{R^{s_i}} R$ for $s_i \in S$

The 2-category $\mathscr{S} = \mathscr{S}_{W,S,V}$ of Soergel bimodules or Hecke 2-category has

- one object \varnothing (identified with *R*-proj);
- 1-morphisms are endofunctors of Ø isomorphic to tensoring with direct summands of direct sums of finite tensor products (over R) of the R_i;
- 2-morphisms are all natural transformations (bimodule morphisms).

Fact: \mathscr{S} is fiat (for W finite) and categorifies the Hecke algebra.

M(i) ≈ B_i-proj for some algebra B_i;

- M(i) ≈ B_i-proj for some algebra B_i;
- for $F\in \mathscr{C}(\mathtt{i},\mathtt{j}),\,\mathbf{M}(F)\colon \mathbf{M}(\mathtt{i})\to \mathbf{M}(\mathtt{j})$ is an additive functor;

- M(i) ≈ B_i-proj for some algebra B_i;
- for $F\in \mathscr{C}(\mathtt{i},\mathtt{j}),\,\mathbf{M}(F)\colon \mathbf{M}(\mathtt{i})\to \mathbf{M}(\mathtt{j})$ is an additive functor;
- for $\alpha \colon F \to G$, $\mathbf{M}(\alpha) \colon \mathbf{M}(F) \to \mathbf{M}(G)$ is a natural transformation.

- M(i) ≈ B_i-proj for some algebra B_i;
- for $F\in \mathscr{C}(\mathtt{i},\mathtt{j}),\,\mathbf{M}(F)\colon \mathbf{M}(\mathtt{i})\to \mathbf{M}(\mathtt{j})$ is an additive functor;
- for $\alpha \colon F \to G$, $\mathbf{M}(\alpha) \colon \mathbf{M}(F) \to \mathbf{M}(G)$ is a natural transformation.

Examples.

• For $i \in C$, we have $\mathbf{P}_i = C(i, -)$.

- M(i) ≈ B_i-proj for some algebra B_i;
- for $F\in \mathscr{C}(\mathtt{i},\mathtt{j}),\,\mathbf{M}(F)\colon \mathbf{M}(\mathtt{i})\to \mathbf{M}(\mathtt{j})$ is an additive functor;
- for $\alpha \colon F \to G$, $\mathbf{M}(\alpha) \colon \mathbf{M}(F) \to \mathbf{M}(G)$ is a natural transformation.

Examples.

- For $i \in C$, we have $\mathbf{P}_i = C(i, -)$.
- *S* was defined via its **defining** 2-representation.

- M(i) ≈ B_i-proj for some algebra B_i;
- for $F\in \mathscr{C}(\mathtt{i},\mathtt{j}),\,\mathbf{M}(F)\colon \mathbf{M}(\mathtt{i})\to \mathbf{M}(\mathtt{j})$ is an additive functor;
- for $\alpha \colon F \to G$, $\mathbf{M}(\alpha) \colon \mathbf{M}(F) \to \mathbf{M}(G)$ is a natural transformation.

Examples.

- For $i \in C$, we have $\mathbf{P}_i = C(i, -)$.
- *S* was defined via its **defining** 2-representation.

A 2-representation ${\bf M}$ is simple if $\coprod_{i\in \mathscr{C}} {\bf M}(i)$ has no proper $\mathscr{C}\text{-stable}$ ideals.

- $\mathbf{M}(\mathbf{i}) \approx B_{\mathbf{i}}$ -proj for some algebra $B_{\mathbf{i}}$;
- for $F\in \mathscr{C}(\mathtt{i},\mathtt{j}),\,\mathbf{M}(F)\colon \mathbf{M}(\mathtt{i})\to \mathbf{M}(\mathtt{j})$ is an additive functor;
- for $\alpha \colon F \to G$, $\mathbf{M}(\alpha) \colon \mathbf{M}(F) \to \mathbf{M}(G)$ is a natural transformation.

Examples.

