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Infinite games
Game morphisms

Incarnations

Intuitively, we’re interested in games that:

are between two players (Alice and Bob);

are “turn-based” (Alice starts);

two players compete;

with no draws;

of “perfect information”;

infinite (countable) runs.
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Infinite games
Game morphisms

Incarnations

Formally:

Definition

For a set M, a set T ⊆
⋃

n∈NMn of finite sequences in M is a
decision tree over M if

(I) If t ∈ T , then t ↾ k ∈ T for all k ≤ |t|;

(II) For all t ∈ T there is an x ∈ M such that t⌢x ∈ T ;

We say that T is a decision tree if T is a decision tree over some
set M.
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We say that T is a decision tree if T is a decision tree over some
set M.

If t = (x0, . . . , xn−1), then

|t| = n

4 / 35



Infinite games
Game morphisms

Incarnations

Formally:

Definition

For a set M, a set T ⊆
⋃

n∈NMn of finite sequences in M is a
decision tree over M if

(I) If t ∈ T , then t ↾ k ∈ T for all k ≤ |t|;

(II) For all t ∈ T there is an x ∈ M such that t⌢x ∈ T ;

We say that T is a decision tree if T is a decision tree over some
set M.

If t = (x0, . . . , xn) e k ≤ n, then

t ↾ k = (x0, . . . , xk−1)

4 / 35



Infinite games
Game morphisms

Incarnations

Formally:

Definition

For a set M, a set T ⊆
⋃

n∈NMn of finite sequences in M is a
decision tree over M if

(I) If t ∈ T , then t ↾ k ∈ T for all k ≤ |t|;
(II) For all t ∈ T there is an x ∈ M such that t⌢x ∈ T ;

We say that T is a decision tree if T is a decision tree over some
set M.

4 / 35



Infinite games
Game morphisms

Incarnations

Formally:

Definition

For a set M, a set T ⊆
⋃

n∈NMn of finite sequences in M is a
decision tree over M if

(I) If t ∈ T , then t ↾ k ∈ T for all k ≤ |t|;
(II) For all t ∈ T there is an x ∈ M such that t⌢x ∈ T ;

We say that T is a decision tree if T is a decision tree over some
set M.

If t = (x0, . . . , xn), then

t⌢x = (x0, . . . , xn, x)

4 / 35



Infinite games
Game morphisms

Incarnations

Formally:

Definition

For a set M, a set T ⊆
⋃

n∈NMn of finite sequences in M is a
decision tree over M if

(I) If t ∈ T , then t ↾ k ∈ T for all k ≤ |t|;
(II) For all t ∈ T there is an x ∈ M such that t⌢x ∈ T ;

We say that T is a decision tree if T is a decision tree over some
set M.

4 / 35



Infinite games
Game morphisms

Incarnations

Formally:

Definition

For a set M, a set T ⊆
⋃

n∈NMn of finite sequences in M is a
decision tree over M if

(I) If t ∈ T , then t ↾ k ∈ T for all k ≤ |t|;
(II) For all t ∈ T there is an x ∈ M such that t⌢x ∈ T ;

We say that T is a decision tree if T is a decision tree over some
set M.

Definition

A pair G = (T ,A) is an infinite game if T is a decision tree over a
set M and

A ⊆ Run(T ) =
{
R ∈ MN : R ↾ n ∈ T for every n ∈ N

}
.

The set A is called the payoff set of G . 4 / 35
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Game morphisms

Incarnations

All of our games will be infinite in this talk, so we will omit the
word “infinite” from now on.
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Infinite games
Game morphisms

Incarnations

Example (Banach-Mazur game)

Given a non-empty space (X , τ), consider the following game:

At the first inning:

Alice chooses a non-empty open set U0;
Bob responds with a non-empty open set V0 ⊆ U0.

At the following nth innings:

Alice chooses a non-empty open set Un contained in the
open set Vn−1 chosen by Bob in the previous inning;
Bob responds with a non-empty open set Vn ⊆ Un.

A =

{
R ∈ (τ \ {∅})N :

⋂
n∈N

R(2n + 1) = ∅

}
.
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Infinite games
Game morphisms

Incarnations

Example (World’s most boring game)

(∅, ∅)

(by vacuity, with M = ∅)
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Infinite games
Game morphisms

Incarnations

Motivation

We frequently find properties like

“It is possible to construct a sequence s = (an : n ∈ N) such that P(s).”

