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Motivation

• Representation theory: motivated from physics, studying the
action of symmetry groups on objects.

• First approach: study actions of groups via permutations of sets.

• Frobenius: study linear representations (i.e. of group algebra on
vector spaces) instead.

• Geometrically, Lie algebras appear  can be studied via their
universal enveloping algebra.

• Study associative algebras in their own right.

Let k be a(n algebraically closed) field.

Algebra over k: A k-linear category A with one (or finitely many)
object(s), say •.
Representation of A: A k-linear functor from A to Vectk.

Explicitly: • 7→ V , EndA(•) 3 a 7→ ρ(a) ∈ EndVectk(V ).
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Motivation

What is categorification ?

Decategorification: forgetting information

Object Decategorification

set S number of elements in S
vector space dimension
category set (of isomorphism classes

of objects)
additive category (split) Grothendieck group

([X ⊕ Y ] := [X] + [Y ])
monoidal category (2-category) algebra
n-category n− 1-category

Categorification: the opposite - not constructive!
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Motivation

Observations:

• Translation functors on Category O of a Lie algebra satisfy relations
of a Hecke algebra.

• Certain induction and restriction functors on affine Hecke algebras
satisfy relations of a Lie algebra.

 Categorification in representation theory.

Why?
More information in the higher structure
 new information about the decategorified object;
now have additional information about natural transformations of these
functors.
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Motivation

Examples in representation theory

• categorification of Kac–Moody algebras [Khovanov–Lauda,
Rouquier] (  4-dimensional topological quantum field theories
(TQFT)?)

• categorification of Heisenberg algebras [Khovanov]

• categorification of Lie superalgebras [Brundan–Stroppel]

• categorification of Hall algebras (for cyclic quivers)
[Stroppel–Webster]

• categorification of Hecke algebras via Soergel bimodules [Soergel,
Elias–Williamson]

 proof of Broué’s abelian defect group conjecture for symmetric
groups, proof of Kazhdan–Lusztig conjectures for all Coxeter systems,
counterexample to James’ conjecture for Hecke algebras,
counterexamples to (and refinements of) Lusztig’s conjectures
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 proof of Broué’s abelian defect group conjecture for symmetric
groups, proof of Kazhdan–Lusztig conjectures for all Coxeter systems,
counterexample to James’ conjecture for Hecke algebras,
counterexamples to (and refinements of) Lusztig’s conjectures

Vanessa Miemietz Categorification in Representation Theory



Motivation

How?

• Algebras often appear as convolution algebras of functions on
certain spaces.

• Example: Hecke algebra H := FunB×B(G,C)

G conn. red. alg. group (e.g. GLn), B Borel (e.g.



∗ ∗ ∗

.
.
. ∗
∗


)

Philosophy: Replace functions by sheaves, which have morphisms
between them!

Issue: Difficult to work with, so find more algebraic descriptions.
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2-categories

A 2-category C is a category enriched over the monoidal category Cat
of small categories, i.e. it consists of

• a class (or set) C of objects;

• for every i, j ∈ C a small category C(i, j) of morphisms from i to
j (objects in C(i, j) are called 1-morphisms of C and morphisms in
C(i, j) are called 2-morphisms of C);

• functorial composition C(j, k)× C(i, j)→ C(i, k);

• identity 1-morphisms 1i for every i ∈ C ;

• natural (strict) axioms.

Examples.

• the 2-category Cat of small categories (1-morphisms are functors
and 2-morphisms are natural transformations);
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2-categories

Examples.

• the 2-category Cat of small categories (1-morphisms are functors
and 2-morphisms are natural transformations);

• the 2-category Afk whose
• objects are small idempotent complete k-linear additive categories

with finitely many indecomposable objects up to isomorphism and
finite-dimensional morphism spaces
(that is, equivalent to the category of finitely generated projective
modules over a finite-dimensional k-algebra);

• 1-morphisms are additive k-linear functors;
• 2-morphisms are natural transformations.
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2-categories

A 2-category C is finitary over k if

• C has finitely many objects;

• each C(i, j) is in Afk ;

• composition is biadditive and k-bilinear;

• identity 1-morphisms are indecomposable.

Moral: Finitary 2-categories are 2-analogues of finite dimensional
algebras.

A 2-category C is fiat (finitary - involution - adjunction - two-category) if

• it is finitary;

• there is a weak involutive equivalence (−)∗ : C → Cop,op such that
there exist adjunction morphisms F ◦ F ∗ → 1i and 1j → F ∗ ◦ F .
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Soergel bimodules or the Hecke 2-category

(W,S) Coxeter group,

W = 〈si|, si ∈ S, s2i = 1, (sisj)
mij = 1〉, mij ≥ 2

V reflection representation

R = C[V ]/(C[V ]W )+ coinvariant algebra (assume W finite)

Ri := R⊗Rsi R for si ∈ S

The 2-category S = SW,S,V of Soergel bimodules or Hecke
2-category has

• one object ∅ (identified with R-proj);

• 1-morphisms are endofunctors of ∅ isomorphic to tensoring with
direct summands of direct sums of finite tensor products (over R) of
the Ri;

• 2-morphisms are all natural transformations (bimodule morphisms).

