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Relative adjunctions

The concept of relative adjunction is a generalisation of the concept
of adjunction, where the domain of the left adjoint is permitted to
be different to the codomain of the right adjoint.

Definition 1 ([Ulm68])

A relative adjunction comprises

1. a functor j : A→ E, the root;
2. a functor ℓ : A→ C, the left relative adjoint;
3. a functor r : C → E, the right relative adjoint;
4. an isomorphism of the form C(ℓ, 1) ∼= E(j, r).
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Examples of relative adjunctions

Relative adjunctions are abundant in category theory.

• Adjunctions.

• Partial adjunctions.

• Multi-adjunctions.

• Weighted colimits.

• Nerves.

• Algebraic theories and their various generalisations [Die74;
Ark22].
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Relative monads

A relative monad is a generalisation of a monad, where the under-
lying functor is permitted to be an arbitrary functor, rather than
an endofunctor. Relative monads are to relative adjunctions what
monads are to adjunctions.

Definition 2 ([ACU10])

A relative monad comprises

1. a functor j : A→ E, the root;
2. a functor t : A→ E, the carrier;
3. a natural transformation η : j ⇒ t, the unit;
4. a form † : E(j, t)⇒ E(t, t), the extension operator,

satisfying unitality and associativity axioms.

When j = 1, this is equivalent to the definition of monad.
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Examples of relative monads

Relative monads are abundant in category theory.

• Monads.

• Partial monads.

• Graded monads [MU22].

• Cocontinuous monads on cocompletions (e.g. finitary monads
on locally finitely presentable categories).

• Monads arising from monad–theory correspondences [Ark22].
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Motivation

The theory of ordinary relative monads has been substantially de-
veloped [Wal70; Die75; ACU15]. However, there are also many
motivating examples of relative monads in enriched category theory,
so we should like an analogous development in this setting.

To develop the theory of enriched relative monads, we must decide
upon a base of enrichment. For instance, we could enrich in:

• A complete and cocomplete closed symmetric monoidal
category.

• An arbitrary monoidal category.

• A bicategory.

• A virtual double category.

• A skew-monoidal category.
...
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Beyond enrichment

Suppose that we did find a suitably general base of enrichment
over which to work, and developed the theory of relative monads in
enriched category theory. For a time, we may be content. But before
too long, we’d find ourselves needing a theory of relative monads
in other settings...

such as internal category theory... or fibred and
indexed category theory... or monoidal category theory... and so on.
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Formal category theory
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A proliferation of category theories

There are many flavours of category theory.

• Ordinary category theory.

• Enriched category theory.

• Internal category theory.

• Fibred and indexed category theory.

• Monoidal category theory.
...

In each flavour of category theory, we have essentially the same
definitions and theorems.

• Presheaves and the Yoneda lemma.

• Adjoint functor theorems.

• Monadicity theorems.

• Presentability and duality.
...
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Formal category theory

As category theorists, this situation calls to us for abstraction: if we
see essentially the same theorem being reproven again and again in
different settings, we should hope that each variant is a consequence
of a more general statement.

This is the motivation for formal category theory.

Formal category theory is the application of the philosophy
of category theory to category theory.

Traditionally, this takes the form of applying 2-dimensional category
theory to study 1-dimensional category theory.
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An appropriate setting

What is an appropriate setting in which to study the formal theory
of categories?

Any such setting should take into account the intrinsic structure of
category theories:

• Categories.

• Functors.

• Natural transformations.

An obvious candidate, therefore, is the setting of a 2-category.

Many early approaches to formal category theory took place in the
setting of a 2-category equipped with various property-like structure
(e.g. limits, colimits, exponentials).
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The insufficiency of 2-categories

However, 2-categories turn out to be insufficient to capture many
fundamental concepts in (enriched) category theory.

• Weighted limits and colimits.

• Pointwise extensions.

• Presheaves and the Yoneda lemma.

• Relative adjunctions.
...

What these concepts have in common is they rely in some way on
the homs of a category.