- For $i \in C$, we have $\mathbf{P}_i = C(i, -)$.
- *S* was defined via its **defining** 2-representation.

A 2-representation ${\bf M}$ is simple if $\coprod_{i\in \mathscr{C}} {\bf M}(i)$ has no proper $\mathscr{C}\text{-stable}$ ideals.

Goal. Classify simple 2-representations for interesting 2-categories.

From now on, let $\mathscr C$ be a fiat 2-category.

From now on, let \mathscr{C} be a fiat 2-category.

On (iso-classes of) indecomposable 1-morphisms in \mathscr{C} , define

From now on, let \mathscr{C} be a fiat 2-category.

On (iso-classes of) indecomposable 1-morphisms in *C*, define

left preorder: $\theta_v \leq_L \theta_w$ if $\exists \theta_u$ such that θ_w is a direct summand of $\theta_u \theta_v$

From now on, let \mathscr{C} be a fiat 2-category.

On (iso-classes of) indecomposable 1-morphisms in \mathscr{C} , define

left preorder: $\theta_v \leq_L \theta_w$ if $\exists \theta_u$ such that θ_w is a direct summand of $\theta_u \theta_v$

left cells: equivalence classes w.r.t. \geq_L

From now on, let \mathscr{C} be a fiat 2-category.

On (iso-classes of) indecomposable 1-morphisms in \mathscr{C} , define

left preorder: $\theta_v \leq_L \theta_w$ if $\exists \theta_u$ such that θ_w is a direct summand of $\theta_u \theta_v$

left cells: equivalence classes w.r.t. \geq_L

Similarly: right preorder: $\theta_v \leq_R \theta_w$ if $\exists \theta_u$ such that θ_w is a direct summand of $\theta_v \theta_u$

From now on, let \mathscr{C} be a fiat 2-category.

On (iso-classes of) indecomposable 1-morphisms in C, define

left preorder: $\theta_v \leq_L \theta_w$ if $\exists \theta_u$ such that θ_w is a direct summand of $\theta_u \theta_v$

left cells: equivalence classes w.r.t. \geq_L

Similarly: right preorder: $\theta_v \leq_R \theta_w$ if $\exists \theta_u$ such that θ_w is a direct summand of $\theta_v \theta_u$

right cells: equivalence classes w.r.t. \geq_R

From now on, let ${\mathscr C}$ be a fiat 2-category.

On (iso-classes of) indecomposable 1-morphisms in %, define

left preorder: $\theta_v \leq_L \theta_w$ if $\exists \theta_u$ such that θ_w is a direct summand of $\theta_u \theta_v$

left cells: equivalence classes w.r.t. \geq_L

Similarly: right preorder: $\theta_v \leq_R \theta_w$ if $\exists \theta_u$ such that θ_w is a direct summand of $\theta_v \theta_u$

right cells: equivalence classes w.r.t. \geq_R

two-sided preorder: $\theta_v \leq_J \theta_w$ if $\exists \theta_u, \theta_{u'}$ such that θ_w is a direct summand of $\theta_u \theta_v \theta_{u'}$

From now on, let ${\mathscr C}$ be a fiat 2-category.

On (iso-classes of) indecomposable 1-morphisms in %, define

left preorder: $\theta_v \leq_L \theta_w$ if $\exists \theta_u$ such that θ_w is a direct summand of $\theta_u \theta_v$

left cells: equivalence classes w.r.t. \geq_L

Similarly: right preorder: $\theta_v \leq_R \theta_w$ if $\exists \theta_u$ such that θ_w is a direct summand of $\theta_v \theta_u$

right cells: equivalence classes w.r.t. \geq_R

two-sided preorder: $\theta_v \leq_J \theta_w$ if $\exists \theta_u, \theta_{u'}$ such that θ_w is a direct summand of $\theta_u \theta_v \theta_{u'}$

two-sided cells: equivalence classes w.r.t. \geq_J

From now on, let ${\mathscr C}$ be a fiat 2-category.

