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Background

• There has recently been work on cubical homotopy theory.

• It is related to homotopy type theory which is being used
for computerized proof checking.

• The cubes used for this are closed under finite products.

• This model of homotopy was also proposed by Lawvere who
stressed the tinyness of the geometric interval I.

• The tinyness of I is also used in the current theory.



Cartesian cubical sets

The Cartesian cube category □ is the opposite of the category B
of finite, strictly bipointed sets,

□ := Bop .

Thus □ is the Lawvere theory of bipointed objects: the free
finite product category with a bipointed object [0] ⇒ [1].

The Cartesian cubical sets is the category of presheaves on □,

cSet = Set□
op
.

Thus cSet consists of all covariant functors B → Set.



The tiny interval I

The 1-cube [1] represents the cubical set that forgets the points,

I := B([1],−) : B −→ Set .

It generates cSet under finite products and colimits.

The two points 1 ⇒ I have a trivial intersection.

0

��

// 1

��

1 // I

This is the universal interval in a topos.

It provides a good cylinder X + X ↣ I× X for every object X ,
and a good path object X I ↠ X × X for every fibrant object X .



The main result

Theorem (A. 2023)

There is a Quillen model structure (C,W,F) on cSet where:

• the cofibrations C are an axiomatized class of monos,

• the fibrations F are those f : X → Y for which

(f I × I, eval) : X I × I // (Y I × I)×Y X

lifts on the right against all cofibrations,

• the weak equivalences W are those f : X → Y for which
K f : KY // KX is bijective under π0 whenever K is fibrant.



The construction of (C,W ,F)

The proof of the theorem

• uses ideas from type theory,

• including the univalence axiom of Voevodsky,

• is axiomatized in terms of:

1. a classifier Φ ↪→ Ω for the cofibrations,
2. a tiny interval 1 ⇒ I,
3. a universal small map V̇ → V,

• applies in several different cases.



(C,W ,F) from (Φ, I,V)

The model structure (C,W,F) is constructed in 3 steps:

1. Φ is used to determine a wfs (C,TFib),
2. I is used to determine a wfs (TCof,F) with TFib ⊆ F ,

3. V is used to show 3-for-2 for W := TFib ◦ TCof.



1. The cofibration wfs (C,TFib)

The cofibrations C are the monos C ′ ↣ C classified by t : 1 ↣ Φ.

C ′
��

��

// 1��

t
��

// 1

⊤
��

C // Φ �
�

// Ω

The trivial fibrations TFib are the maps T ↠ X that lift against
the cofibrations.

C⋔ =: TFib

C ′
��

��

// T

���� ��

C //

>>

X



1. The cofibration wfs (C,TFib)

Proposition

(C,TFib) is an algebraic weak factorization system.

Proof.
The classifier t : 1 ↣ Φ determines a fibered polynomial monad

Pt = Φ!t∗ : cSet // cSet

the algebras for which in cSet/X are the trivial fibrations.



2. The fibration wfs (TCof,F)

The fibrations F are defined in terms of the trivial fibrations by

(f : F → X ) ∈ F iff (δ⇒ f ) ∈ TFib

where δ⇒ f is the gap map with δ : 1 // I in cSet/I.

F I

��

δ⇒f

  

// F

·

��

// F

f
��

X I X I // X

The trivial cofibrations TCof are the maps that lift against F .

TCof := ⋔F



3. The weak equivalences W

Let W := TFib ◦ TCof.

Proposition

(C,TFib) and (TCof,F) form a Barton premodel structure.

TCof = W ∩ C
TFib = W ∩F

Corollary

If W satisfies 3-for-2, then (C,W,F) is a QMS.



3. The weak equivalences W

We use a universal fibration U̇ ↠ U to show 3-for-2 for W.

(i) there is a universal small map V̇ → V

(ii) U is the classifying type for fibration structures on V̇ → V

(iii) U̇ ↠ U is univalent

(iv) U is fibrant

(v) fibrant U implies 3-for-2 for W

The idea of getting a QMS from univalence is due to Sattler.



3(i). The universal small map V̇ → V

The category of elements functor
∫
C∫

C : Ĉ
++

Cat : νCkk

always has a right adjoint nerve functor νC.

Proposition

For any small map Y → X in Ĉ there is a canonical pullback

Y

��

// νC ˙set
op

��

X // νC setop

since ˙set
op −→ setop classifies small discrete fibrations in Cat.



3(i). The universal small map V̇ → V
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always has a right adjoint nerve functor νC.
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For any small map Y −→ X in Ĉ there is a canonical pullback

Y

��

// νC ˙set
op

��

V̇

��

X // νC setop V

since ˙set
op → setop classifies small discrete fibrations in Cat.



3(ii). The universal fibration U̇ ↠ U

For any A → X in cSet there is a classifying type Fib(A) → X ,
the sections of which correspond to fibration structures.

A

����

Fib(A) // X
��



3(ii). The universal fibration U̇ ↠ U

The construction of Fib(A) // X is stable under pullback.

f ∗A

��

// A

��

f ∗Fib(A)

$$

// Fib(A)

""

Y
f

// X

f ∗Fib(A) ∼= Fib(f ∗A)

This uses the root functor (−)I ⊣ (−)I.



