Radon-Nikodym derivatives and martingales

Ruben Van Belle

3 July 2023, Louvain-la-Neuve

1 Radon-Nikodym derivatives

Radon-Nikodym theorem

Theorem (Radon-Nikodym)
Let (X, Σ) be a measurable space.

Radon-Nikodym theorem

Theorem (Radon-Nikodym)

Let (X, Σ) be a measurable space. Let μ be a σ-finite measure and ν a finite signed measure on (X, Σ) such that $\nu \ll \mu .^{a}$

Radon-Nikodym theorem

Theorem (Radon-Nikodym)

Let (X, Σ) be a measurable space. Let μ be a σ-finite measure and ν a finite signed measure on (X, Σ) such that $\nu \ll \mu .{ }^{a}$ Then there exists a μ-almost surely unique integrable map $f: X \rightarrow \mathbb{R}$ such that

$$
\nu(A)=\int_{A} f \mathrm{~d} \mu,
$$

for all A in Σ.

$$
{ }^{a} \nu \ll \mu: \Leftrightarrow \mu(A)=0 \Rightarrow \nu(A)=0 \text { for all } A \text { in } \Sigma .
$$

Radon-Nikodym theorem

Theorem (Radon-Nikodym)

Let (X, Σ) be a measurable space. Let μ be a σ-finite measure and ν a finite signed measure on (X, Σ) such that $\nu \ll \mu .{ }^{a}$ Then there exists a μ-almost surely unique integrable map $f: X \rightarrow \mathbb{R}$ such that

$$
\nu(A)=\int_{A} f \mathrm{~d} \mu,
$$

for all A in Σ.

$$
{ }^{\mathrm{a}} \nu \ll \mu: \Leftrightarrow \mu(A)=0 \Rightarrow \nu(A)=0 \text { for all } A \text { in } \Sigma .
$$

The map f is called the Radon-Nikodym derivative of ν with respect to μ and is denoted as $\frac{\mathrm{d} \nu}{\mathrm{d} \mu}$.

Radon-Nikodym theorem

Consider de map $L^{1}(X, \Sigma, \mu) \rightarrow\{\nu \mid \nu \ll \mu\}$ that sends $f \in L^{1}(X, \Sigma, \mu)$ to the measure defined by

$$
\nu(A):=\int_{A} f \mathrm{~d} \mu,
$$

for all $A \in \Sigma$.

Radon-Nikodym theorem

Consider de map $L^{1}(X, \Sigma, \mu) \rightarrow\{\nu \mid \nu \ll \mu\}$ that sends $f \in L^{1}(X, \Sigma, \mu)$ to the measure defined by

$$
\nu(A):=\int_{A} f \mathrm{~d} \mu,
$$

for all $A \in \Sigma$.
The Radon-Nikodym theorem says that this is a bijection.

Radon-Nikodym theorem: examples

Examples:

- Let N be the standard normal distribution and λ the Lebesgue measure on \mathbb{R},

Radon-Nikodym theorem: examples

Examples:

- Let N be the standard normal distribution and λ the Lebesgue measure on \mathbb{R},

$$
\phi(z):=\frac{d N}{d \lambda}=\frac{e^{-\frac{z^{2}}{2}}}{\sqrt{2 \pi}}
$$

Radon-Nikodym theorem: examples

Examples:

- Let N be the standard normal distribution and λ the Lebesgue measure on \mathbb{R},

$$
\phi(z):=\frac{d N}{d \lambda}=\frac{e^{-\frac{z^{2}}{2}}}{\sqrt{2 \pi}}
$$

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathcal{G} \subseteq \mathcal{F}$ be a sub- σ-algebra.

Radon-Nikodym theorem: examples

Examples:

- Let N be the standard normal distribution and λ the Lebesgue measure on \mathbb{R},

$$
\phi(z):=\frac{d N}{d \lambda}=\frac{e^{-\frac{z^{2}}{2}}}{\sqrt{2 \pi}}
$$

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathcal{G} \subseteq \mathcal{F}$ be a sub- σ-algebra. An integrable \mathcal{F}-measurable map $X: \Omega \rightarrow \mathbb{R}$ defines a measure ν on (Ω, \mathcal{G}) by:

$$
\nu(A):=\int_{A} X \operatorname{d} \mathbb{P} \quad\left(=\mathbb{E}\left[X 1_{A}\right]\right),
$$

for all $A \in \mathcal{G}$.