The concepts of games and strategies are then used to define
stronger properties of the kind:

“It is possible to construct a sequence s = (an : n ∈ N) such that P(s),

even with someone trying to hinder that process along the way.”
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Infinite games
Game morphisms

Incarnations

Motivation

Theorem (J. Oxtoby, 1957)

A space X is Baire if, and only if, Alice has no winning strategy
in the Banach-Mazur game over X .

Games have also been introduced and studied to classify Banach
spaces in functional analysis (as seen in, e.g., Ferenczi and
Rosendal, Banach spaces without minimal subspaces, 2009), to
explore properties of algebraic structures (as seen in, e.g.,
Brandenburg, Algebraic games—playing with groups and rings,
2018), and in mathematical logic with the Axiom of Determinacy.
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Infinite games
Game morphisms

Incarnations

Definition

We say that a map f : T → T ′ between decision trees T and T ′ is
chronological if:

(a) For all t ∈ T , |f (t)| = |t|;
(b) For every t ∈ T and k ≤ |t|, f (t ↾ k) = f (t) ↾ k.

Then, if f : T → T ′ is chronological and R ∈ RunT , there is a
unique f (R) ∈ RunT ′ such that f (R ↾ n) = f (R) ↾ n for all n ∈ N.
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Infinite games
Game morphisms

Incarnations

Definition (A-morphism)

An A-morphism G
f→ G between games G = (T ,A) and

G ′ = (T ′,A′) is a chronological map f : T → T ′ such that for
every run R ∈ A in the game G , f (R) ∈ A′.
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Infinite games
Game morphisms

Incarnations

Definition (B-morphism)

A B-morphism G
f→ G between games G = (T ,A) and

G ′ = (T ′,A′) is a chronological map f : T → T ′ such that for
every run R /∈ A in the game G , f (R) /∈ A′.
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Infinite games
Game morphisms

Incarnations

Gme:
objects are decision trees,
morphisms are chronological maps.

GameA:
objects are games,
morphisms are A-morphisms.

GameB:
objects are games,
morphisms are B-morphisms.

Proposition

The categories GameA and GameB are isomorphic.
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Infinite games
Game morphisms

Incarnations

Why are these categorical frameworks appropriate?
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Infinite games
Game morphisms

Incarnations

Properties

Theorem (D., P. Szeptycki, W. Tholen – 202?)

Suppose C is either Gme, GameA, GameB. Then:

C is complete and co-complete.

C is cartesian closed.

C is not locally cartesian closed.

C has orthogonal factorization systems.

C is regular.

C is extensive.

C has no classifier of strong subobjects.

C has a weak classifier of strong partial maps.

17 / 35



Infinite games
Game morphisms

Incarnations

Properties

Theorem (D., P. Szeptycki, W. Tholen – 202?)

Suppose C is either Gme, GameA, GameB. Then:

C is complete and co-complete.

C is cartesian closed.

C is not locally cartesian closed.

C has orthogonal factorization systems.

C is regular.

C is extensive.

C has no classifier of strong subobjects.

C has a weak classifier of strong partial maps.

17 / 35



Infinite games
Game morphisms

Incarnations

Properties

Theorem (D., P. Szeptycki, W. Tholen – 202?)

Suppose C is either Gme, GameA, GameB. Then:

C is complete and co-complete.

C is cartesian closed.

C is not locally cartesian closed.

C has orthogonal factorization systems.

C is regular.

C is extensive.

C has no classifier of strong subobjects.

C has a weak classifier of strong partial maps.

17 / 35



Infinite games
Game morphisms

Incarnations

Properties

Theorem (D., P. Szeptycki, W. Tholen – 202?)

Suppose C is either Gme, GameA, GameB. Then:

C is complete and co-complete.

C is cartesian closed.

C is not locally cartesian closed.

C has orthogonal factorization systems.

C is regular.

C is extensive.

C has no classifier of strong subobjects.

C has a weak classifier of strong partial maps.

17 / 35



Infinite games
Game morphisms

Incarnations

Properties

Theorem (D., P. Szeptycki, W. Tholen – 202?)

Suppose C is either Gme, GameA, GameB. Then:

C is complete and co-complete.

C is cartesian closed.

C is not locally cartesian closed.

C has orthogonal factorization systems.

C is regular.

C is extensive.

C has no classifier of strong subobjects.

C has a weak classifier of strong partial maps.

17 / 35



Infinite games
Game morphisms

Incarnations

Properties

Theorem (D., P. Szeptycki, W. Tholen – 202?)

Suppose C is either Gme, GameA, GameB. Then:

C is complete and co-complete.

