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Geometric theories

A geometric theory is defined by basic sorts X , basic relations

R ⊆ X1 × · · · × Xn (including basic propositions for n = 0) and axioms.

Formulae in the axioms are built up from basic relations and the

equality relation using finite conjunctions, arbitrary disjunctions, and

existential quantification over sorts.

For example, consider the theory of inhabited total orders. This has one

sort X , one relation ≤ ⊆ X × X and the following axioms.

⊢x : X x ≤ x (reflexivity)

x ≤ y ∧ y ≤ z ⊢x ,y ,z : X x ≤ z (transitivity)

x ≤ y ∧ y ≤ x ⊢x ,y : X x = y (antisymmetry)

⊢x ,y : X x ≤ y ∨ y ≤ x (totality)

⊢∅ ∃x : X . ⊤ (inhabitedness)
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Classifying toposes

We can define models of a geometric theory in any (Grothendieck)

topos.

In fact, Grothendieck toposes are themselves a presentation-independent

way to describe geometric theories.

For each geometric theory T, there is a classifying topos Set[T]
satisfying Geom(E ,Set[T]) ≃ ModT(E).

There is a generic model MT in Set[T] such that any model

M ′ ∈ ModT(E) can be obtained from some geometric morphism

F : E → Set[T] by ‘pulling back’ MT along F .
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Propositional theories and locales

A propositional geometric theory is one with no sorts.

For example, for a fixed set X the theory of partial functions from N to

X has a proposition [f (n) = x ] for each n ∈ N and x ∈ X and an axiom

[f (n) = x ] ∧ [f (n) = y ] ⊢ x = y

for each n ∈ N and x , y ∈ X .

In this case it is natural to equip the set of models with a topology.

The open sets correspond to definable propositions.

More precisely, a propositional theory defines a ‘point-free’ space called

a locale. The category Loc of locales is the opposite of the a certain

algebraic category of lattices (‘of opens’) called frames.
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Frames

A frame is a lattice with finite meets and arbitrary joins satisfying the

distributivity condition a ∧
∨

α bα =
∨

α a ∧ bα.

Frames are the Lindenbaum–Tarski algebras for propositional geometric

theories. We can easily turn propositional theories into presentations:

basic propositions give generators and axioms give relations.

The lattice of opens of a topological space is a frame. However, not

every frame comes from a space.

Fix a set X and consider the theory of partial surjections from N to X .

This adds the axiom ⊤ ⊢
∨

n∈N[f (n) = x ] for each x ∈ X to the theory

of partial functions from N to X .

If X is sufficiently large this has no Set-models (i.e. points). However,

the frame is always nontrivial in a strong sense.
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Sheaves

If XT is the locale obtained from a propositional theory T, then Set[T]
is the topos Sh(XT) of sheaves on XT.

A sheaf on a locale X can be defined as a local homeomorphism into X .

A morphism of sheaves is morphism in the slice category Loc/X .

Sh embeds Loc into the 2-category Topos of (Grothendieck) toposes.

Not every topos is localic. This is a pity, since it is easier to work with

locales than toposes. However, Joyal and Tierney showed that this is

almost true — every topos is a topos of sheaves on a localic groupoid.
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A locale of models for a general geometric theory

Let T be a geometric theory. How can we describe a locale of models?

The problem is encoding the sorts of T. A model of T has a set MX for

every sort X . So there may be a proper class of models of T.

But recall that the locale of partial surjections from N to any set X is

nontrivial. So in some sense “every set is a subquotient of N”.

This suggests representing sorts by partial equivalence relations on N.
These have a propositional geometric theory with basic propositions

[n ∼ m] for n,m ∈ N and the following axioms.

• [n ∼ m] ⊢ [m ∼ n] (symmetry)

• [n ∼ m] ∧ [m ∼ ℓ] ⊢ [n ∼ ℓ] (transitivity)
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The locale of models GT
0

For a geometric theory T, we define GT
0 to be the classifying locale of a

propositional geometric theory P[T], defined as follows.

• For each sort X of T, add a copy of the theory of partial

equivalence relations on N (i.e. add basic propositions [n ∼X m]

and axioms for symmetry and transitivity).