Radon-Nikodym theorem: examples

$$
\nu(A)=\int_{A} X d \mathbb{P}=0
$$

Radon-Nikodym theorem: examples

$$
\nu(A)=\int_{A} X \mathrm{~d} \mathbb{P}=0
$$

Therefore, $\left.\nu \ll \mathbb{P}\right|_{\mathcal{G}}$ and there exists \mathbb{P}-almost surely unique \mathcal{G}-measurable integrable map $f: \Omega \rightarrow \mathbb{R}$ such that

$$
\int_{A} X \mathrm{~d} \mathbb{P}=\left.\int_{A} f \mathrm{~d} \mathbb{P}\right|_{\mathcal{G}}
$$

or

$$
\left(\mathbb{E}\left[X 1_{A}\right]=\mathbb{E}\left[f 1_{A}\right]\right)
$$

for all $A \in \mathcal{G}$.

Radon-Nikodym theorem: examples

Examples: For $A \in \mathcal{G}$ such that $\left.\mathbb{P}\right|_{\mathcal{G}}(A)=0$, we have

$$
\nu(A)=\int_{A} X \mathrm{~d} \mathbb{P}=0
$$

Therefore, $\left.\nu \ll \mathbb{P}\right|_{\mathcal{G}}$ and there exists \mathbb{P}-almost surely unique \mathcal{G}-measurable integrable map $f: \Omega \rightarrow \mathbb{R}$ such that

$$
\int_{A} X \mathrm{~d} \mathbb{P}=\left.\int_{A} f \mathrm{~d} \mathbb{P}\right|_{\mathcal{G}}
$$

or

$$
\left(\mathbb{E}\left[X 1_{A}\right]=\mathbb{E}\left[f 1_{A}\right]\right)
$$

for all $A \in \mathcal{G}$. The map f is called the conditional expectation of X with respect to \mathcal{G} and is denoted as $\mathbb{E}[X \mid \mathcal{G}]$.

Radon-Nikodym theorem: finite version

We will give a proof for a special case.

Radon-Nikodym theorem: finite version

We will give a proof for a special case. Let A be a finite set and $\left(p_{a}\right)_{a \in A}$ a probability measure on A.

Radon-Nikodym theorem: finite version

We will give a proof for a special case. Let A be a finite set and $\left(p_{a}\right)_{a \in A}$ a probability measure on A. Let q be a measure on A such that $q \ll p$.

Radon-Nikodym theorem: finite version

We will give a proof for a special case. Let A be a finite set and $\left(p_{a}\right)_{a \in A}$ a probability measure on A. Let q be a measure on A such that $q \ll p$. Define a map $f: A \rightarrow \mathbb{R}$ by

$$
a \mapsto \begin{cases}\frac{q_{a}}{p_{a}} & \text { if } p_{a} \neq 0 \\ 0 & \text { otherwise } .\end{cases}
$$

Radon-Nikodym theorem: finite version

We will give a proof for a special case. Let A be a finite set and $\left(p_{a}\right)_{a \in A}$ a probability measure on A. Let q be a measure on A such that $q \ll p$. Define a map $f: A \rightarrow \mathbb{R}$ by

$$
a \mapsto \begin{cases}\frac{q_{a}}{p_{a}} & \text { if } p_{a} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

It can be checked that f is the Radon-Nikodym derivative of q with respect to p.

Categorically extending the finite version

Let Prob be the category of probability spaces and measure preserving maps.

Categorically extending the finite version

Let Prob be the category of probability spaces and measure preserving maps. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Categorically extending the finite version

Let Prob be the category of probability spaces and measure preserving maps. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

- Define $M_{n}(\Omega, \mathcal{F}, \mathbb{P})$ as the set

$$
\{\mu \mid \mu \leq n \mathbb{P}\}
$$

together with the total variation metric.

- Define $R V_{n}(\Omega, \mathcal{F}, \mathbb{P})$ as the set

$$
\operatorname{Mble}(\Omega,[0, n]) /=\mathbb{P},
$$

together with the L^{1}-metric (multiplied by a factor $1 / 2$).

Categorically extending the finite version

Let Prob be the category of probability spaces and measure preserving maps. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

- Define $M_{n}(\Omega, \mathcal{F}, \mathbb{P})$ as the set

$$
\{\mu \mid \mu \leq n \mathbb{P}\}
$$

together with the total variation metric.

