Cartesian cubical model categories

Steve Awodey

CT 2023
Louvaine-la-Neuve

Background

- There has recently been work on cubical homotopy theory.
- It is related to homotopy type theory which is being used for computerized proof checking.
- The cubes used for this are closed under finite products.
- This model of homotopy was also proposed by Lawvere who stressed the tinyness of the geometric interval \mathbb{I}.
- The tinyness of \mathbb{I} is also used in the current theory.

Cartesian cubical sets

The Cartesian cube category \square is the opposite of the category \mathbb{B} of finite, strictly bipointed sets,

$$
\square:=\mathbb{B}^{o p} .
$$

Thus \square is the Lawvere theory of bipointed objects: the free finite product category with a bipointed object [0] $\rightrightarrows[1]$.

The Cartesian cubical sets is the category of presheaves on \square,

$$
\mathrm{cSet}=\text { Set }^{\square \mathrm{op}} .
$$

Thus cSet consists of all covariant functors $\mathbb{B} \rightarrow$ Set.

The tiny interval \mathbb{I}

The 1-cube [1] represents the cubical set that forgets the points,

$$
\mathbb{I}:=\mathbb{B}([1],-): \mathbb{B} \longrightarrow \text { Set . }
$$

It generates cSet under finite products and colimits.
The two points $1 \rightrightarrows \mathbb{I}$ have a trivial intersection.

This is the universal interval in a topos.
It provides a good cylinder $X+X \mapsto \mathbb{I} \times X$ for every object X, and a good path object $X^{\mathbb{I}} \rightarrow X \times X$ for every fibrant object X.

The main result

Theorem (A. 2023)
There is a Quillen model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ on cSet where:

- the cofibrations \mathcal{C} are an axiomatized class of monos,
- the fibrations \mathcal{F} are those $f: X \rightarrow Y$ for which

$$
\left(f^{\mathbb{I}} \times \mathbb{I}, \text { eval }\right): X^{\mathbb{I}} \times \mathbb{I} \longrightarrow\left(Y^{\mathbb{I}} \times \mathbb{I}\right) \times_{Y} X
$$

lifts on the right against all cofibrations,

- the weak equivalences \mathcal{W} are those $f: X \rightarrow Y$ for which $K^{f}: K^{Y} \longrightarrow K^{X}$ is bijective under π_{0} whenever K is fibrant.

The construction of $(\mathcal{C}, \mathcal{W}, \mathcal{F})$

The proof of the theorem

- uses ideas from type theory,
- including the univalence axiom of Voevodsky,
- is axiomatized in terms of:

1. a classifier $\Phi \hookrightarrow \Omega$ for the cofibrations,
2. a tiny interval $1 \rightrightarrows \mathbb{I}$,
3. a universal small map $\dot{\mathrm{V}} \rightarrow \mathrm{V}$,

- applies in several different cases.

$(\mathcal{C}, \mathcal{W}, \mathcal{F})$ from (Φ, \mathbb{I}, \vee)

The model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ is constructed in 3 steps:

1. Φ is used to determine a wfs ($\mathcal{C}, \mathrm{TFib})$,
2. \mathbb{I} is used to determine a wfs $(\mathrm{TCof}, \mathcal{F})$ with $\mathrm{TFib} \subseteq \mathcal{F}$,
3. V is used to show 3 -for- 2 for $\mathcal{W}:=\mathrm{TFib} \circ \mathrm{TCof}$.

1. The cofibration wfs (\mathcal{C}, TFib)

The cofibrations \mathcal{C} are the monos $C^{\prime} \longmapsto C$ classified by $t: 1 \mapsto \Phi$.

The trivial fibrations TFib are the maps $T \rightarrow X$ that lift against the cofibrations.

$$
\mathcal{C}^{\pitchfork}=: \text { TFib }
$$

1. The cofibration wfs (\mathcal{C}, TFib)

Proposition

(C, TFib) is an algebraic weak factorization system.
Proof.
The classifier $t: 1 \hookrightarrow \Phi$ determines a fibered polynomial monad

$$
P_{t}=\Phi_{!} t_{*}: \mathrm{cSet} \longrightarrow \mathrm{cSet}
$$

the algebras for which in cSet/ x are the trivial fibrations.

