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Background

e There has recently been work on cubical homotopy theory.

e |t is related to homotopy type theory which is being used
for computerized proof checking.

e The cubes used for this are closed under finite products.

e This model of homotopy was also proposed by Lawvere who
stressed the tinyness of the geometric interval 1.

e The tinyness of I is also used in the current theory.



Cartesian cubical sets

The Cartesian cube category [ is the opposite of the category B
of finite, strictly bipointed sets,

O := B°P.

Thus O is the Lawvere theory of bipointed objects: the free
finite product category with a bipointed object [0] = [1].

The Cartesian cubical sets is the category of presheaves on [,
cSet = Set™™ .

Thus cSet consists of all covariant functors B — Set.



The tiny interval I

The 1-cube [1] represents the cubical set that forgets the points,
I:=DB([1],-): B — Set.

It generates cSet under finite products and colimits.

The two points 1 == I have a trivial intersection.
00—
lJ

1—

This is the universal interval in a topos.
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It provides a good cylinder X + X — I x X for every object X,
and a good path object X! — X x X for every fibrant object X.



The main result

Theorem (A. 2023)

There is a Quillen model structure (C,WW, F) on cSet where:
e the cofibrations C are an axiomatized class of monos,
e the fibrations F are those f : X — Y for which

(Ff x Teval) : X! x I— (YE xI) xy X

lifts on the right against all cofibrations,

e the weak equivalences W are those f : X — Y for which
K’ : KY — KX is bijective under mo whenever K is fibrant.



The construction of (C, W, F)

The proof of the theorem
e uses ideas from type theory,
e including the univalence axiom of Voevodsky,

e is axiomatized in terms of:
1. a classifier ® < Q for the cofibrations,
2. atiny interval 1 = T,
3. a universal small map V — V,

e applies in several different cases.



(C, W, F) from (&,1,V)

The model structure (C, W, F) is constructed in 3 steps:

1. ® is used to determine a wfs (C, TFib),
2. I'is used to determine a wfs (TCof, F) with TFib C F,
3. V is used to show 3-for-2 for W := TFib o TCof.



1. The cofibration wfs (C, TFib)

The cofibrations C are the monos C’ — C classified by t : 1 — ®.
C——1——1
4 4
ok
C— 0 ——Q

The trivial fibrations TFib are the maps T — X that lift against
the cofibrations.

C" =: TFib
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1. The cofibration wfs (C, TFib)

Proposition
(C, TFib) is an algebraic weak factorization system.

Proof.

The classifier t : 1 — & determines a fibered polynomial monad
P; = dit, : cSet — cSet

the algebras for which in cSet/x are the trivial fibrations. O]



2. The fibration wfs (TCof, F)

The fibrations F are defined in terms of the trivial fibrations by
(fF:F=X)eF iff (d=f)e TFib

where 0= f is the gap map with 6 : 1 — 1T in cSet/].

o

X=X — X

The trivial cofibrations TCof are the maps that lift against F.

TCof := N F



3. The weak equivalences W

Let W := TFib o TCof.

Proposition
(C, TFib) and (TCof, F) form a Barton premodel structure.

TCof =WWNC
TFb=WnNUF

Corollary
If W satisfies 3-for-2, then (C, W, F) is a QMS.



3. The weak equivalences W

We use a universal fibration U — U to show 3-for-2 for W.

(i) there is a universal small map V — V

)
(i) U is the classifying type for fibration structures on VoV
(iii) U — U is univalent
)
)

(iv) U is fibrant
(v) fibrant U implies 3-for-2 for W

The idea of getting a QMS from univalence is due to Sattler.



3(i). The universal small map V — V

The category of elements functor f(c

~— 3

f(c:(CvCat:l/@

always has a right adjoint nerve functor v¢.
Proposition

For any small map Y — X in C there is a canonical pullback
Y — ve set™
"
X —— vy set®P

since set®® — set®P classifies small discrete fibrations in Cat.
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since set® —s set°P classifies small discrete fibrations in Cat.



3(ii). The universal fibration U — U

For any A — X in cSet there is a classifying type Fib(A) — X,
the sections of which correspond to fibration structures.



3(ii). The universal fibration U — U

The construction of Fib(A) — X is stable under pullback.

FA A
F*Fib(A) — 5 Fib(A)
\ % \ X

f

F*Fib(A) = Fib(f*A)

This uses the root functor (—)' < ().



3(ii). The universal fibration U — U

Let U be the type of fibration structures on V — V

|

U := Fib(V) ——

then define U — U by pulling back.
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3(ii). The universal fibration U — U

Since Fib(—) is stable, the lower square is a pullback.
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3(ii). The universal fibration U — U

Since Fib(—) is stable the lower square is also a pullback.

L'JJ Y%
Fib&U) — |——Fib(V) J

But since U = Fib(V) there is a section of Fib(U).
So U — U is a fibration.



3(ii). The universal fibration U — U

A fibration structure v on a small map A — X determines a
factorization (a, «) of its classifying map a: X — V.

A V




3(ii). The universal fibration U — U

A fibration structure o on a small map A — X determines a
factorization (a, «) of its classifying map a: X — V,

A \
L
Fib(f\) — *fvljib(V)

which classifies A — X as a fibration since Fib(V) = U.



3(iii). U — U is univalent
The universal fibration U — U is univalent if the type
Eqg = XgEq(—,B)—U
of based equivalences is always a trivial fibration.

C'————Eqg (*)

Remark
In HoTT this implies (A= B) ~ (A~ B).



3(iii). U — U is univalent

Unwinding (x) gives the equivalence extension property:
weak equivalences extend along cofibrations C’ — C.

A > A



3(iii). U — U is univalent

Proposition
The universal fibration U — U is univalent.

Voevodsky proved this classically for Kan fibrations in sSet.
Coquand gave a constructive proof in type theory for cSet.

We have generalized Coquand’s proof to cartesian cubical sets.



3(iv). U is fibrant

Univalence of U — U implies that U is fibrant.

Proposition
The universe U is fibrant.

Voevodsky proved this for Kan sSets using minimal fibrations.
Shulman proved it using 3-for-2 for W.

Coquand proved it from univalence without 3-for-2 using Kan
composition for cSets in type theory.

We give a general proof from univalence without using 3-for-2.



3(v). From fibrant U to 3-for-2

Finally, we can apply the following.

Proposition (Sattler)

W satisfies 3-for-2 if fibrations extend along trivial cofibrations.

A > A
lg
X>T>)?/

This is called the fibration extension property.



3(v). From fibrant U to 3-for-2 for W

Lemma _
Given a universal fibration U — U the FEP holds if U is fibrant.
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Appendix: U is fibrant (sketch)

It suffices to show the following.
Proposition

Evaluation at the generic point U'— U is a trivial fibration.

Proof.

We need a diagonal filler for any cofibration c.
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Appendix: U is fibrant (sketch)

Transposing by I and using the classifying property of U gives the
following equivalent problem.




Appendix: U is fibrant (sketch)

Apply the functor (—) x I to the left face to get:




Appendix: U is fibrant (sketch)

Apply the functor (=) x I to the left face to get:

There is a weak equivalence e : A = Ay x I to which we can apply
the EEP.



Appendix: U is fibrant (sketch)

Apply the functor (=) x I to the left face to get:
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There is a weak equivalence e : A ~ Ay x I to which we can apply
the EEP. This produces the required fibration D — Z x 1. O