C is cartesian closed.

C is not locally cartesian closed.

C has orthogonal factorization systems.

C is regular.

C is extensive.

C has no classifier of strong subobjects.

C has a weak classifier of strong partial maps.

17 / 35



Infinite games
Game morphisms

Incarnations

Properties

Theorem (D., P. Szeptycki, W. Tholen – 202?)

Suppose C is either Gme, GameA, GameB. Then:

C is complete and co-complete.

C is cartesian closed.

C is not locally cartesian closed.

C has orthogonal factorization systems.

C is regular.

C is extensive.

C has no classifier of strong subobjects.

C has a weak classifier of strong partial maps.

17 / 35



Infinite games
Game morphisms

Incarnations

Properties

Theorem (D., P. Szeptycki, W. Tholen – 202?)

Suppose C is either Gme, GameA, GameB. Then:

C is complete and co-complete.

C is cartesian closed.

C is not locally cartesian closed.

C has orthogonal factorization systems.

C is regular.

C is extensive.

C has no classifier of strong subobjects.

C has a weak classifier of strong partial maps.

17 / 35



Infinite games
Game morphisms

Incarnations

Properties

Theorem (D., P. Szeptycki, W. Tholen – 202?)

Suppose C is either Gme, GameA, GameB. Then:

C is complete and co-complete.

C is cartesian closed.

C is not locally cartesian closed.

C has orthogonal factorization systems.

C is regular.

C is extensive.

C has no classifier of strong subobjects.

C has a weak classifier of strong partial maps.

17 / 35



Infinite games
Game morphisms

Incarnations

Topological games as functors

Example (G1(Ωx ,Ωx ))

Given a space X and a fixed x ∈ X , consider the game: in each inning n ∈ ω,

Alice chooses An ⊂ X such that x ∈ An;

Bob responds with an ∈ An.

Bob wins the run (A0, a0, . . . ,An, an, . . .) if, for every k ∈ N, x ∈ { an : n ≥ k }
(Alice wins otherwise).

Example (G1(Ω,Ω))

Given a space X , consider the game: in each inning n ∈ ω,

Alice chooses an ω-cover Un, that is, an open cover Un such that

∀F ∈ [X ]<ω∃U ∈ Un(F ⊂ U),

Bob responds with Un ∈ Un.

Bob wins the run (U0,U0, . . . ,Un,Un, . . .) if, for every k ∈ ω, {Un : n ≥ k } is an
ω-cover (Alice wins otherwise).

18 / 35
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Infinite games
Game morphisms

Incarnations

Topological games as functors

Example (G1(Ωx ,Ωx ))

Let Tight : Top∗ → GameB be such that

On objects, Tight(X , x) = G1(Ωx ,Ωx ) over X .

On morphisms, given a continuous f : X → Y such that f (x) = y , let

Tight(X , x) Tight(Y , y)

(A0, a0, . . . ,An, an) (f [A0], f (a0), . . . , f [An], f (an)).

Tightf

Example (G1(Ω,Ω))

Let Cover : Topop → GameB be such that:

On objects, CoverX = G1(Ω,Ω) over X .

On morphisms, for Y
f→ X in Topop, let

CoverY CoverX

(U0,U0, . . . ,Un,Un)
(
f −1[U0], f −1(U0), . . . , f −1[Un], f −1(Un)

)
,

Coverf
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Infinite games
Game morphisms

Incarnations

Topological games as functors

Theorem

If X is a T3 1
2
space, then

A ↑G1(Ω,Ω) over X ⇐⇒ A ↑G1(Ω0̄,Ω0̄) over Cp(X )
(M. Scheepers, 1997)

B ↑G1(Ω,Ω) over X ⇐⇒ B ↑G1(Ω0̄,Ω0̄) over Cp(X )
(M. Scheepers, 2014)

Theorem (D., P. Szeptycki, W. Tholen – 202?)

There are two natural transformations from Tight ◦ C to Cover that, together,
translate winning strategies of Alice and Bob in both directions.

Where C : Topop → Top∗ is s.t.

on objects, CX = (Cp(X ), 0̄),

on morphisms, for f : X → Y continuous,

(Cp(Y ), 0̄) (Cp(X ), 0̄)

φ φ ◦ f .

Cf
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Functorial games

Consider SetN
op
:

objects are inverse systems of sets Tn with connecting maps
Γnm : Tn → Tm for all n ≥ m in N;

morphisms are natural transformations T
f→ T ′.