2. The fibration wfs (TCof, $\mathcal{F})$

The fibrations \mathcal{F} are defined in terms of the trivial fibrations by

$$
(f: F \rightarrow X) \in \mathcal{F} \quad \text { iff } \quad(\delta \Rightarrow f) \in \mathrm{TFib}
$$

where $\delta \Rightarrow f$ is the gap map with $\delta: 1 \longrightarrow \mathbb{I}$ in $\mathrm{cSet} / \mathbb{I}$.

The trivial cofibrations TCof are the maps that lift against \mathcal{F}.

$$
\text { TCof }:={ }^{\pitchfork \mathcal{F}}
$$

3. The weak equivalences \mathcal{W}

Let $\mathcal{W}:=$ TFib \circ TCof.
Proposition
$(\mathcal{C}, \mathrm{TFib})$ and $(\mathrm{TCof}, \mathcal{F})$ form a Barton premodel structure.

$$
\begin{aligned}
\text { TCof } & =\mathcal{W} \cap \mathcal{C} \\
\text { TFib } & =\mathcal{W} \cap \mathcal{F}
\end{aligned}
$$

Corollary
If \mathcal{W} satisfies 3-for-2, then $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ is a $Q M S$.

3. The weak equivalences \mathcal{W}

We use a universal fibration $\dot{U} \rightarrow \mathrm{U}$ to show 3-for-2 for \mathcal{W}.
(i) there is a universal small map $\dot{V} \rightarrow V$
(ii) U is the classifying type for fibration structures on $\dot{\mathrm{V}} \rightarrow \mathrm{V}$
(iii) $\dot{U} \rightarrow U$ is univalent
(iv) U is fibrant
(v) fibrant U implies $\mathbf{3}$-for- $\mathbf{2}$ for \mathcal{W}

The idea of getting a QMS from univalence is due to Sattler.

3(i). The universal small map $\dot{V} \rightarrow \mathrm{~V}$

The category of elements functor $\int_{\mathbb{C}}$

always has a right adjoint nerve functor $\nu_{\mathbb{C}}$.
Proposition
For any small map $Y \rightarrow X$ in $\widehat{\mathbb{C}}$ there is a canonical pullback

since set ${ }^{\mathrm{op}} \longrightarrow$ set $^{\mathrm{op}}$ classifies small discrete fibrations in Cat.

3(i). The universal small map $\dot{\mathrm{V}} \rightarrow \mathrm{V}$

The category of elements functor $\int_{\mathbb{C}}$

always has a right adjoint nerve functor $\nu_{\mathbb{C}}$.
Proposition
For any small map $Y \longrightarrow X$ in $\widehat{\mathbb{C}}$ there is a canonical pullback

since set $^{\mathrm{Op}} \rightarrow$ set $^{\mathrm{op}}$ classifies small discrete fibrations in Cat.

3(ii). The universal fibration $\dot{U} \rightarrow U$

For any $A \rightarrow X$ in cSet there is a classifying type $\operatorname{Fib}(A) \rightarrow X$, the sections of which correspond to fibration structures.

3(ii). The universal fibration $\dot{U} \rightarrow U$

The construction of $\operatorname{Fib}(A) \longrightarrow X$ is stable under pullback.

$$
f^{*} \operatorname{Fib}(A) \cong \operatorname{Fib}\left(f^{*} A\right)
$$

This uses the root functor $(-)^{\mathbb{I}} \dashv(-)_{\mathbb{I}}$.

3(ii). The universal fibration $\dot{U} \rightarrow U$

Let U be the type of fibration structures on $\dot{\mathrm{V}} \rightarrow \mathrm{V}$

then define $\dot{U} \rightarrow U$ by pulling back.

3(ii). The universal fibration $\dot{U} \rightarrow U$

Since $\operatorname{Fib}(-)$ is stable, the lower square is a pullback.

3(ii). The universal fibration $\dot{U} \rightarrow U$

Since $\operatorname{Fib}(-)$ is stable the lower square is also a pullback.