On (iso-classes of) indecomposable 1-morphisms in %, define

left preorder: $\theta_v \leq_L \theta_w$ if $\exists \theta_u$ such that θ_w is a direct summand of $\theta_u \theta_v$

left cells: equivalence classes w.r.t. \geq_L

Similarly: right preorder: $\theta_v \leq_R \theta_w$ if $\exists \theta_u$ such that θ_w is a direct summand of $\theta_v \theta_u$

right cells: equivalence classes w.r.t. \geq_R

two-sided preorder: $\theta_v \leq_J \theta_w$ if $\exists \theta_u, \theta_{u'}$ such that θ_w is a direct summand of $\theta_u \theta_v \theta_{u'}$

two-sided cells: equivalence classes w.r.t. \geq_J

H-**cells**: intersections of left and right cells

Fact: Indecomposable 1-morphisms in \mathscr{S} are labelled by elements in W. In particular, indecomposable 1-morphisms descend to a cellular basis (the KL-basis).

Example

Fact: Indecomposable 1-morphisms in \mathscr{S} are labelled by elements in W. In particular, indecomposable 1-morphisms descend to a cellular basis (the KL-basis).

~ cell structure: left, right, two-sided, *H*-cells (Kazhdan-Lusztig cells)

Example

Fact: Indecomposable 1-morphisms in \mathscr{S} are labelled by elements in W. In particular, indecomposable 1-morphisms descend to a cellular basis (the KL-basis).

→ cell structure: left, right, two-sided, *H*-cells (Kazhdan–Lusztig cells)

Example. $W = \langle s, t | s^2 = 1 = t^2, stst = tsts \rangle$ of type $B_2 = C_2$. Cells are

Let \mathcal{H} be a *diagonal* H-cell in \mathscr{C} , contained in a two-sided cell \mathcal{J} .

Let \mathcal{H} be a *diagonal* H-cell in \mathscr{C} , contained in a two-sided cell \mathcal{J} . Construct $\mathscr{C}_{\mathcal{H}}$ in several steps: Let \mathcal{H} be a *diagonal* H-cell in \mathscr{C} , contained in a two-sided cell \mathcal{J} . Construct $\mathscr{C}_{\mathcal{H}}$ in several steps:

• take quotients by all two-sided cells $\mathcal{J}' \nleq \mathcal{J}$;

Let \mathcal{H} be a *diagonal* H-cell in \mathscr{C} , contained in a two-sided cell \mathcal{J} . Construct $\mathscr{C}_{\mathcal{H}}$ in several steps:

- take quotients by all two-sided cells $\mathcal{J}' \nleq \mathcal{J}$;
- inside quotient, take additive closure of 1 and the θ_w in \mathcal{H} ;
Let \mathcal{H} be a *diagonal* H-cell in \mathscr{C} , contained in a two-sided cell \mathcal{J} . Construct $\mathscr{C}_{\mathcal{H}}$ in several steps:

- take quotients by all two-sided cells $\mathcal{J}' \nleq \mathcal{J}$;
- inside quotient, take additive closure of 1 and the θ_w in \mathcal{H} ;
- factor out the maximal 2-ideal not containing id_{θ_w} for $\theta_w \in \mathcal{H}$.

Let \mathcal{H} be a *diagonal* H-cell in \mathscr{C} , contained in a two-sided cell \mathcal{J} . Construct $\mathscr{C}_{\mathcal{H}}$ in several steps:

- take quotients by all two-sided cells $\mathcal{J}' \nleq \mathcal{J}$;
- inside quotient, take additive closure of 1 and the θ_w in \mathcal{H} ;
- factor out the maximal 2-ideal not containing id_{θ_w} for $\theta_w \in \mathcal{H}$.

