Category Theory 2023 Université catholique de Louvain

Categorical incarnations of infinite games

Matheus Duzi¹

Joint work (in progress) with P. Szeptycki and W. Tholen

University of São Paulo - York University matheus.duzi.costa@usp.br - m.duzi@yorku.ca

04 July 2023

¹FAPESP grant number 2021/13427-9

Table of Contents

2 Game morphisms

Incarnations

- Functorial games
- Metrical games
- Arboreal games

Table of Contents

2 Game morphisms

Incarnations

- Functorial games
- Metrical games
- Arboreal games

• are between two players (ALICE and BOB);

- are between two players (ALICE and BOB);
- are "turn-based" (ALICE starts);

- are between two players (ALICE and BOB);
- are "turn-based" (ALICE starts);
- two players compete;

- are between two players (ALICE and BOB);
- are "turn-based" (ALICE starts);
- two players compete;
- with no draws;

- are between two players (ALICE and BOB);
- are "turn-based" (ALICE starts);
- two players compete;
- with no draws;
- of "perfect information";

- are between two players (ALICE and BOB);
- are "turn-based" (ALICE starts);
- two players compete;
- with no draws;
- of "perfect information";
- infinite (countable) runs.

Formally:

Formally:

Definition

For a set M, a set $T \subseteq \bigcup_{n \in \mathbb{N}} M^n$ of finite sequences in M is a decision tree over M if

(I) If $t \in T$, then $t \upharpoonright k \in T$ for all $k \leq |t|$;

Formally:

Definition

For a set M, a set $T\subseteq \bigcup_{n\in\mathbb{N}}M^n$ of finite sequences in M is a decision tree over M if

(I) If $t \in T$, then $t \upharpoonright k \in T$ for all $k \leq |t|$;

If $t = (x_0, ..., x_{n-1})$, then

|t| = n

Formally:

Definition

For a set M, a set $T \subseteq \bigcup_{n \in \mathbb{N}} M^n$ of finite sequences in M is a *decision tree over* M if

(I) If $t \in T$, then $t \upharpoonright k \in T$ for all $k \leq |t|$;

If $t = (x_0, \ldots, x_n)$ e $k \leq n$, then

 $t \upharpoonright k = (x_0, \ldots, x_{k-1})$

(日) (同) (E) (E) (E)

4/35

Formally:

Definition

For a set M, a set $T \subseteq \bigcup_{n \in \mathbb{N}} M^n$ of finite sequences in M is a *decision tree over* M if (I) If $t \in T$, then $t \upharpoonright k \in T$ for all $k \leq |t|$; (II) For all $t \in T$ there is an $x \in M$ such that $t^{\frown}x \in T$;

Formally:

Definition

For a set M, a set $T \subseteq \bigcup_{n \in \mathbb{N}} M^n$ of finite sequences in M is a *decision tree over* M if (I) If $t \in T$, then $t \upharpoonright k \in T$ for all $k \leq |t|$; (II) For all $t \in T$ there is an $x \in M$ such that $t^{\frown}x \in T$;

If $t = (x_0, ..., x_n)$, then

$$t^{\frown}x = (x_0, \ldots, x_n, x)$$

Formally:

Definition

For a set M, a set $T \subseteq \bigcup_{n \in \mathbb{N}} M^n$ of finite sequences in M is a *decision tree over* M if (I) If $t \in T$, then $t \upharpoonright k \in T$ for all $k \leq |t|$; (II) For all $t \in T$ there is an $x \in M$ such that $t^{\frown}x \in T$; We say that T is a *decision tree* if T is a decision tree over some set M.

Formally:

Definition

For a set M, a set $T \subseteq \bigcup_{n \in \mathbb{N}} M^n$ of finite sequences in M is a *decision tree over* M if (I) If $t \in T$, then $t \upharpoonright k \in T$ for all $k \leq |t|$; (II) For all $t \in T$ there is an $x \in M$ such that $t^{\uparrow}x \in T$; We say that T is a *decision tree* if T is a decision tree over some set M.

Definition

A pair G = (T, A) is an *infinite game* if T is a decision tree over a set M and

$$A \subseteq \operatorname{\mathsf{Run}}(T) = \left\{ \, R \in M^{\mathbb{N}} : R \upharpoonright n \in T \, \, ext{for every} \, n \in \mathbb{N} \,
ight\}.$$

The set A is called the *payoff set* of G.