3(ii). The universal fibration U̇ ↠ U

Let U be the type of fibration structures on V̇ → V

V̇

��

U := Fib(V̇) // V

then define U̇ → U by pulling back.

U̇

��

// V̇

��

U // V



3(ii). The universal fibration U̇ ↠ U

Since Fib(−) is stable, the lower square is a pullback.

U̇

��

// V̇

��

Fib(U̇)

""

// Fib(V̇)

""
U // V



3(ii). The universal fibration U̇ ↠ U

Since Fib(−) is stable the lower square is also a pullback.

U̇

��

// V̇

��

Fib(U̇)

""

// Fib(V̇)

""
U //∆U

UU

V

But since U = Fib(V̇) there is a section of Fib(U̇).
So U̇ → U is a fibration.



3(ii). The universal fibration U̇ ↠ U

A fibration structure α on a small map A → X determines a
factorization (a, α) of its classifying map a : X → V.

A

����

// V̇

��

Fib(A)

""

// Fib(V̇)

""
X a

//
α

UU

(a,α)

<<

V



3(ii). The universal fibration U̇ ↠ U

A fibration structure α on a small map A → X determines a
factorization (a, α) of its classifying map a : X → V,

A

����

//

""

V̇

��

U̇

����

<<

Fib(A)

""

// Fib(V̇)

""
X a

//
α

UU

(a,α)

<<

V

which classifies A ↠ X as a fibration since Fib(V̇) = U.



3(iii). U̇ ↠ U is univalent

The universal fibration U̇ ↠ U is univalent if the type

EqB = ΣBEq(−,B) // U

of based equivalences is always a trivial fibration.

C ′
��

��

// EqB

��

C

A≃B

>>

A
// U

(*)

Remark
In HoTT this implies (A = B) ≃ (A ≃ B).



3(iii). U̇ ↠ U is univalent

Unwinding (∗) gives the equivalence extension property:
weak equivalences extend along cofibrations C ′ ↣ C .

A′

����

∼
w ′

  

// A

����

∼
w

��

B ′

~~~~

// B

����

C ′ // // C



3(iii). U̇ ↠ U is univalent

Proposition

The universal fibration U̇ ↠ U is univalent.

Voevodsky proved this classically for Kan fibrations in sSet.

Coquand gave a constructive proof in type theory for cSet.

We have generalized Coquand’s proof to cartesian cubical sets.



3(iv). U is fibrant

Univalence of U̇ ↠ U implies that U is fibrant.

Proposition

The universe U is fibrant.

Voevodsky proved this for Kan sSets using minimal fibrations.

Shulman proved it using 3-for-2 for W.

Coquand proved it from univalence without 3-for-2 using Kan
composition for cSets in type theory.

We give a general proof from univalence without using 3-for-2.



3(v). From fibrant U to 3-for-2

Finally, we can apply the following.

Proposition (Sattler)

W satisfies 3-for-2 if fibrations extend along trivial cofibrations.

A

����

// A′

����

X // ∼
// X ′

This is called the fibration extension property.



3(v). From fibrant U to 3-for-2 for W

Lemma
Given a universal fibration U̇ ↠ U the FEP holds if U is fibrant.

A

))

����

// A′

��

����

U̇

����

X

))

// ∼ // X ′

  

U
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Appendix: U is fibrant (sketch)

It suffices to show the following.

Proposition

Evaluation at the generic point UI // U is a trivial fibration.

Proof.
We need a diagonal filler for any cofibration c .

C ′
��

c

��

a // UI

Uδ

��

C

>>

b
// U



Appendix: U is fibrant (sketch)

Transposing by I and using the classifying property of U gives the
following equivalent problem.

A0

��

����

// A

��

����

C ′
��

c

��

C ′
0

// C ′ × I
��

c×I

��

B

����

// D

����

C
C0

// C × I



Appendix: U is fibrant (sketch)

Apply the functor (−)× I to the left face to get:

A0

��

����

// A

��

����

A0 × I

wwww

��

C ′
��

c

��

C ′
0

// C ′ × I
��

��

B

����

// D

����

B × I

wwww

C
C0

// C × I



Appendix: U is fibrant (sketch)

Apply the functor (−)× I to the left face to get:

A0

��

����

// A

��

����

e
∼

// A0 × I

wwww

��

C ′
��

c

��

C ′
0

// C ′ × I
��

��

B

����

// D

����

B × I

wwww

C
C0

// C × I

There is a weak equivalence e : A
∼−→ A0 × I to which we can apply

the EEP.



Appendix: U is fibrant (sketch)

Apply the functor (−)× I to the left face to get:

A0

��

����

// A

��

����

e
∼

// A0 × I

wwww

��

C ′
��

c

��

C ′
0

// C ′ × I
��

��

B

����

// D

����

∼
// B × I

wwww

C
C0

// C × I

There is a weak equivalence e : A ≃ A0 × I to which we can apply
the EEP. This produces the required fibration D ↠ Z × I.