In the example, take $\mathcal{H} = \{\theta_s, \theta_{sts}\}$, then $\mathscr{S}_{\mathcal{H}}$ has cell structure

$$\boxed{ 1 = \theta_1 }$$

$$\theta_s, \theta_{sts}$$

Theorem 1. [Mackaay–Mazorchuk–M–Zhang] There is a bijection { nontrivial simple 2-representations of \mathscr{C} } \$\overline{} { nontrivial simple 2-representations of the $\mathscr{C}_{\mathcal{H}}$ }

where \mathcal{H} runs over a choice of diagonal \mathcal{H} -cell in every two-sided cell.

Theorem 1. [Mackaay–Mazorchuk–M–Zhang] There is a bijection { nontrivial simple 2-representations of \mathscr{C} } \$\frac{1}{\text{ nontrivial simple 2-representations of the }\mathcal{C}_{\mathcal{H}}\$}\$ where \mathcal{H} runs over a choice of diagonal \mathcal{H} -cell in every two-sided cell.

Upshot: concentrate on $\mathscr{C}_{\mathcal{H}} \rightsquigarrow$ smaller! We call this \mathcal{H} -cell reduction.

[Lusztig]: (W, S) Coxeter group \mathcal{H} a two-sided cell or diagonal H-cell \rightsquigarrow asymptotic algebra $A_{\mathcal{H}}$ (via $q \to 0$) [Lusztig]: (W, S) Coxeter group \mathcal{H} a two-sided cell or diagonal H-cell \rightsquigarrow asymptotic algebra $A_{\mathcal{H}}$ (via $q \rightarrow 0$)

Theorem. [Lusztig] There is a bijection

where the asymptotic algebras run over all two-sided cells or a choice of diagonal \mathcal{H} -cell in each two-sided cell.

[Lusztig]: (W, S) Coxeter group \mathcal{H} a two-sided cell or diagonal H-cell \rightsquigarrow asymptotic algebra $A_{\mathcal{H}}$ (via $q \to 0$)

Theorem. [Lusztig] There is a bijection

where the asymptotic algebras run over all two-sided cells or a choice of diagonal \mathcal{H} -cell in each two-sided cell.

Idea: Asymptotic algebras are easier to understand.

• $\mathscr{A}_{\mathcal{H}}$ categorifies $A_{\mathcal{H}}$.

- $\mathscr{A}_{\mathcal{H}}$ categorifies $A_{\mathcal{H}}$.
- $\mathscr{A}_{\mathcal{H}}$ is a fusion category. [Lusztig, Elias–Williamson]

- $\mathscr{A}_{\mathcal{H}}$ categorifies $A_{\mathcal{H}}$.
- $\mathscr{A}_{\mathcal{H}}$ is a fusion category. [Lusztig, Elias–Williamson]
- W any finite Weyl group: $\mathscr{A}_{\mathcal{H}}$ is well-understood; simple 2-representations have been classified. [Etingof, Ostrik et al.]

- $\mathscr{A}_{\mathcal{H}}$ categorifies $A_{\mathcal{H}}$.
- *A_H* is a fusion category. [Lusztig, Elias–Williamson]
- W any finite Weyl group: $\mathscr{A}_{\mathcal{H}}$ is well-understood; simple 2-representations have been classified. *[Etingof, Ostrik et al.]*

To classify simple 2-representations of \mathscr{S} , want to relate 2-representations of $\mathscr{S}_{\mathcal{H}}$ to those of $\mathscr{A}_{\mathcal{H}}$.

- $\mathscr{A}_{\mathcal{H}}$ categorifies $A_{\mathcal{H}}$.
- $\mathscr{A}_{\mathcal{H}}$ is a fusion category. [Lusztig, Elias–Williamson]
- W any finite Weyl group: $\mathscr{A}_{\mathcal{H}}$ is well-understood; simple 2-representations have been classified. *[Etingof, Ostrik et al.]*

To classify simple 2-representations of \mathscr{S} , want to relate 2-representations of $\mathscr{S}_{\mathcal{H}}$ to those of $\mathscr{A}_{\mathcal{H}}$.

From now on, assume (W, S) is a finite Coxeter group.