All of our games will be infinite in this talk, so we will omit the word "infinite" from now on.

Example (Banach-Mazur game)

Given a non-empty space (X, τ) , consider the following game:

Given a non-empty space (X, τ) , consider the following game:

- At the first inning:
 - ALICE chooses a non-empty open set U_0 ;
 - BOB responds with a non-empty open set $V_0 \subseteq U_0$.
- At the following *n*th innings:
 - ALICE chooses a non-empty open set U_n contained in the open set V_{n-1} chosen by BOB in the previous inning;
 - BOB responds with a non-empty open set $V_n \subseteq U_n$.

Given a non-empty space (X, τ) , consider the following game:

- At the first inning:
 - ALICE chooses a non-empty open set U_0 ;
 - BOB responds with a non-empty open set $V_0 \subseteq U_0$.
- At the following *n*th innings:
 - ALICE chooses a non-empty open set U_n contained in the open set V_{n-1} chosen by BOB in the previous inning;
 - BOB responds with a non-empty open set $V_n \subseteq U_n$.

 $T = \{ t \in (\tau \setminus \{\emptyset\})^n : n \in \mathbb{N}, \forall i \le j < n (t(i) \subseteq t(j)) \}.$

Given a non-empty space (X, τ) , consider the following game:

- At the first inning:
 - ALICE chooses a non-empty open set U_0 ;
 - BOB responds with a non-empty open set $V_0 \subseteq U_0$.
- At the following *n*th innings:
 - ALICE chooses a non-empty open set U_n contained in the open set V_{n-1} chosen by BOB in the previous inning;
 - BOB responds with a non-empty open set $V_n \subseteq U_n$.

Then BOB wins the run $(U_0, V_0, \ldots, U_n, V_n, \ldots)$ if $\bigcap_{n \in \omega} V_n \neq \emptyset$ (and ALICE wins otherwise).

ヘロト 人間 ト 人 ヨト 人 ヨト

Given a non-empty space (X, τ) , consider the following game:

- At the first inning:
 - ALICE chooses a non-empty open set U_0 ;
 - BOB responds with a non-empty open set $V_0 \subseteq U_0$.
- At the following *n*th innings:
 - ALICE chooses a non-empty open set U_n contained in the open set V_{n-1} chosen by BOB in the previous inning;
 - BOB responds with a non-empty open set $V_n \subseteq U_n$.

Then BOB wins the run $(U_0, V_0, \ldots, U_n, V_n, \ldots)$ if $\bigcap_{n \in \omega} V_n \neq \emptyset$ (and ALICE wins otherwise).

$$A = \left\{ R \in (\tau \setminus \{\emptyset\})^{\mathbb{N}} : \bigcap_{n \in \mathbb{N}} R(2n+1) = \emptyset \right\}.$$

ヘロト 人間 ト 人 ヨト 人 ヨト

Example (World's most boring game)

 (\emptyset, \emptyset)

<ロト < 団ト < 臣ト < 臣ト 王 の Q () 8/35

Example (World's most boring game) (\emptyset, \emptyset) (by vacuity, with $M = \emptyset$)

Motivation

We frequently find properties like

"It is possible to construct a sequence $s = (a_n : n \in \mathbb{N})$ such that P(s)."

Motivation

We frequently find properties like

"It is possible to construct a sequence $s = (a_n : n \in \mathbb{N})$ such that P(s)."

The concepts of games and strategies are then used to define stronger properties of the kind:

"It is possible to construct a sequence $s = (a_n : n \in \mathbb{N})$ such that P(s), even with someone trying to hinder that process along the way."

Motivation

Theorem (J. Oxtoby, 1957)

A space X is Baire if, and only if, ALICE has no winning strategy in the Banach-Mazur game over X.

Motivation

Theorem (J. Oxtoby, 1957)

A space X is Baire if, and only if, ALICE has no winning strategy in the Banach-Mazur game over X.

Games have also been introduced and studied to classify Banach spaces in functional analysis (as seen in, e.g., Ferenczi and Rosendal, *Banach spaces without minimal subspaces*, 2009),

Motivation

Theorem (J. Oxtoby, 1957)

A space X is Baire if, and only if, ALICE has no winning strategy in the Banach-Mazur game over X.