• For each relation symbol R ⊆ X 1 × · · · × X k of T, and for each
n1, . . . , nk ∈ N and m1, . . . ,mk ∈ N, add a proposition
[(n1, . . . , nk) ∈ R] and axioms

• [(n1, . . . , nk) ∈ R] ∧ [n1 ∼X 1

m1] ∧ · · · ∧ [nk ∼X k

mk ] ⊢
[(m1, . . . ,mk) ∈ R],

• [(n1, . . . , nk) ∈ R] ⊢ [n1 ∼X 1

n1] ∧ · · · ∧ [nk ∼X k

nk ].
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The locale of models GT
0

• For each axiom φ ⊢x1,...,xk ψ of T, we add an axiom

k∧
i=1

[ni ∼X i
ni ] ∧ φn1,...,nk ⊢ ψn1,...,nk

for each n1, . . . , nk ∈ N, where φn1,...,nk and ψn1,...,nk are obtained
from φ and ψ by replacing:

• each free variable xi by a (fixed) natural number ni ,

• each subformula of the form x = y with [nx ∼X ny ],

• each subformula (y1, . . . , yℓ) ∈ R with [(ny1 , . . . , nyℓ) ∈ R],

• and each quantifier ∃x : X . χ(x , . . . ) by a join
∨

nx∈N χ(nx , . . . ).

Different subquotients of N might correspond to isomorphic models. To

deal with this we construct a locale of isomorphisms.
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The locale of isomorphisms GT
1

We define a locale GT
1 as the classifying locale of the theory P[T∼=]

where T∼= is the theory of isomorphisms of T-models.

The theory T∼= is obtained by simply taking two copies of each sort,

relations and axioms of T, adding relations corresponding to bijections

between corresponding sorts, and adding axioms that force relations on

each copy to map into each other via the appropriate bijections.

We can now equip GT
0 and GT

1 with locale morphisms to give an

internal groupoid GT in Loc.

GT
1 ×GT

0
GT
1 GT

1 GT
0

m

i

s
e
t

This is (essentially) the localic groupoid of Joyal and Tierney.
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Sheaves on a localic groupoid

We can recover the topos Set[T] by taking sheaves on GT.

A sheaf on a localic groupoid G is a sheaf on the locale of objects

E → G0 equipped with an action by the locale of morphisms G1.

This can also be understood as specifying a ‘topologically discrete’

internal discrete (op)fibration into GT — intuitively, a ‘continuous’

functor from GT to Set.

The category Sh(G ) of sheaves over G and ‘equivariant’ maps between

them is a topos.

The Joyal–Tierney result shows that Sh(GT) ≃ Set[T].
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internal discrete (op)fibration into GT — intuitively, a ‘continuous’

functor from GT to Set.

The category Sh(G ) of sheaves over G and ‘equivariant’ maps between

them is a topos.

The Joyal–Tierney result shows that Sh(GT) ≃ Set[T].
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The generic sheaves

A T-model in Sh(G ) corresponds to a sheaf on G for each sort of T
together with open sublocales of products of these (over G ) for each

relation satisfying the axioms.

In particular, we can express the generic model of Set[T] in terms of

structures on GT.

For a sort X the corresponding étale space is given by the locale

classifying pairs (x , [n]) with x ∈ GT
0 and [n] ∈ N/EX (x) where EX is

the value of the partial equivalence relation ∼X at the point x .

The generic T-model over GT then satisfies a universal property, not

only in the 2-category of toposes, but in a bicategory of all localic

groupoids (and anafunctors between them).

12



The generic sheaves

A T-model in Sh(G ) corresponds to a sheaf on G for each sort of T
together with open sublocales of products of these (over G ) for each

relation satisfying the axioms.

In particular, we can express the generic model of Set[T] in terms of

structures on GT.

For a sort X the corresponding étale space is given by the locale

classifying pairs (x , [n]) with x ∈ GT
0 and [n] ∈ N/EX (x) where EX is

the value of the partial equivalence relation ∼X at the point x .

The generic T-model over GT then satisfies a universal property, not

only in the 2-category of toposes, but in a bicategory of all localic

groupoids (and anafunctors between them).

12



The generic sheaves

A T-model in Sh(G ) corresponds to a sheaf on G for each sort of T
together with open sublocales of products of these (over G ) for each

relation satisfying the axioms.

In particular, we can express the generic model of Set[T] in terms of

structures on GT.

For a sort X the corresponding étale space is given by the locale

classifying pairs (x , [n]) with x ∈ GT
0 and [n] ∈ N/EX (x) where EX is

the value of the partial equivalence relation ∼X at the point x .

The generic T-model over GT then satisfies a universal property, not

only in the 2-category of toposes, but in a bicategory of all localic

groupoids (and anafunctors between them).

12



Analogous constructions

Our construction can be understood as giving universal étale bundles

(with certain extra properties and structure).

This suggests other similar constructions. For instance, we might

replace local homeomorphisms with proper separated locale maps.

• Then instead of using (open) partial equivalence relations on N, we
use closed partial equivalence relations on 2N.

• Instead of the locale of partial surjections from N to a set X , we

use a locale of partial surjections from 2N to a compact Hausdorff

locale X . (This requires a constructive version of the

Hausdorff–Alexandroff theorem, which holds for not-necessarily

second countable X .)

• We should then be able to classify compact Hausdorff models for a

‘dual geometric’ logic by a similar construction.
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