There is a canonical 2-functor

$$\operatorname{can}:\mathscr{S}_{\mathcal{H}}\to\mathscr{E}nd_{\mathscr{E}nd_{\mathscr{S}_{\mathcal{H}}}(\mathbf{C})}(\mathbf{C}).$$

There is a canonical 2-functor

can:
$$\mathscr{S}_{\mathcal{H}} \to \mathscr{E}nd_{\mathscr{E}nd_{\mathscr{S}_{\mathcal{H}}}(\mathbf{C})}(\mathbf{C}).$$

Double Centraliser Theorem. There is an equivalence

$$\mathscr{E}nd^{\mathrm{inj}}_{\mathscr{E}nd_{\mathscr{S}_{\mathcal{H}}}(\mathbf{C})}(\mathbf{C}) \simeq \mathrm{add}(\mathcal{H}).$$

works for any fiat 2-category and any simple 2-representation

There is a canonical 2-functor

can:
$$\mathscr{S}_{\mathcal{H}} \to \mathscr{E}nd_{\mathscr{E}nd_{\mathscr{S}_{\mathcal{H}}}(\mathbf{C})}(\mathbf{C}).$$

Double Centraliser Theorem. There is an equivalence

$$\mathscr{E}nd^{\mathrm{inj}}_{\mathscr{E}nd_{\mathscr{S}_{\mathcal{H}}}(\mathbf{C})}(\mathbf{C}) \simeq \mathrm{add}(\mathcal{H}).$$

works for any fiat 2-category and any simple 2-representation

Proposition. $\mathscr{E}nd_{\mathscr{S}_{\mathcal{H}}}(\mathbf{C}) \cong \mathscr{A}_{\mathcal{H}}.$

Theorem 2. [Mackaay–Mazorchuk–M.–Tubbenhauer–Zhang] There is a bijection

 $\{ \begin{array}{l} \text{simple 2-representations of } \mathscr{A}_{\mathcal{H}} \} \\ & \updownarrow \\ \{ \text{nontrivial simple 2-representations of } \mathscr{S}_{\mathcal{H}} \} \end{array}$

Theorem 2. [Mackaay–Mazorchuk–M.–Tubbenhauer–Zhang] There is a bijection

even stronger: biequivalence of 2-categories of simple 2-representations

Theorem 2. [Mackaay–Mazorchuk–M.–Tubbenhauer–Zhang] There is a bijection

even stronger: biequivalence of 2-categories of simple 2-representations Recall: Theorem 1. [Mackaay–Mazorchuk–M–Zhang] There is a bijection { nontrivial simple 2-representations of \mathscr{S} } \uparrow { nontrivial simple 2-representations of the $\mathscr{S}_{\mathcal{H}}$ }

where ${\cal H}$ runs over a choice of diagonal ${\cal H}\mbox{-cell}$ in every two-sided cell.

Representations of Hecke 2-categories

Combining Theorems 1 and 2, this yields

Theorem 3. [Mackaay–Mazorchuk–M.–Tubbenhauer–Zhang] There is a bijection

where \mathcal{H} runs over a choice of diagonal \mathcal{H} -cell in every two-sided cell.

Representations of Hecke 2-categories

Combining Theorems 1 and 2, this yields

Theorem 3. [Mackaay–Mazorchuk–M.–Tubbenhauer–Zhang] There is a bijection

where \mathcal{H} runs over a choice of diagonal \mathcal{H} -cell in every two-sided cell.

Remarks

• completes classification in all finite Coxeter types apart form H_3, H_4

Representations of Hecke 2-categories

Combining Theorems 1 and 2, this yields

Theorem 3. [Mackaay–Mazorchuk–M.–Tubbenhauer–Zhang] There is a bijection

where \mathcal{H} runs over a choice of diagonal \mathcal{H} -cell in every two-sided cell.

Remarks

- completes classification in all finite Coxeter types apart form H_3, H_4
- for few *H*-cells in types H_3, H_4 , $\mathscr{A}_{\mathcal{H}}$ is not well-understood

Thank you for your attention!