Games have also been introduced and studied to classify Banach spaces in functional analysis (as seen in, e.g., Ferenczi and Rosendal, *Banach spaces without minimal subspaces*, 2009), to explore properties of algebraic structures (as seen in, e.g., Brandenburg, *Algebraic games—playing with groups and rings*, 2018),

Motivation

Theorem (J. Oxtoby, 1957)

A space X is Baire if, and only if, ALICE has no winning strategy in the Banach-Mazur game over X.

Games have also been introduced and studied to classify Banach spaces in functional analysis (as seen in, e.g., Ferenczi and Rosendal, *Banach spaces without minimal subspaces*, 2009), to explore properties of algebraic structures (as seen in, e.g., Brandenburg, *Algebraic games—playing with groups and rings*, 2018), and in mathematical logic with the Axiom of Determinacy.

Table of Contents

2 Game morphisms

Incarnations

- Functorial games
- Metrical games
- Arboreal games

Definition

We say that a map $f: T \to T'$ between decision trees T and T' is *chronological* if:

Definition

We say that a map $f: T \to T'$ between decision trees T and T' is *chronological* if:

(a) For all
$$t \in T$$
, $|f(t)| = |t|$;
Definition

We say that a map $f: T \to T'$ between decision trees T and T' is *chronological* if:

(a) For all
$$t \in T$$
, $|f(t)| = |t|$;

(b) For every
$$t \in T$$
 and $k \leq |t|$, $f(t \upharpoonright k) = f(t) \upharpoonright k$.

Definition

We say that a map $f: T \to T'$ between decision trees T and T' is *chronological* if:

(a) For all
$$t \in T$$
, $|f(t)| = |t|$;

(b) For every
$$t \in T$$
 and $k \leq |t|$, $f(t \upharpoonright k) = f(t) \upharpoonright k$.

Then, if $f: T \to T'$ is chronological and $R \in \operatorname{Run} T$, there is a unique $\overline{f}(R) \in \operatorname{Run} T'$ such that $f(R \upharpoonright n) = \overline{f}(R) \upharpoonright n$ for all $n \in \mathbb{N}$.

Definition (A-morphism)

An A-morphism $G \xrightarrow{f} G$ between games G = (T, A) and G' = (T', A') is a chronological map $f : T \to T'$ such that for every run $R \in A$ in the game $G, \overline{f}(R) \in A'$.

Definition (**B**-morphism)

A B-morphism $G \xrightarrow{f} G$ between games G = (T, A) and G' = (T', A') is a chronological map $f : T \to T'$ such that for every run $R \notin A$ in the game $G, \overline{f}(R) \notin A'$.

- objects are decision trees,
- morphisms are chronological maps.

- objects are decision trees,
- morphisms are chronological maps.

$\bullet \ \textbf{Game}_A:$

- objects are games,
- morphisms are A-morphisms.

- objects are decision trees,
- morphisms are chronological maps.
- $\bullet \ \textbf{Game}_A :$
 - objects are games,
 - morphisms are A-morphisms.
- Game_B:
 - objects are games,
 - morphisms are B-morphisms.

- objects are decision trees,
- morphisms are chronological maps.
- Game_A:
 - objects are games,
 - morphisms are A-morphisms.
- Game_B:
 - objects are games,
 - morphisms are B-morphisms.

Proposition

The categories $\textbf{Game}_{\rm A}$ and $\textbf{Game}_{\rm B}$ are isomorphic.

Why are these categorical frameworks appropriate?

Properties

Theorem (D., P. Szeptycki, W. Tholen – 202?)

Suppose C is either Gme, $Game_{\rm A}$, $Game_{\rm B}$. Then:

Properties

Theorem (D., P. Szeptycki, W. Tholen – 202?)

Suppose C is either Gme, $Game_A$, $Game_B$. Then:

• C is complete and co-complete.

Properties

Theorem (D., P. Szeptycki, W. Tholen – 202?)

Suppose C is either Gme, $Game_{\rm A}$, $Game_{\rm B}$. Then:

- C is complete and co-complete.
- C is cartesian closed.

Theorem (D., P. Szeptycki, W. Tholen – 202?)

- C is complete and co-complete.
- C is cartesian closed.
- C is not locally cartesian closed.

Theorem (D., P. Szeptycki, W. Tholen – 202?)

- C is complete and co-complete.
- C is cartesian closed.
- C is not locally cartesian closed.
- C has orthogonal factorization systems.

Theorem (D., P. Szeptycki, W. Tholen – 202?)

- C is complete and co-complete.
- C is cartesian closed.
- C is not locally cartesian closed.
- C has orthogonal factorization systems.
- C is regular.