But since $U=\operatorname{Fib}(\dot{\mathrm{V}})$ there is a section of $\operatorname{Fib}(\dot{\mathrm{U}})$. So $\dot{U} \rightarrow U$ is a fibration.

3(ii). The universal fibration $\dot{U} \rightarrow U$

A fibration structure α on a small map $A \rightarrow X$ determines a factorization (a, α) of its classifying map $a: X \rightarrow \mathrm{~V}$.

3(ii). The universal fibration $\dot{U} \rightarrow U$

A fibration structure α on a small map $A \rightarrow X$ determines a factorization (a, α) of its classifying map $a: X \rightarrow \mathrm{~V}$,

which classifies $A \rightarrow X$ as a fibration since $\operatorname{Fib}(\dot{\mathrm{V}})=\mathrm{U}$.

3(iii). $\dot{U} \rightarrow U$ is univalent

The universal fibration $\dot{U} \rightarrow U$ is univalent if the type

$$
\mathrm{Eq}_{B}=\Sigma_{B} \mathrm{Eq}(-, B) \longrightarrow \mathrm{U}
$$

of based equivalences is always a trivial fibration.

Remark
In HoTT this implies $(A=B) \simeq(A \simeq B)$.

3(iii). $\dot{U} \rightarrow \mathrm{U}$ is univalent

Unwinding ($*$) gives the equivalence extension property: weak equivalences extend along cofibrations $C^{\prime} \longmapsto C$.

3(iii). $\dot{U} \rightarrow \mathrm{U}$ is univalent

Proposition

The universal fibration $\dot{U} \rightarrow \mathrm{U}$ is univalent.

Voevodsky proved this classically for Kan fibrations in sSet.
Coquand gave a constructive proof in type theory for cSet.
We have generalized Coquand's proof to cartesian cubical sets.

3(iv). U is fibrant

Univalence of $\dot{U} \rightarrow U$ implies that U is fibrant.
Proposition
The universe U is fibrant.

Voevodsky proved this for Kan sSets using minimal fibrations.
Shulman proved it using 3-for-2 for \mathcal{W}.
Coquand proved it from univalence without 3-for-2 using Kan composition for cSets in type theory.

We give a general proof from univalence without using 3-for-2.

3(v). From fibrant U to 3-for-2

Finally, we can apply the following.
Proposition (Sattler)
\mathcal{W} satisfies 3-for-2 if fibrations extend along trivial cofibrations.

This is called the fibration extension property.

$3(v)$. From fibrant U to 3 -for- 2 for \mathcal{W}

Lemma
Given a universal fibration $\dot{U} \rightarrow \mathrm{U}$ the FEP holds if U is fibrant.

References

- S. Awodey, Cartesian cubical model categories, 2023.
- C. Cohen, et al., Cubical type theory: A constructive interpretation of the univalence axiom, 2016.
- C. Kapulkin and P. LeFanu Lumsdaine, The simplicial model of univalent foundations (after Voevodsky), 2018.
- C. Sattler, The equivalence extension property and model structures, 2017.
- M. Shulman, All ($\infty, 1$)-toposes have strict univalent universes, 2019.

Appendix: U is fibrant (sketch)

It suffices to show the following.
Proposition
Evaluation at the generic point $U^{\mathbb{I}} \longrightarrow \mathrm{U}$ is a trivial fibration.
Proof.
We need a diagonal filler for any cofibration c.

Appendix: U is fibrant (sketch)

Transposing by \mathbb{I} and using the classifying property of U gives the following equivalent problem.

Appendix: U is fibrant (sketch)

Apply the functor $(-) \times \mathbb{I}$ to the left face to get:

Appendix: U is fibrant (sketch)

Apply the functor $(-) \times \mathbb{I}$ to the left face to get:

There is a weak equivalence $e: A \xrightarrow{\sim} A_{0} \times \mathbb{I}$ to which we can apply the EEP.

Appendix: U is fibrant (sketch)

Apply the functor $(-) \times \mathbb{I}$ to the left face to get:

There is a weak equivalence $e: A \simeq A_{0} \times \mathbb{I}$ to which we can apply the EEP. This produces the required fibration $D \rightarrow Z \times \mathbb{I}$.