- Define $R V_{n}(\Omega, \mathcal{F}, \mathbb{P})$ as the set

$$
\operatorname{Mble}(\Omega,[0, n]) /=\mathbb{P},
$$

together with the L^{1}-metric (multiplied by a factor $1 / 2$).
These are complete metric spaces (Riesz-Fischer).

Categorically extending the finite version

Let Prob $_{f}$ be the full subcategory of Prob of finite probability spaces.

Categorically extending the finite version

Let $\mathbf{P r o b}_{f}$ be the full subcategory of Prob of finite probability spaces. Let $s:(A, p) \rightarrow(B, q)$ be a measure-preserving map of finite probability spaces.

- Define $M_{n}^{f}(s): M_{n}(A, p) \rightarrow M_{n}(B, q)$ by the assignment

$$
r \mapsto r \circ s^{-1}
$$

Categorically extending the finite version

Let $\mathbf{P r o b}_{f}$ be the full subcategory of Prob of finite probability spaces. Let $s:(A, p) \rightarrow(B, q)$ be a measure-preserving map of finite probability spaces.

- Define $M_{n}^{f}(s): M_{n}(A, p) \rightarrow M_{n}(B, q)$ by the assignment

$$
r \mapsto r \circ s^{-1}
$$

- Define $R V_{n}^{f}(s): R V_{n}(A, p) \rightarrow R V_{n}(B, q)$ by sending a map $g: A \rightarrow[0, n]$ to the map $B \rightarrow[0, n]$, which is defined by

$$
b \mapsto \begin{cases}\frac{1}{q_{b}} \sum_{s(a)=b} p_{a} g(a) & \text { if } q_{b} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Categorically extending the finite version

Let $\mathbf{P r o b}_{f}$ be the full subcategory of Prob of finite probability spaces. Let $s:(A, p) \rightarrow(B, q)$ be a measure-preserving map of finite probability spaces.

- Define $M_{n}^{f}(s): M_{n}(A, p) \rightarrow M_{n}(B, q)$ by the assignment

$$
r \mapsto r \circ s^{-1}
$$

- Define $R V_{n}^{f}(s): R V_{n}(A, p) \rightarrow R V_{n}(B, q)$ by sending a map $g: A \rightarrow[0, n]$ to the map $B \rightarrow[0, n]$, which is defined by

$$
b \mapsto \begin{cases}\frac{1}{q_{b}} \sum_{s(a)=b} p_{a} g(a) & \text { if } q_{b} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

These are 1-Lipschitz maps.

Categorically extending the finite version

Let CMet $_{1}$ be the category of complete metric spaces and 1-Lipschitz maps.

Categorically extending the finite version

Let CMet $_{1}$ be the category of complete metric spaces and 1-Lipschitz maps. We have two functors:

Categorically extending the finite version

Let CMet $_{1}$ be the category of complete metric spaces and 1-Lipschitz maps. We have two functors:

By the finite Radon-Nikodym theorem, we see that

Categorically extending the finite version

It follows that also the right Kan extensions along $i: \mathbf{P r o b}_{f} \rightarrow \mathbf{P r o b}$ are isomorphic.

What do these Kan extensions look like?

Proposition

For a probability space $\Omega:=(\Omega, \mathcal{F}, \mathbb{P})$, we have for all $n \geq 1$ that

$$
M_{n}(\Omega) \rightarrow\left(\operatorname{Ran}_{i} M_{n}^{f}\right)(\Omega),
$$

is an isomorphism.

What do these Kan extensions look like?

Proposition

For a probability space $\Omega:=(\Omega, \mathcal{F}, \mathbb{P})$, we have for all $n \geq 1$ that

$$
M_{n}(\Omega) \rightarrow\left(\operatorname{Ran}_{i} M_{n}^{f}\right)(\Omega),
$$

is an isomorphism.
Proof (sketch): Let $\Omega:=(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

$$
\operatorname{Ran}_{i} M_{n}^{f}(\Omega) \cong \int_{\mathbf{A} \in \operatorname{Prob}_{f}}\left[\operatorname{Prob}(\Omega, i \mathbf{A}), M_{n}^{f}(\mathbf{A})\right]
$$

What do these Kan extensions look like?

Proof: Let $\Omega:=(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

What do these Kan extensions look like?