Theorem (D., P. Szeptycki, W. Tholen – 202?)

- C is complete and co-complete.
- C is cartesian closed.
- C is not locally cartesian closed.
- C has orthogonal factorization systems.
- C is regular.
- C is extensive.

Theorem (D., P. Szeptycki, W. Tholen – 202?)

- C is complete and co-complete.
- C is cartesian closed.
- C is not locally cartesian closed.
- C has orthogonal factorization systems.
- C is regular.
- C is extensive.
- C has no classifier of strong subobjects.

Theorem (D., P. Szeptycki, W. Tholen – 202?)

- C is complete and co-complete.
- C is cartesian closed.
- C is not locally cartesian closed.
- C has orthogonal factorization systems.
- C is regular.
- C is extensive.
- C has no classifier of strong subobjects.
- C has a weak classifier of strong partial maps.

Topological games as functors

Topological games as functors

Example $(G_1(\Omega_x, \Omega_x))$

Given a space X and a fixed $x \in X$, consider the game: in each inning $n \in \omega$,

- ALICE chooses $A_n \subset X$ such that $x \in \overline{A_n}$;
- BOB responds with $a_n \in A_n$.

BOB wins the run $(A_0, a_0, \ldots, A_n, a_n, \ldots)$ if, for every $k \in \mathbb{N}$, $x \in \overline{\{a_n : n \ge k\}}$ (ALICE wins otherwise).

Example $(G_1(\Omega, \Omega))$

Given a space X, consider the game: in each inning $n \in \omega$,

• ALICE chooses an ω -cover \mathcal{U}_n , that is, an open cover \mathcal{U}_n such that

$$\forall F \in [X]^{<\omega} \exists U \in \mathcal{U}_n(F \subset U),$$

• BOB responds with $U_n \in \mathcal{U}_n$.

BOB wins the run $(U_0, U_0, \ldots, U_n, U_n, \ldots)$ if, for every $k \in \omega$, $\{U_n : n \ge k\}$ is an ω -cover (ALICE wins otherwise).

3

イロト 不同 とうほう 不同 とう

Topological games as functors

Example $(G_1(\Omega_x, \Omega_x))$

Let $\mathrm{Tight}\colon \mathsf{Top}_*\to \textbf{Game}_\mathrm{B}$ be such that

- On objects, $\operatorname{Tight}(X, x) = G_1(\Omega_x, \Omega_x)$ over X.
- On morphisms, given a continuous $f: X \to Y$ such that f(x) = y, let

$$\begin{array}{c} \operatorname{Tight}(X,x) \xrightarrow{\operatorname{Tight} f} & \operatorname{Tight}(Y,y) \\ (A_0,a_0,\ldots,A_n,a_n) \longmapsto (f[A_0],f(a_0),\ldots,f[A_n],f(a_n)) \end{array}$$

Example $(G_1(\Omega, \Omega))$

Let $\operatorname{Cover}\colon \mathsf{Top}^{\mathsf{op}}\to \textbf{Game}_{\operatorname{B}}$ be such that:

- On objects, $\operatorname{Cover} X = G_1(\Omega, \Omega)$ over X.
- On morphisms, for $Y \xrightarrow{f} X$ in Top^{op}, let

 $\operatorname{Cover} Y \xrightarrow{\operatorname{Cover} f} \operatorname{Cover} X$

 $(\mathcal{U}_0, \mathcal{U}_0, \dots, \mathcal{U}_n, \mathcal{U}_n) \longmapsto (f^{-1}[\mathcal{U}_0], f^{-1}(\mathcal{U}_0), \dots, f^{-1}[\mathcal{U}_n], f^{-1}(\mathcal{U}_n)),$

Topological games as functors

Theorem

If X is a $T_{3\frac{1}{2}}$ space, then

- $A \uparrow G_1(\Omega, \Omega)$ over $X \iff A \uparrow G_1(\Omega_{\bar{0}}, \Omega_{\bar{0}})$ over $C_p(X)$ (M. Scheepers, 1997)
- B↑G₁(Ω, Ω) over X ⇔ B↑G₁(Ω₀, Ω₀) over C_p(X) (M. Scheepers, 2014)

Topological games as functors

Theorem

If X is a $T_{3\frac{1}{5}}$ space, then

- $A \uparrow G_1(\Omega, \Omega)$ over $X \iff A \uparrow G_1(\Omega_{\bar{0}}, \Omega_{\bar{0}})$ over $C_p(X)$ (M. Scheepers, 1997)
- B↑G₁(Ω, Ω) over X ⇔ B↑G₁(Ω₀, Ω₀) over C_p(X) (M. Scheepers, 2014)

Theorem (D., P. Szeptycki, W. Tholen – 202?)