Fact: S is fiat (for W finite) and categorifies the Hecke algebra.
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2-representations

A finitary 2-representation M of a finitary 2-category C is a (strict)

2-functor C → Afk , i.e.

• M(i) ≈ Bi-proj for some algebra Bi;

• for F ∈ C(i, j), M(F) : M(i)→M(j) is an additive functor;

• for α : F→ G, M(α) : M(F)→M(G) is a natural transformation.

Examples.

• For i ∈ C , we have Pi = C(i,−).
• S was defined via its defining 2-representation.

A 2-representation M is simple if
∐

i∈C M(i) has no proper C-stable
ideals.

Goal. Classify simple 2-representations for interesting 2-categories.
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Cell combinatorics for 2-categories

From now on, let C be a fiat 2-category.

On (iso-classes of) indecomposable 1-morphisms in C , define

left preorder: θv ≤L θw if ∃θu such that θw is a direct summand of
θuθv

left cells: equivalence classes w.r.t. ≥L
Similarly:
right preorder: θv ≤R θw if ∃θu such that θw is a direct summand of
θvθu

right cells: equivalence classes w.r.t. ≥R
two-sided preorder: θv ≤J θw if ∃θu, θu′ such that θw is a direct
summand of θuθvθu′

two-sided cells: equivalence classes w.r.t. ≥J
H-cells: intersections of left and right cells
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Example

Fact: Indecomposable 1-morphisms in S are labelled by elements in W .
In particular, indecomposable 1-morphisms descend to a cellular basis
(the KL-basis) .

 cell structure: left, right, two-sided, H-cells (Kazhdan–Lusztig cells)

Example. W = 〈s, t|s2 = 1 = t2, stst = tsts〉 of type B2 = C2. Cells
are

1

s, sts st
ts t, tst

stst
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H-cell reduction

Let H be a diagonal H-cell in C , contained in a two-sided cell J .

Construct CH in several steps:

• take quotients by all two-sided cells J ′ � J ;

• inside quotient, take additive closure of 1 and the θw in H;

• factor out the maximal 2-ideal not containing idθw for θw ∈ H.

In the example, take H = {θs, θsts}, then SH has cell structure

1 = θ1

θs, θsts
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H-cell reduction

Theorem 1. [Mackaay–Mazorchuk–M–Zhang] There is a bijection

{ nontrivial simple 2-representations of C}
l

{ nontrivial simple 2-representations of the CH}

where H runs over a choice of diagonal H-cell in every two-sided cell.

Upshot: concentrate on CH  smaller! We call this H-cell reduction.
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Representations of Hecke algebras

[Lusztig]: (W,S) Coxeter group

H a two-sided cell or diagonal H-cell  asymptotic algebra AH (via
q → 0)

Theorem. [Lusztig] There is a bijection

{simple representations of the Hecke algebra}
l

{simple representations of the asymptotic algebras}

where the asymptotic algebras run over all two-sided cells or a choice of
diagonal H-cell in each two-sided cell.

Idea: Asymptotic algebras are easier to understand.
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Representations of Hecke 2-categories

[Lusztig] H a two-sided cell or diagonal H-cell  asymptotic
bicategory AH

• AH categorifies AH.

• AH is a fusion category. [Lusztig, Elias–Williamson]

• W any finite Weyl group: AH is well-understood; simple
2-representations have been classified. [Etingof, Ostrik et al.]

To classify simple 2-representations of S , want to relate
2-representations of SH to those of AH.

From now on, assume (W,S) is a finite Coxeter group.
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To classify simple 2-representations of S , want to relate
2-representations of SH to those of AH.

From now on, assume (W,S) is a finite Coxeter group.
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Double Centraliser Theorem

Let C be the so-called cell 2-representation of SH corresponding to H.
This is simple.

There is a canonical 2-functor

can: SH → EndEndSH (C)(C).

Double Centraliser Theorem. There is an equivalence

EndinjEndSH (C)(C) ' add(H).

works for any fiat 2-category and any simple 2-representation

Proposition. EndSH(C) ∼= AH.
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Representations of Hecke 2-categories

Theorem 2. [Mackaay–Mazorchuk–M.–Tubbenhauer–Zhang] There is a
bijection

{simple 2-representations of AH}
l

{nontrivial simple 2-representations of SH}

even stronger: biequivalence of 2-categories of simple 2-representations

Recall:
Theorem 1. [Mackaay–Mazorchuk–M–Zhang] There is a bijection

{ nontrivial simple 2-representations of S}
l

{ nontrivial simple 2-representations of the SH}

where H runs over a choice of diagonal H-cell in every two-sided cell.
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Representations of Hecke 2-categories

Combining Theorems 1 and 2, this yields

Theorem 3. [Mackaay–Mazorchuk–M.–Tubbenhauer–Zhang] There is a
bijection

{ simple 2-representations of S}
l

{ simple 2-representations of the AH}

where H runs over a choice of diagonal H-cell in every two-sided cell.

Remarks

• completes classification in all finite Coxeter types apart form H3, H4

• for few H-cells in types H3, H4, AH is not well-understood
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Thank you!

Thank you for your attention!

Vanessa Miemietz Categorification in Representation Theory


	