Proof: Let $\Omega:=(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. For every finite probability space $\mathbf{A}:=(A, p)$, we have a 1-Lipschitz map

$$
M_{n}(\Omega) \rightarrow\left[\operatorname{Prob}(\Omega, \mathbf{A}), M_{n}^{f}(\mathbf{A})\right],
$$

defined by the assignment

$$
\mu \mapsto\left(\mu \circ s^{-1}\right)_{s \in \operatorname{Prob}[\Omega, \mathbf{A}]} .
$$

What do these Kan extensions look like?

Proof: Let $\Omega:=(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. For every finite probability space $\mathbf{A}:=(A, p)$, we have a 1-Lipschitz map

$$
M_{n}(\Omega) \rightarrow\left[\operatorname{Prob}(\Omega, \mathbf{A}), M_{n}^{f}(\mathbf{A})\right],
$$

defined by the assignment

$$
\mu \mapsto\left(\mu \circ s^{-1}\right)_{s \in \operatorname{Prob}[\Omega, \mathbf{A}]} .
$$

This induces a morphism

$$
M_{n}(\Omega) \rightarrow \int_{\mathbf{A}}\left[\operatorname{Prob}(\Omega, \mathbf{A}), M_{n}^{f}(\mathbf{A})\right] \cong\left(\operatorname{Ran}_{i} M_{n}^{f}\right)(\Omega)
$$

What do these Kan extensions look like?

Consider a wedge $\left(e_{\mathbf{A}}: Y \rightarrow\left[\operatorname{Prob}(\Omega, \mathbf{A}), M_{n}^{f}(\mathbf{A})\right]\right)_{\mathbf{A}}$.

What do these Kan extensions look like?

Consider a wedge $\left(e_{\mathbf{A}}: Y \rightarrow\left[\operatorname{Prob}(\Omega, \mathbf{A}), M_{n}^{f}(\mathbf{A})\right]\right)_{\mathbf{A}}$. For $E \in \mathcal{F}$, consider the finite probability space

$$
\mathbf{2}_{E}:=\left(\{0,1\}, \mathbb{P}\left(E^{C}\right) \delta_{0}+\mathbb{P}(E) \delta_{1}\right),
$$

and note that the indicator function 1_{E} becomes a measure-preserving map

$$
1_{E}: \boldsymbol{\Omega} \rightarrow \mathbf{2}_{E} .
$$

What do these Kan extensions look like?

Consider a wedge $\left(e_{\mathbf{A}}: Y \rightarrow\left[\operatorname{Prob}(\Omega, \mathbf{A}), M_{n}^{f}(\mathbf{A})\right]\right)_{\mathbf{A}}$.
For $E \in \mathcal{F}$, consider the finite probability space

$$
\mathbf{2}_{E}:=\left(\{0,1\}, \mathbb{P}\left(E^{C}\right) \delta_{0}+\mathbb{P}(E) \delta_{1}\right)
$$

and note that the indicator function 1_{E} becomes a measure-preserving map

$$
1_{E}: \boldsymbol{\Omega} \rightarrow \mathbf{2}_{E} .
$$

For $y \in Y$, define

$$
\mu_{y}(E):=e_{2_{E}}(y)\left(1_{E}\right)_{1} .
$$

What do these Kan extensions look like?

Consider a wedge $\left(e_{\mathbf{A}}: Y \rightarrow\left[\operatorname{Prob}(\Omega, \mathbf{A}), M_{n}^{f}(\mathbf{A})\right]\right)_{\mathbf{A}}$.
For $E \in \mathcal{F}$, consider the finite probability space

$$
\mathbf{2}_{E}:=\left(\{0,1\}, \mathbb{P}\left(E^{C}\right) \delta_{0}+\mathbb{P}(E) \delta_{1}\right),
$$

and note that the indicator function 1_{E} becomes a measure-preserving map

$$
1_{E}: \boldsymbol{\Omega} \rightarrow \mathbf{2}_{E} .
$$

For $y \in Y$, define

$$
\mu_{y}(E):=e_{2_{E}}(y)\left(1_{E}\right)_{1} .
$$

It can be shown that $\mu_{y} \in M_{n}(\Omega)$. This gives a morphism $Y \rightarrow M_{n}(\Omega)$, making $M_{n}(\boldsymbol{\Omega})$ a universal wedge.

What do these Kan extensions look like?

Proposition

For a probability space Ω, we have for all $n \geq 1$ that

$$
\left(\operatorname{Ran}_{i} R V_{n}^{f}\right)(\Omega) \cong R V_{n}(\Omega)
$$

The proof for this results requires some measure theory.