There are two natural transformations from Tight \circ C to Cover that, together, translate winning strategies of ALICE and BOB in both directions.

Topological games as functors

Theorem

If X is a $T_{3\frac{1}{2}}$ space, then

- $A \uparrow G_1(\Omega, \Omega)$ over $X \iff A \uparrow G_1(\Omega_{\bar{0}}, \Omega_{\bar{0}})$ over $C_p(X)$ (M. Scheepers, 1997)
- B↑G₁(Ω, Ω) over X ⇔ B↑G₁(Ω₀, Ω₀) over C_p(X) (M. Scheepers, 2014)

Theorem (D., P. Szeptycki, W. Tholen – 202?)

There are two natural transformations from Tight \circ C to Cover that, together, translate winning strategies of ALICE and BOB in both directions.

Where C: $\mathsf{Top}^{\mathsf{op}} \to \mathsf{Top}_*$ is s.t.

- on objects, $CX = (C_p(X), \overline{0})$,
- on morphisms, for $f: X \to Y$ continuous,

$$(\mathsf{C}_{\mathsf{p}}(Y),\bar{\mathsf{0}}) \xrightarrow{\mathrm{C}f} (\mathsf{C}_{\mathsf{p}}(X),\bar{\mathsf{0}})$$
$$\varphi \longmapsto \varphi \circ f.$$

20 / 35

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Functorial games Metrical games Arboreal games

Table of Contents

2 Game morphisms

Incarnations

- Functorial games
- Metrical games
- Arboreal games

Functorial games Metrical games Arboreal games

Functorial games

Consider $\mathbf{Set}^{\mathbb{N}^{op}}$:

<ロ><□><一><一><一><一><一><一><一><一><一><一><一><一><1><1><1><1><1><1><1><1><1</1></ti>

Functorial games

Consider $\mathbf{Set}^{\mathbb{N}^{op}}$:

• objects are inverse systems of sets T_n with connecting maps $\Gamma_m^n : T_n \to T_m$ for all $n \ge m$ in \mathbb{N} ;

Infinite games Game morphisms Incarnations Metrical games Arboreal games

Functorial games

Consider $\mathbf{Set}^{\mathbb{N}^{op}}$:

- objects are inverse systems of sets T_n with connecting maps $\Gamma_m^n: T_n \to T_m$ for all $n \ge m$ in \mathbb{N} ;
- morphisms are natural transformations $T \xrightarrow{f} T'$.

Functorial games

Consider $\mathbf{Set}^{\mathbb{N}^{op}}$:

- objects are inverse systems of sets T_n with connecting maps $\Gamma_m^n: T_n \to T_m$ for all $n \ge m$ in \mathbb{N} ;
- morphisms are natural transformations $T \xrightarrow{f} T'$.

Let $\text{Epi}(\mathbf{Set})^{\mathbb{N}^{op}}$ be the full subcategory of $\mathbf{Set}^{\mathbb{N}^{op}}$ whose objects are inverse systems with surjective connecting maps.

Functorial games

Consider **Set**^{\mathbb{N}^{op}}:

• objects are inverse systems of sets T_n with connecting maps $\Gamma_m^n: T_n \to T_m$ for all $n \ge m$ in \mathbb{N} ;

• morphisms are natural transformations $T \xrightarrow{f} T'$. Let $\operatorname{Epi}(\operatorname{Set})^{\mathbb{N}^{\operatorname{op}}}$ be the full subcategory of $\operatorname{Set}^{\mathbb{N}^{\operatorname{op}}}$ whose objects are inverse systems with surjective connecting maps. Let $\operatorname{Fun}: \operatorname{Gme} \to \operatorname{Epi}(\operatorname{Set})^{\mathbb{N}^{\operatorname{op}}}$ be the functor such that $(\operatorname{Fun} T)_n = \{ t \in T : |t| = n + 1 \}$ and $\Gamma_m^n(t) = t \upharpoonright m + 1$.