What structure do the hom-sets of a locally
small category form?

Answer: a distributor (a.k.a. profunctor, (bi)module).

To capture the structure of category theories, we must also consider
distributors.
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The insufficiency of double categories

Small categories, functors, distributors, and natural transformations
form a double category Cat.

However, for a general monoidal category V, double categories do
not quite suffice to capture V-enriched categories, because two V-
distributors p : C −7−→ B and q : B −7−→ A may not admit a composite
q ⊙ p : C −7−→ B.

Fortunately, not all is lost. The composite of two V-distributors is
given by a colimit in V. Hence, the data of a V-natural transformation
q ⊙ p⇒ r may be re-expressed without the assumption that q ⊙ p
exists. Axiomatising this situation leads to the notion of virtual
double category [Bur71; Lei02; CS10].
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Virtual double categories

In a strict double category, we have two classes of 1-cells: loose-cells
(−7−→) and tight-cells (→), both of which admit composition that is
strictly associative and unital.

A pseudo double category is a generalisation of the notion of strict
double category, in which we only require that the composition of
loose-cells is associative and unital up to coherent isomorphism.

A virtual double category is a generalisation of the notion of pseudo
double category in which we may not compose loose-cells at all.
Accordingly, the notion of 2-cell must be generalised to have multiary
domain.

An An−1 · · · A1 A0

Bn B0qp

pnp p1ppn−1p p2p
g fϕ
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V-forms

Let V be a monoidal category. A V-form

An An−1 · · · A1 A0

Bn B0qp

pnp p1ppn−1p p2p
g fϕ

comprises a morphism

ϕx0,...,xn : p1(x0, x1)⊗ · · · ⊗ pn(xn−1, xn)→ q(fx0, gxn)

in V for each x0 ∈ |A0|, . . . , xn ∈ |An|, satisfying certain V-naturality
laws.

When n = 0 and q is trivial, this is exactly a V-natural transformation
ϕ : f ⇒ g.

V-categories, V-functors, V-distributors, and V-forms form a virtual
double category V-Cat.
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Virtual equipments

The virtual double category V-Cat is particularly well behaved.

1. For every V-category A, there is a V-distributor
A(−1,−2) : A −7−→ A sending x, y ∈ |A| to A(x, y). This
satisfies a universal property making it the nullary composite of
distributors on A.

2. For every diagram of the form

D
f−→ C

p−7−→ D
g←− A

there is a V-distributor p(f−1, g−2) : D −7−→ A sending
x ∈ D, y ∈ A to p(fx, gy). This satisfies a universal property
making it the restriction of p along f and g.

Virtual double categories satisfying these properties are called (vir-
tual) equipments, and are an appropriate setting for formal category
theory [CS10].
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Relative monads and adjunctions in an equipment

The definitions of relative monad and relative adjunction generalise
directly to the context of a virtual equipment X, by replacing

categories 7→ objects (·) in X
functors 7→ tight-cells (→) in X

distributors 7→ loose-cells (−7−→) in X
forms 7→ 2-cells (⇒) in X

We then recover various notions of relative monad and relative
adjunction by specialising to different virtual equipments.

Examples 3

• A relative monad in V-Cat is a V-enriched relative monad.

• A relative monad in Cat(E) is an E-internal relative monad.

• A relative monad in V-Act is a V-strong relative monad.
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Basic theory

The basic theory of ordinary relative monads carries over without
surprise to the setting of relative monads in equipments. For example:

Proposition 4

Every relative adjunction induces a relative monad.

Proposition 5

1. Left j-relative adjoints preserve colimits preserved by j.
2. Right j-relative adjoints preserve limits when j is dense.

Proposition 6

For a monad T on E, each tight-cell j : A → E induces a
j-relative monad (j ; T ) by precomposition.
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Relative monads as monoids

A monad on an object A in a 2-category K is precisely a monoid in
the strict monoidal category K(A,A).

Relative monads may also be presented as monoids in hom-categories.