Radon-Nikodym theorem

Combining everything gives a bounded Radon-Nikodym theorem, namely

$$
\begin{aligned}
\{\mu \mid \mu \leq n \mathbb{P}\}=M_{n}(\Omega) & \cong \operatorname{Ran}_{i} M_{n}^{f}((\Omega) \\
& \cong \operatorname{Ran}_{i} R V_{n}^{f}(\Omega) \\
& \cong R V_{n}(\Omega)=\operatorname{Mble}(\Omega,[0, n]) /=\mathbb{P}
\end{aligned}
$$

Radon-Nikodym theorem

Combining everything gives a bounded Radon-Nikodym theorem, namely

$$
\begin{aligned}
\{\mu \mid \mu \leq n \mathbb{P}\}=M_{n}(\Omega) & \cong \operatorname{Ran}_{i} M_{n}^{f}((\Omega) \\
& \cong \operatorname{Ran}_{i} R V_{n}^{f}(\Omega) \\
& \cong R V_{n}(\Omega)=\operatorname{Mble}(\Omega,[0, n]) /=\mathbb{P}
\end{aligned}
$$

We can look at the colimit over all $n \geq 1$,

This gives us

$$
\{\mu \mid \mu \ll \mathbb{P}\} \cong\{f: \Omega \rightarrow[0, \infty) \mid f \text { is integrable }\} /=\mathbb{P}
$$

Remark on conditional expectation

For a probability space $\boldsymbol{\Omega}$, we know what $\left(\operatorname{Ran}_{i} M_{n}^{f}\right)(\boldsymbol{\Omega})$ and $\left(\operatorname{Ran}_{i} R V_{n}^{f}\right)(\Omega)$ look like.

Remark on conditional expectation

For a probability space Ω, we know what $\left(\operatorname{Ran}_{i} M_{n}^{f}\right)(\Omega)$ and $\left(\operatorname{Ran}_{i} R V_{n}^{f}\right)(\Omega)$ look like.
What can we say about $M_{n}(g):=\left(\operatorname{Ran}_{i} M_{n}^{f}\right)(g)$ and $R V_{n}(g):=\left(\operatorname{Ran}_{i} R V_{n}^{f}\right)(g)$ for $g: \boldsymbol{\Omega}_{1} \rightarrow \boldsymbol{\Omega}_{2}$?

Remark on conditional expectation

For a probability space Ω, we know what $\left(\operatorname{Ran}_{i} M_{n}^{f}\right)(\Omega)$ and $\left(\operatorname{Ran}_{i} R V_{n}^{f}\right)(\Omega)$ look like.
What can we say about $M_{n}(g):=\left(\operatorname{Ran}_{i} M_{n}^{f}\right)(g)$ and $R V_{n}(g):=\left(\operatorname{Ran}_{i} R V_{n}^{f}\right)(g)$ for $g: \boldsymbol{\Omega}_{1} \rightarrow \boldsymbol{\Omega}_{2}$?
They are the unique morphisms such that

commute for morphisms $\Omega_{2} \rightarrow \mathbf{A}$.

Remark on conditional expectation

In particular, these commute for all $1_{E}: \boldsymbol{\Omega}_{\mathbf{2}} \rightarrow \mathbf{2}_{E}$.

Remark on conditional expectation

In particular, these commute for all $1_{E}: \boldsymbol{\Omega}_{\mathbf{2}} \rightarrow \mathbf{2}_{E}$. We conclude that for all $E \in \mathcal{F}_{2}$

$$
M_{n}(g)(\mu) \circ 1_{E}^{-1}=\mu \circ 1_{g^{-1}(E)}^{-1}
$$

and

$$
\int_{E} R V_{n}(g)(f) d \mathbb{P}_{2}=\int_{g^{-1}(E)} f \mathrm{~d} \mathbb{P}_{1}
$$

Remark on conditional expectation

In particular, these commute for all $1_{E}: \boldsymbol{\Omega}_{\mathbf{2}} \rightarrow \mathbf{2}_{E}$. We conclude that for all $E \in \mathcal{F}_{2}$

$$
M_{n}(g)(\mu) \circ 1_{E}^{-1}=\mu \circ 1_{g^{-1}(E)}^{-1},
$$

and

$$
\int_{E} R V_{n}(g)(f) \mathrm{d} \mathbb{P}_{2}=\int_{g^{-1}(E)} f \mathrm{~d} \mathbb{P}_{1}
$$