Functorial games

Consider **Set**^{\mathbb{N}^{op}}:

- objects are inverse systems of sets T_n with connecting maps $\Gamma_m^n: T_n \to T_m$ for all $n \ge m$ in \mathbb{N} ;
- morphisms are natural transformations $T \xrightarrow{f} T'$. Let $\operatorname{Epi}(\operatorname{Set})^{\mathbb{N}^{\operatorname{op}}}$ be the full subcategory of $\operatorname{Set}^{\mathbb{N}^{\operatorname{op}}}$ whose objects are inverse systems with surjective connecting maps. Let $\operatorname{Fun}: \operatorname{Gme} \to \operatorname{Epi}(\operatorname{Set})^{\mathbb{N}^{\operatorname{op}}}$ be the functor such that $(\operatorname{Fun} T)_n = \{ t \in T : |t| = n+1 \}$ and $\Gamma_m^n(t) = t \upharpoonright m+1$.

Theorem

 $\mathsf{Epi}(\mathbf{Set})^{\mathbb{N}^{\mathsf{op}}}$ is a full coreflective subcategory of $\mathbf{Set}^{\mathbb{N}^{\mathsf{op}}}$ and $\mathbf{Gme} \xrightarrow{\mathrm{Fun}} \mathsf{Epi}(\mathbf{Set})^{\mathbb{N}^{\mathsf{op}}}$ is an equivalence between categories.

Infinite games Game morphisms Incarnations Metrical games Arboreal games

The full inclusion functor $\mathsf{Epi}(\mathbf{Set})^{\mathbb{N}^{\mathsf{op}}} \hookrightarrow \mathbf{Set}^{\mathbb{N}^{\mathsf{op}}}$ has an easily described right adjoint:

Infinite games Game morphisms Incarnations Metrical games Arboreal games

The full inclusion functor $\operatorname{Epi}(\operatorname{Set})^{\mathbb{N}^{\operatorname{op}}} \hookrightarrow \operatorname{Set}^{\mathbb{N}^{\operatorname{op}}}$ has an easily described right adjoint: it sends $T \in \operatorname{Obj}(\operatorname{Set}^{\mathbb{N}^{\operatorname{op}}})$ to the system T^* with

$$T_n^* = \pi_n[\operatorname{Lim} T],$$

where $\operatorname{Lim} T$ is T's (projective) limit in **Set**:

$$\operatorname{Lim} T = \{ (t_n : n \in \mathbb{N}) : t_n \in T_n, \, \Gamma_m^n(t_n) = t_m \quad \forall n \ge m \in \mathbb{N} \} \\ \subseteq \prod_{n \in \mathbb{N}} T_n$$

and $\pi_n \colon \operatorname{Lim} T \to T_n$ is the projection of the *n*th coordinate.

Infinite games Incarnations

Functorial games

The forgetful functor $\mathbf{Game}_A \rightarrow \mathbf{Gme}$ (which forgets the payoff set) is topological.

The forgetful functor $\textbf{Game}_A \to \textbf{Gme}$ (which forgets the payoff set) is topological. Let Sub $(\textbf{Set}^{\mathbb{N}^{op}})$ be such that:

Infinite games Game morphisms Incarnations Metrical games Arboreal games

The forgetful functor $\textbf{Game}_A \to \textbf{Gme}$ (which forgets the payoff set) is topological. Let Sub $(\textbf{Set}^{\mathbb{N}^{op}})$ be such that:

• objects are pairs (*T*, *A*) with $T \in \mathbf{Set}^{\mathbb{N}^{\mathsf{op}}}$ and $A \subseteq \operatorname{Lim} T$,
The forgetful functor $\textbf{Game}_A \rightarrow \textbf{Gme}$ (which forgets the payoff set) is topological. Let Sub $(\textbf{Set}^{\mathbb{N}^{op}})$ be such that:

- objects are pairs (T, A) with $T \in \mathbf{Set}^{\mathbb{N}^{\mathsf{op}}}$ and $A \subseteq \operatorname{Lim} T$,
- morphisms $(T, A) \rightarrow (T', A')$ are natural transformations $T \xrightarrow{f} T'$ such that $\operatorname{Lim} f[A] \subseteq A'$.