Let Epi(Set)N
op

be the full subcategory of SetN
op

whose objects
are inverse systems with surjective connecting maps.
Let Fun : Gme → Epi(Set)N

op
be the functor such that

(FunT )n = { t ∈ T : |t| = n + 1 } and Γnm(t) = t ↾m + 1.

Theorem

Epi(Set)N
op

is a full coreflective subcategory of SetN
op

and

Gme
Fun→ Epi(Set)N

op
is an equivalence between categories.
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The full inclusion functor Epi(Set)N
op
↪→ SetN

op
has an easily

described right adjoint:

it sends T ∈ Obj(SetN
op
) to the system

T ∗ with
T ∗
n = πn[LimT ],

where LimT is T ’s (projective) limit in Set:

LimT = { (tn : n ∈ N) : tn ∈ Tn, Γ
n
m(tn) = tm ∀n ≥ m ∈ N }

⊆
∏
n∈N

Tn

and πn : LimT → Tn is the projection of the nth coordinate.
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The forgetful functor GameA → Gme (which forgets the payoff
set) is topological.

Let Sub
(
SetN

op)
be such that:

objects are pairs (T ,A) with T ∈ SetN
op

and A ⊆ LimT ,

morphisms (T ,A) → (T ′,A′) are natural transformations

T
f→ T ′ such that Limf [A] ⊆ A′.

Then the forgetful functor Sub
(
SetN

op) → SetN
op

is also
topological.
If we trade SetN

op
for Epi(Set)N

op
, so that only surjective systems

are being considered, we obtain the category

FunGame := Sub
(
Epi(Set)N

op
)

whose objects we consider as “games in their functorial
description”.
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Indeed, the previous theorem has a “Sub-lifting”’, as in

GameA
≃ // FunGame

⊣inc
��

(T ∗,A)

Sub
(
SetN

op)
UU

(T ,A),
_

OO
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Metrical games

Consider CUMet1:

objects are complete ultrametric space of diameter at most 1;

morphisms (X , d)
f→ (X ′, d ′) are short (a.k.a. 1-Lipschitz)

maps f : X → X ′.

Let SeqSpace be the full subcategory of CUMet1 whose objects
are spaces (X , d) such that the image of d is contained in

{0} ∪
{

1
n+1 : n ∈ N

}
.
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Consider Run : Gme → SeqSpace as the functor such that

on objects, RunT = (Run(T ), dT ), where

dT (R,R
′) =

{
1

∆(R,R′)+1 if R ̸= R ′,

0 otherwise.

on morphisms, Runf = f .

Theorem

SeqSpace is a full coreflective subcategory of CUMet1 and

Gme
Run→ SeqSpace is an equivalence between categories.
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Let Sub (CUMet1) be such that:

objects are pairs (X ,A) with X ∈ CUMet1 and A ⊆ X ,

morphisms (X ,A) → (X ′,A′) are short maps X
f→ X ′ such

that f [A] ⊆ A′.

Then the forgetful functor Sub (CUMet1) → CUMet1 is, again,
topological.
If we trade CUMet1 for SeqSpace, so that only spaces with

distance function ranging over {0} ∪
{

1
n+1 : n ∈ N

}
, we obtain

the category
MetGame := Sub (SeqSpace)

whose objects we consider as “games in their metrical description”.
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Indeed, the previous theorem also has a “Sub-lifting”’, as in

GameA
≃ //MetGame

⊣inc
��

Sub (CUMet1)

VV
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Gme

SeqSpace PrTree Epi(Set)N
op

CUMet1 Tree SetN
op

Set

≃
≃

≃

⊣

≃

⊣ Pr ⊣ Pr

Forget

≃

Branch Lim

⊥

Free

⊥

∆

Free ⊣
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GameB

GameA

MetGame ArbGame FunGame

Sub (CUMet1) Sub (Tree) Sub
(
SetN

op)
CUMet1 Tree SetN

op

Set

∼=

≃ ≃
≃

⊣

≃

⊣
Pr ⊣

Pr

⊣ ⊣

≃

⊣ ⊣ ⊣ ⊣

Forget

≃

Branch Lim

⊥

Free

⊥

∆

Free
⊣
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Theorem (D., P. Szeptycki, W. Tholen – 202?)

Suppose C is either Gme, GameA or GameB. Then:

C is complete and co-complete.

C is cartesian closed.

C is not locally cartesian closed.

C has orthogonal factorization systems.

C is regular.

C is extensive.

C has no classifier of strong subobjects.

C has a weak classifier of strong partial maps.
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