This means that

$$
M_{n}(g)(\mu)=\mu \circ g^{-1} \quad \text { and } \quad R V_{n}(g)(f)=\mathbb{E}[f \mid g] .
$$

Summary

- (Bounded) Radon-Nikodym theorem:

$$
M_{n}(\Omega)=\{\mu \mid \mu \leq n \mathbb{P}\} \quad R V_{n}(\Omega)=\operatorname{Mble}(\Omega,[0, n]) /=\mathbb{P} .
$$

- Conditional expectation:

$$
R V_{n}(g)(X)=\mathbb{E}[X \mid f]
$$

2 Martingales

Martingales

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Martingales

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $\left(\mathcal{F}_{i}\right)_{i \in I}$ be a directed collection of sub- σ-algebras of \mathcal{F} such that

$$
\sigma\left(\bigcup_{i} \mathcal{F}_{i}\right)=\mathcal{F}
$$

Martingales

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $\left(\mathcal{F}_{i}\right)_{i \in I}$ be a directed collection of sub- σ-algebras of \mathcal{F} such that

$$
\sigma\left(\bigcup_{i} \mathcal{F}_{i}\right)=\mathcal{F}
$$

A martingale is a collection of integrable random variables $X_{i}:\left(\Omega, \mathcal{F}_{i}\right) \rightarrow \mathbb{R}$ such that

$$
\mathbf{E}\left[X_{j} \mid \mathcal{F}_{i}\right]=X_{i},
$$

for all $i \leq j$.

Martingales

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $\left(\mathcal{F}_{i}\right)_{i \in I}$ be a directed collection of sub- σ-algebras of \mathcal{F} such that

$$
\sigma\left(\bigcup_{i} \mathcal{F}_{i}\right)=\mathcal{F}
$$

A martingale is a collection of integrable random variables $X_{i}:\left(\Omega, \mathcal{F}_{i}\right) \rightarrow \mathbb{R}$ such that

$$
\mathbf{E}\left[X_{j} \mid \mathcal{F}_{i}\right]=X_{i},
$$

for all $i \leq j$. Example: Brownian motion.

Martingale convergence theorem

A sequence in \mathbb{R} that is bounded and monotone converges.

Martingale convergence theorem

A sequence in \mathbb{R} that is bounded and monotone converges. Stochastic analogue: Martingale convergence theorem.

Theorem
An L^{1}-bounded martingale $\left(X_{n}\right)_{n}$, converges \mathbb{P}-almost surely to a random variable $X:(\Omega, \mathcal{F}) \rightarrow \mathbb{R}$.

Martingale convergence theorem

A sequence in \mathbb{R} that is bounded and monotone converges. Stochastic analogue: Martingale convergence theorem.

Theorem
An L^{1}-bounded martingale $\left(X_{n}\right)_{n}$, converges \mathbb{P}-almost surely to a random variable $X:(\Omega, \mathcal{F}) \rightarrow \mathbb{R}$.

Theorem
Let $p>1$. An L^{p}-bounded martingale $\left(X_{n}\right)_{n}$ converges to a random variable $X:(\Omega, \mathcal{F}) \rightarrow \mathbb{R}$ in L^{p} and for all $n \geq 1$,

$$
\mathbb{E}\left[X \mid \mathcal{F}_{n}\right]=X_{n}
$$

How does this translate categorically?

The space Ω is the limit of

in Prob, where $\Omega_{m}:=\left(\Omega, \mathcal{F}_{m},\left.\mathbb{P}\right|_{\mathcal{F}_{m}}\right)$.

How does this translate categorically?

The space Ω is the limit of

$$
\Omega_{1} \overleftarrow{s}_{5_{21}} \Omega_{2}{\overleftarrow{s_{32}}} \Omega_{3} \longleftarrow \ldots \longleftarrow \Omega_{m} \longleftarrow \ldots
$$

in Prob, where $\Omega_{m}:=\left(\Omega, \mathcal{F}_{m},\left.\mathbb{P}\right|_{\mathcal{F}_{m}}\right)$.
Suppose that $R V_{n}: \mathbf{P r o b} \rightarrow \mathbf{C M e t}_{1}$ preserves this limit, then