The forgetful functor $\textbf{Game}_A \rightarrow \textbf{Gme}$ (which forgets the payoff set) is topological. Let Sub $(\textbf{Set}^{\mathbb{N}^{op}})$ be such that:

- objects are pairs (T, A) with $T \in \mathbf{Set}^{\mathbb{N}^{\mathsf{op}}}$ and $A \subseteq \operatorname{Lim} T$,
- morphisms $(T, A) \rightarrow (T', A')$ are natural transformations $T \xrightarrow{f} T'$ such that $\operatorname{Lim} f[A] \subseteq A'$.

Then the forgetful functor Sub $(\mathbf{Set}^{\mathbb{N}^{op}}) \to \mathbf{Set}^{\mathbb{N}^{op}}$ is also topological.

The forgetful functor $Game_A \rightarrow Gme$ (which forgets the payoff set) is topological.

Let $\mathsf{Sub}\left(\mathsf{Set}^{\mathbb{N}^{\mathsf{op}}}\right)$ be such that:

• objects are pairs (T, A) with $T \in \mathbf{Set}^{\mathbb{N}^{\mathsf{op}}}$ and $A \subseteq \operatorname{Lim} T$,

• morphisms $(T, A) \rightarrow (T', A')$ are natural transformations $T \xrightarrow{f} T'$ such that $\operatorname{Lim} f[A] \subseteq A'$.

Then the forgetful functor Sub $(\mathbf{Set}^{\mathbb{N}^{op}}) \to \mathbf{Set}^{\mathbb{N}^{op}}$ is also topological.

If we trade $\textbf{Set}^{\mathbb{N}^{op}}$ for $\mathsf{Epi}(\textbf{Set})^{\mathbb{N}^{op}}$, so that only surjective systems are being considered, we obtain the category

$$\mathsf{FunGame}:=\mathsf{Sub}\left(\mathsf{Epi}(\mathsf{Set})^{\mathbb{N}^{\mathsf{op}}}
ight)$$

whose objects we consider as "games in their *functorial* description".

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Infinite games Game morphisms Incarnations Metrical games Arboreal games

Indeed, the previous theorem has a "Sub-lifting"', as in

Infinite games Game morphisms Incarnations

Functorial games Metrical games Arboreal games

Metrical games

 Infinite games Game morphisms Incarnations

Functorial games Metrical games Arboreal games

Metrical games

Consider $CUMet_1$:

<ロト < 回 > < 言 > < 言 > こ > う < ご 26 / 35

Infinite games Game morphisms Incarnations

Functorial games Metrical games Arboreal games

Metrical games

Consider $CUMet_1$:

• objects are complete ultrametric space of diameter at most 1;

Infinite games Fun Game morphisms Met Incarnations Arb

Functorial games Metrical games Arboreal games

Metrical games

Consider $CUMet_1$:

- objects are complete ultrametric space of diameter at most 1;
- morphisms $(X, d) \xrightarrow{f} (X', d')$ are *short* (a.k.a. 1-Lipschitz) maps $f: X \to X'$.

Infinite games Fu Game morphisms Mo Incarnations Ar

Functorial games Metrical games Arboreal games

Metrical games

Consider $CUMet_1$:

- objects are complete ultrametric space of diameter at most 1;
- morphisms (X, d) → (X', d') are short (a.k.a. 1-Lipschitz) maps f: X → X'.

Let **SeqSpace** be the full subcategory of **CUMet**₁ whose objects are spaces (X, d) such that the image of d is contained in $\{0\} \cup \left\{\frac{1}{n+1} : n \in \mathbb{N}\right\}.$

Consider $\operatorname{Run}\colon \textbf{Gme}\to \textbf{SeqSpace}$ as the functor such that

Consider $\operatorname{Run}\colon \textbf{Gme}\to \textbf{SeqSpace}$ as the functor such that

• on objects, $\operatorname{Run} T = (\operatorname{Run}(T), d_T)$, where

$$d_T(R,R') = \begin{cases} rac{1}{\Delta(R,R')+1} & \text{if } R \neq R', \\ 0 & \text{otherwise.} \end{cases}$$

Consider $\operatorname{Run}\colon \textbf{Gme}\to \textbf{SeqSpace}$ as the functor such that

• on objects, $\operatorname{Run} T = (\operatorname{Run}(T), d_T)$, where

$$d_T(R,R') = \begin{cases} rac{1}{\Delta(R,R')+1} & \text{if } R \neq R', \\ 0 & \text{otherwise.} \end{cases}$$

• on morphisms, $\operatorname{Run} f = \overline{f}$.