Theorem 7

Let X be an equipment. For each tight-cell j : A→ E, there is
a skew-multicategory X[j] whose objects are tight-cells A→ E.
Furthermore, monoids in X[j] are precisely j-relative monads.

Theorem 8

If X furthermore admits left extensions of tight-cells A → E
along j : A→ E, the skew-multicategory X[j] is representable
by a skew-monoidal category.
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Closing remarks
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Monads in 2-categories vs double categories

One of the earliest treatments of formal category theory was Street’s
theory of monads in a 2-category [Str72].

Every virtual equipment
X has an underlying 2-category X of tight-cells, and we may reason
about monads in X purely in terms of monads in X à la Street.

However, there is a significant shortcoming with this approach: any
concept whose definition requires distributors to state cannot be
reasoned about in a 2-category. In particular, there are formal
theorems about monads and adjunctions that cannot be proven in a
2-categorical framework.

• Left adjoints preserve weighted colimits.

• Forgetful functors create weighted limits.

• Monadicity theorem.

• Algebras arise as a cocompletion of free algebras.
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However, there is a significant shortcoming with this approach: any
concept whose definition requires distributors to state cannot be
reasoned about in a 2-category. In particular, there are formal
theorems about monads and adjunctions that cannot be proven in a
2-categorical framework.

• Left adjoints preserve weighted colimits.

• Forgetful functors create weighted limits.

• Monadicity theorem.

• Algebras arise as a cocompletion of free algebras.

63



Monads in 2-categories vs double categories

One of the earliest treatments of formal category theory was Street’s
theory of monads in a 2-category [Str72]. Every virtual equipment
X has an underlying 2-category X of tight-cells, and we may reason
about monads in X purely in terms of monads in X à la Street.
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Algebra objects in (virtual) double categories

The notion of algebra object (a.k.a. Eilenberg–Moore object) in a
(virtual) equipment is stronger than the notion of algebra object in a
2-category, even when T is a (non-relative) monad. The Eilenberg–
Moore category for a (relative) monad in V-Cat satisfies this stronger,
double-categorical universal property.

In fact, this stronger universal property is necessary to establish some
desirable properties of algebra objects.

Theorem 9

Let j : A→ E be a dense tight-cell. A tight-cell u : D → E is
j-relatively monadic if and only if u has a right j-relative adjoint
and creates j-absolute colimits.

66



Algebra objects in (virtual) double categories

The notion of algebra object (a.k.a. Eilenberg–Moore object) in a
(virtual) equipment is stronger than the notion of algebra object in a
2-category, even when T is a (non-relative) monad. The Eilenberg–
Moore category for a (relative) monad in V-Cat satisfies this stronger,
double-categorical universal property.

In fact, this stronger universal property is necessary to establish some
desirable properties of algebra objects.

Theorem 9

Let j : A→ E be a dense tight-cell. A tight-cell u : D → E is
j-relatively monadic if and only if u has a right j-relative adjoint
and creates j-absolute colimits.

67



Summary

• Relative monads are generalisations of monads to arbitrary
functors.

• Formal category theory is the study of category theory, using
2-dimensional category theory.

• 2-categories are an insufficient setting for many formal
theorems about (relative) monads: we need the expressivity of
double categories, or similar.

You can read our preprints on arXiv, where we develop much of
the fundamental theory of relative monads in a formal setting, in
particular specialising to V-Cat:

1. The formal theory of relative monads [AM23a]

2. Relative monadicity [AM23b]

More to follow...
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Loose-monads versus tight-monads

Since there are two kinds of 1-cell in a virtual double category, there
are two notions of monad in a virtual equipment X.

A tight-monad on an object A is a monoid in the strict monoidal
category of tight-cells A→ A. A tight-monad in Cat is a monad in
the usual sense.

A loose-monad on an object A is a monoid in the multicategory of
loose-cells A −7−→ A. A loose-monad in Cat (a.k.a a promonad) is
equivalent to a bijective-on-objects functor.
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