$$
\begin{aligned}
R V_{n}(\Omega) & \cong \lim _{m} R V_{n}\left(\Omega_{m}\right) \\
& \cong\left\{\left(X_{m}\right)_{m} \mid R V_{n}\left(s_{m_{1} m_{2}}\right)\left(X_{m_{1}}\right)=X_{m_{2}} \text { for } m_{2} \leq m_{1}\right\} \\
& \cong\left\{\left(X_{m}\right)_{m} \mid \mathbb{E}\left[X_{m_{1}} \mid \mathcal{F}_{n_{2}}\right]=X_{m_{2}} \text { for } m_{2} \leq m_{1}\right\} \\
& \cong\left\{\left(X_{m}\right)_{m} \mid \text { martingale }\right\}
\end{aligned}
$$

How does this translate categorically?

The space Ω is the limit of

$$
\Omega_{1} \overleftarrow{s}_{s_{21}} \Omega_{2}{\overleftarrow{s_{32}}} \Omega_{3} \longleftarrow \ldots \longleftarrow \Omega_{m} \longleftarrow \ldots
$$

in Prob, where $\Omega_{m}:=\left(\Omega, \mathcal{F}_{m},\left.\mathbb{P}\right|_{\mathcal{F}_{m}}\right)$.
Suppose that $R V_{n}: \mathbf{P r o b} \rightarrow \mathbf{C M e t}_{1}$ preserves this limit, then

$$
\begin{aligned}
R V_{n}(\Omega) & \cong \lim _{m} R V_{n}\left(\Omega_{m}\right) \\
& \cong\left\{\left(X_{m}\right)_{m} \mid R V_{n}\left(s_{m_{1} m_{2}}\right)\left(X_{m_{1}}\right)=X_{m_{2}} \text { for } m_{2} \leq m_{1}\right\} \\
& \cong\left\{\left(X_{m}\right)_{m} \mid \mathbb{E}\left[X_{m_{1}} \mid \mathcal{F}_{n_{2}}\right]=X_{m_{2}} \text { for } m_{2} \leq m_{1}\right\} \\
& \cong\left\{\left(X_{m}\right)_{m} \mid \text { martingale }\right\}
\end{aligned}
$$

It follows that for every martingale $\left(X_{m}\right)_{m}$ such that $X_{m} \leq n$ for all m, there exists a random variable $X:(\Omega, \mathcal{F}) \rightarrow[0, n]$ such that for all m,

$$
\mathbf{E}\left[X \mid \mathcal{F}_{m}\right]=X_{m} .
$$

Enrichment over CMet $_{1}$

Everything from the first part still works when everything is enriched over CMet $_{1}$.

Enrichment over CMet $_{1}$

Everything from the first part still works when everything is enriched over CMet $_{1}$.

Enrichment over CMet $_{1}$

Everything from the first part still works when everything is enriched over CMet $_{1}$.

How is Prob enriched over CMet $_{1}$?

Enrichment over CMet $_{1}$

Everything from the first part still works when everything is enriched over CMet $_{1}$.

How is Prob enriched over CMet $_{1}$?
Answer: $\operatorname{Prob}\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right)$ is the completion of

$$
\left\{f: \boldsymbol{\Omega}_{1} \rightarrow \boldsymbol{\Omega}_{2} \mid \text { measure preserving }\right\}
$$

with the pseudometric

$$
d\left(f_{1}, f_{2}\right):=\sup \left\{\mathbb{P}_{1}\left(f_{1}^{-1}(A) \Delta f_{2}^{-1}(A)\right) \mid A \in \mathcal{F}_{2}\right\}
$$

$R V_{n}$ preserves cofiltered limits

For any finite probability space A, we always have a map

$$
\operatorname{colim}_{i} \operatorname{Prob}\left(\Omega_{i}, \mathbf{A}\right) \rightarrow \operatorname{Prob}(\Omega, \mathbf{A})
$$

$R V_{n}$ preserves cofiltered limits

For any finite probability space \mathbf{A}, we always have a map

$$
\operatorname{colim}_{i} \operatorname{Prob}\left(\Omega_{i}, \mathbf{A}\right) \rightarrow \operatorname{Prob}(\Omega, \mathbf{A})
$$

Since $\left\{f: \Omega \rightarrow \mathbf{A} \mid f\right.$ is \mathcal{F}_{i}-measurable for some $\left.i\right\}$ is dense in $\operatorname{Prob}(\Omega, \mathbf{A})$, this is an isomorphism.

