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Abelian and modular categories

Abelian category = Additive + Barr-exact category

De�nition (Carboni)

A �nitely complete category C with coproducts is modular if it

satis�es the following conditions:

1 the category of pointed objects Pt1(C) = 1\C is additive with

kernels;

2 C is equivalent to Pt1(C)/(1 → 1+ 1).

A pointed category C is modular if and only if it is additive.
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The �bration of points

Bourn studied the categories PtB(C) = Pt1(C/B),

that are the

�bers of the codomain functor Pt(C) → C, known as the �bration

of points when C has pullbacks.

De�nition (Bourn)

C with pullbacks is protomodular if the change-of-base functors of

Pt(C) → C re�ect isomorphisms.

De�nition

C with pullbacks is

naturally Mal'tsev if all �bers PtB(C) are additive;

essentially a�ne if all change-of-base functors of the �bration

of points are equivalences.
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The condition (P)

We study, in a regular category, the following property:

(P) For every span Z X
poo m // Y where p is a regular

epimorphism and m is a monomorphism, their pushout exists

and is also a pullback.

Proposition

Let C be a regular category satisfying condition (P), and let

X

p
��

m // Y

u
��

Z v
// T

be a pushout square, where p is a regular epimorphism and m is a

monomorphism. Then v is a monomorphism.
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Normal monomorphisms

De�nition (Bourn)

A morphism m : M → X is normal to an equivalence relation R on

X if m induces a discrete �bration between equivalence relations

M ×M

π1
��
π2
��

m̃ // R

r1
��
r2
��

M m
// X ,

i.e. both commutative squares above are pullbacks.

Proposition

If C is regular and satis�es condition (P), then every monomorphism

m : M → X is Bourn-normal to some e�ective equivalence relation.
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Normal monomorphisms

Proof.

Consider the factorization of M → 1 as a regular epimorphism

p : M → Z followed by a monomorphism.

Then the kernel pair of p
is the indiscrete relation on M, and by condition (P) the pushout

M

p
��

m // X

p′

��
Z

m′
// T

is a pullback. Taking kernel pairs of p and p′ then gives a discrete

�bration

M ×M

π1
��
π2
��

m̃ // Eq(p′)

p′
1

��
p′
2

��
M m

// X .
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Involving Barr-exactness

Corollary

If C is regular protomodular and satis�es condition (P), then C is

naturally Mal'tsev.

If, furthermore, C is such that for every

equivalence relation there exists a subobject which is Bourn-normal

with respect to it, then C is Barr-exact.

Proof.

If R is an equivalence relation on an object X and M ≤ X is a

subobject which is Bourn-normal with respect to R , M is

Bourn-normal with respect to an e�ective equivalence relation R ′.
Since C is protomodular, this implies that R ∼= R ′, so that R is

e�ective.
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Involving Barr-exactness

True in pointed categories:

every equivalence relation R admits a

normalization NR = r2 ker(r1), which is a Bourn-normal subobject

with respect to R .
Also in quasi-pointed categories: 0 → 1 is a monomorphism.

Theorem

A category C is abelian if and only if it is homological and satis�es

condition (P).

Proof.

Any homological category satisfying condition (P) is pointed and

naturally Mal'tsev, thus additive, and exact; hence it is abelian by

Tierney's equation.



Involving Barr-exactness

True in pointed categories: every equivalence relation R admits a

normalization NR = r2 ker(r1), which is a Bourn-normal subobject

with respect to R .

Also in quasi-pointed categories: 0 → 1 is a monomorphism.

Theorem

A category C is abelian if and only if it is homological and satis�es

condition (P).

Proof.

Any homological category satisfying condition (P) is pointed and

naturally Mal'tsev, thus additive, and exact; hence it is abelian by

Tierney's equation.



Involving Barr-exactness

True in pointed categories: every equivalence relation R admits a

normalization NR = r2 ker(r1), which is a Bourn-normal subobject

with respect to R .
Also in quasi-pointed categories:

0 → 1 is a monomorphism.

Theorem

A category C is abelian if and only if it is homological and satis�es

condition (P).

Proof.

Any homological category satisfying condition (P) is pointed and

naturally Mal'tsev, thus additive, and exact; hence it is abelian by

Tierney's equation.



Involving Barr-exactness

True in pointed categories: every equivalence relation R admits a

normalization NR = r2 ker(r1), which is a Bourn-normal subobject

with respect to R .
Also in quasi-pointed categories: 0 → 1 is a monomorphism.

Theorem

A category C is abelian if and only if it is homological and satis�es

condition (P).

Proof.

Any homological category satisfying condition (P) is pointed and

naturally Mal'tsev, thus additive, and exact; hence it is abelian by

Tierney's equation.



Involving Barr-exactness

True in pointed categories: every equivalence relation R admits a

normalization NR = r2 ker(r1), which is a Bourn-normal subobject

with respect to R .
Also in quasi-pointed categories: 0 → 1 is a monomorphism.

Theorem

A category C is abelian if and only if it is homological and satis�es

condition (P).

Proof.

Any homological category satisfying condition (P) is pointed and

naturally Mal'tsev, thus additive, and exact; hence it is abelian by

Tierney's equation.



Involving Barr-exactness

True in pointed categories: every equivalence relation R admits a

normalization NR = r2 ker(r1), which is a Bourn-normal subobject

with respect to R .
Also in quasi-pointed categories: 0 → 1 is a monomorphism.

Theorem

A category C is abelian if and only if it is homological and satis�es

condition (P).

Proof.

Any homological category satisfying condition (P) is pointed and

naturally Mal'tsev, thus additive, and exact; hence it is abelian by

Tierney's equation.



(P) and penessentially a�ne categories

A functor G : C → D creates subobjects if, for every monomorphism

n : N → G (X ), there exist a monomorphism m : M → X and an

isomorphism φ : N → G (M) such that n = G (m)φ.
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If C is Barr-exact, then C is penessentially a�ne if and only if it is
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Examples

If C is an exact Mal'tsev category, then all categories GpdB(C) are
penessentially a�ne and exact, and thus they satisfy condition (P).

If C is semi-abelian, The category XModB(C) of internal B-crossed
modules in C is equivalent to GpdB(C), and thus it also satis�es

condition (P).

Let C = Mal(Grp/B) be the full subcategory of Grp/B of

morphisms with abelian kernels. C is naturally Mal'tsev; it is also

quasi-pointed, protomodular and exact, but it is not penessentially

a�ne, so it does not satisfy condition (P).

The category AbExtB(Grp) of abelian extensions over a �xed group

B (i.e. the full subcategory of Grp/B containing the surjective

morphisms with abelian kernels) is essentially a�ne, and thus

satis�es condition (P). The same is true for AbExtB(C) if C is a

semi-abelian category satisfying a weak form of the axiom of

normality of unions.
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Strongly semi-abelian categories

De�nition (Borceux, Janelidze, Kelly)

A semi-abelian category C satis�es the axiom of normality of unions

if, whenever a subobject N of X is normal in two subobjects A,B
of X , N is normal in the join A ∨ B .

De�nition (Bourn)

A semi-abelian category C is strongly semi-abelian if the

change-of-base functors of the �bration of points re�ect normal

monomorphisms.

If C satis�es the axiom of the normality of unions, it is strongly

semi-abelian. The converse is false: non-associative rings.

Theorem

A semi-abelian category is strongly semi-abelian if and only if,

whenever a subobject N of X is normal in two subobjects A,B with

A normal in X , N is normal in the join A ∨ B .
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