Infinite games Game morphisms Incarnations Functorial games Arboreal games

Consider $\operatorname{Run}\colon \textbf{Gme}\to \textbf{SeqSpace}$ as the functor such that

• on objects, $\operatorname{Run} T = (\operatorname{Run}(T), d_T)$, where

$$d_T(R,R') = \begin{cases} rac{1}{\Delta(R,R')+1} & \text{if } R
eq R', \\ 0 & \text{otherwise.} \end{cases}$$

• on morphisms, $\operatorname{Run} f = \overline{f}$.

Theorem

SeqSpace is a full coreflective subcategory of $CUMet_1$ and $Gme \xrightarrow{Run} SeqSpace$ is an equivalence between categories.

Infinite games Functorial games Game morphisms Metrical games Incarnations Arboreal games

Let $Sub(CUMet_1)$ be such that:

Infinite games Game morphisms Incarnations Functorial games Metrical games

Let $Sub(CUMet_1)$ be such that:

• objects are pairs (X, A) with $X \in \mathbf{CUMet}_1$ and $A \subseteq X$,

Let Sub (**CUMet**₁) be such that:

- objects are pairs (X, A) with $X \in \mathbf{CUMet}_1$ and $A \subseteq X$,
- morphisms $(X, A) \to (X', A')$ are short maps $X \xrightarrow{f} X'$ such that $f[A] \subseteq A'$.

Let Sub (**CUMet**₁) be such that:

- objects are pairs (X, A) with $X \in \mathbf{CUMet}_1$ and $A \subseteq X$,
- morphisms $(X, A) \rightarrow (X', A')$ are short maps $X \xrightarrow{f} X'$ such that $f[A] \subseteq A'$.

Then the forgetful functor $\mathsf{Sub}(\mathsf{CUMet}_1) \to \mathsf{CUMet}_1$ is, again, topological.

Let $Sub(CUMet_1)$ be such that:

- objects are pairs (X, A) with $X \in \mathbf{CUMet}_1$ and $A \subseteq X$,
- morphisms $(X, A) \rightarrow (X', A')$ are short maps $X \xrightarrow{f} X'$ such that $f[A] \subseteq A'$.

Then the forgetful functor $\mathsf{Sub}(\mathsf{CUMet}_1) \to \mathsf{CUMet}_1$ is, again, topological.

If we trade **CUMet**₁ for **SeqSpace**, so that only spaces with distance function ranging over $\{0\} \cup \left\{\frac{1}{n+1} : n \in \mathbb{N}\right\}$, we obtain the category

MetGame := Sub (SeqSpace)

whose objects we consider as "games in their metrical description".

Infinite games Functorial games Game morphisms Metrical games Incarnations Arboreal games

Indeed, the previous theorem also has a "Sub-lifting"', as in

Arboreal games

Arboreal games

Theorem (D., P. Szeptycki, W. Tholen – 202?)

Suppose C is either Gme, $Game_A$ or $Game_B$. Then:

- C is complete and co-complete.
- C is cartesian closed.
- C is not locally cartesian closed.
- C has orthogonal factorization systems.
- C is regular.
- C is extensive.
- C has no classifier of strong subobjects.
- C has a weak classifier of strong partial maps.

Theorem (D., P. Szeptycki, W. Tholen – 202?)

Suppose C is either Gme, $Game_A$ or $Game_B$. Then:

- C is complete and co-complete.
- C is cartesian closed.
- C is not locally cartesian closed.
- C has orthogonal factorization systems.
- C is regular.
- C is extensive.
- C has no classifier of strong subobjects.
- C has a weak classifier of strong partial maps.

References

- M. Brandenburg. Algebraic games—playing with groups and rings. International Journal of Game Theory, 47(2):417–450, 2018.
- M. Duzi, P. Szeptycki and W. Tholen. Infinitely ludic categories. ???, 202?.
- V. Ferenczi and C. Rosendal. Banach spaces without minimal subspaces. *Journal of Functional Analysis*, 257(1):149–193, 2009.
- J. Oxtoby. The Banach-Mazur game and Banach category theorem. Contrib. to Theory Games. v. 3, p. 159–163, 1957.
- M. Scheepers. Combinatorics of open covers (III): Games, $C_p(X)$. Fund. Math., 152(3):231–254, 1997.
- M. Scheepers. Remarks on countable tightness. *Topology Appl.*, 161(1):407–432, 2014.

Infinite games	Functorial games
Game morphisms	Metrical games
Incarnations	Arboreal games

Merci!