$R V_{n}$ preserves cofiltered limits

For any finite probability space \mathbf{A}, we always have a map

$$
\operatorname{colim}_{i} \operatorname{Prob}\left(\Omega_{i}, \mathbf{A}\right) \rightarrow \operatorname{Prob}(\Omega, \mathbf{A})
$$

Since $\left\{f: \Omega \rightarrow \mathbf{A} \mid f\right.$ is \mathcal{F}_{i}-measurable for some $\left.i\right\}$ is dense in $\operatorname{Prob}(\Omega, \mathbf{A})$, this is an isomorphism. We can now conclude:

$$
\begin{aligned}
R V_{n}(\Omega) & \cong \int_{\mathbf{A}}\left[\operatorname{Prob}(\Omega, \mathbf{A}), R V_{n}^{f}(\mathbf{A})\right] \\
& \cong \int_{\mathbf{A}}\left[\operatorname{colim}{ }_{i} \operatorname{Prob}\left(\Omega_{i}, \mathbf{A}\right), R V_{n}^{f}(\mathbf{A})\right] \\
& \cong \int_{\mathbf{A}} \lim _{i}\left[\operatorname{Prob}\left(\Omega_{i}, \mathbf{A}\right), R V_{n}^{f}(\mathbf{A})\right] \\
& \cong \lim _{i} \int_{\mathbf{A}}\left[\operatorname{Prob}\left(\Omega_{i}, \mathbf{A}\right), R V_{n}^{f}(\mathbf{A})\right] \cong \lim _{i} R V_{n}\left(\Omega_{i}\right)
\end{aligned}
$$

$R V_{n}$ preserves cofiltered limits

For any finite probability space A, we always have a map

$$
\operatorname{colim}_{i} \operatorname{Prob}\left(\Omega_{i}, \mathbf{A}\right) \rightarrow \operatorname{Prob}(\Omega, \mathbf{A})
$$

Since $\left\{f: \Omega \rightarrow \mathbf{A} \mid f\right.$ is \mathcal{F}_{i}-measurable for some $\left.i\right\}$ is dense in $\operatorname{Prob}(\Omega, \mathbf{A})$, this is an isomorphism. We can now conclude:

$$
\begin{aligned}
R V_{n}(\Omega) & \cong \int_{\mathbf{A}}\left[\operatorname{Prob}(\Omega, \mathbf{A}), R V_{n}^{f}(\mathbf{A})\right] \\
& \cong \int_{\mathbf{A}}\left[\operatorname{colim}{ }_{i} \operatorname{Prob}\left(\Omega_{i}, \mathbf{A}\right), R V_{n}^{f}(\mathbf{A})\right] \\
& \cong \int_{\mathbf{A}} \lim _{i}\left[\operatorname{Prob}\left(\Omega_{i}, \mathbf{A}\right), R V_{n}^{f}(\mathbf{A})\right] \\
& \cong \lim _{i} \int_{\mathbf{A}}\left[\operatorname{Prob}\left(\Omega_{i}, \mathbf{A}\right), R V_{n}^{f}(\mathbf{A})\right] \cong \lim _{i} R V_{n}\left(\Omega_{i}\right)
\end{aligned}
$$

Remark: We did not use anything about $R V_{n}^{f}$.

Summary

Enriched version of

- (Bounded) Radon-Nikodym theorem:

$$
M_{n}(\Omega)=\{\mu \mid \mu \leq n \mathbb{P}\} \quad R V_{n}(\Omega)=\operatorname{Mble}(\Omega,[0, n]) /=\mathbb{P} .
$$

- Conditional expectation:

$$
R V_{n}(g)(X)=\mathbb{E}[X \mid f] .
$$

- Martingale convergence: $R V_{n}$ preserves cofilitered limits.
- Weaker Kolmogorov extension theorem : M_{n} preserves cofilitered limits.

What about left Kan extensions?

Let $H: \mathbf{P r o b}_{f} \rightarrow$ CMet $_{1}$ be a functor. Suppose that $\boldsymbol{\Omega}$ is a probability space that is not essentially finite.
Then $\operatorname{Prob}(\mathbf{A}, \boldsymbol{\Omega})=\emptyset$ for all finite probability spaces \mathbf{A} and

$$
\operatorname{Lan}_{i} H(\Omega)=\int^{\mathbf{A}} \operatorname{Prob}(\mathbf{A}, \Omega) \times H \mathbf{A}=\emptyset .
$$

