Aline Michel * Joint work with Marino Gran

Institut de recherche en mathématique et physique

CT2023 - July 3, 2023

^{*}Funded by a FRIA doctoral grant of the *Communauté française de Belgique*

└─The category PreOrdGrp of preordered groups

1 The category PreOrdGrp of preordered groups

- 2 An absolute Galois structure in PreOrdGrp
- **3** Generalization of the Galois theory induced by the abelianization functor

└─The category PreOrdGrp of preordered groups

Preordered group

Definition

A preordered group (G, \leq) is a group (G, +, 0) endowed with a preorder relation \leq on G which is compatible with +:

$$a \leqslant c \text{ and } b \leqslant d \Rightarrow a + b \leqslant c + d \quad \text{for } a, b, c, d \in G.$$

The category PreOrdGrp of preordered groups

Preordered group

Definition

A preordered group (G, \leq) is a group (G, +, 0) endowed with a preorder relation \leq on G which is compatible with +:

$$a \leqslant c \text{ and } b \leqslant d \Rightarrow a + b \leqslant c + d \quad \text{for } a, b, c, d \in G.$$

Example

The group \mathbb{Z} of integers with the usual order \leq : (\mathbb{Z}, \leq) (\mathbb{Z}, \leq) is a partially ordered abelian group.

Letter The category PreOrdGrp of preordered groups

Morphism of preordered groups

Definition

A morphism of preordered groups $f: (G, \leq_G) \rightarrow (H, \leq_H)$ is a group morphism $f: G \rightarrow H$ which preserves the preorder:

$$a \leq_G b \Rightarrow f(a) \leq_H f(b).$$

└─The category PreOrdGrp of preordered groups

Morphism of preordered groups

Definition

A morphism of preordered groups $f: (G, \leq_G) \rightarrow (H, \leq_H)$ is a group morphism $f: G \rightarrow H$ which preserves the preorder:

$$a \leq_G b \Rightarrow f(a) \leq_H f(b).$$

All preordered groups and morphisms between them define a category denoted by **PreOrdGrp**.

└─The category PreOrdGrp of preordered groups

Alternative definition of PreOrdGrp

Proposition

The category PreOrdGrp is isomorphic to the following category:

└─The category PreOrdGrp of preordered groups

Alternative definition of PreOrdGrp

Proposition

The category PreOrdGrp is isomorphic to the following category:

■ objects: P_G → G with P_G submonoid closed under conjugation in G Notation: (G, P_G)

└─The category PreOrdGrp of preordered groups

Alternative definition of PreOrdGrp

Proposition

The category PreOrdGrp is isomorphic to the following category:

■ objects: P_G → G with P_G submonoid closed under conjugation in G Notation: (G, P_G)

 $P_G = \{x \in G \mid 0 \leqslant x\} =$ *positive cone* of G

└─The category PreOrdGrp of preordered groups

Alternative definition of PreOrdGrp

Proposition

The category PreOrdGrp is isomorphic to the following category:

■ objects: P_G →→ G with P_G submonoid closed under conjugation in G Notation: (G, P_G)

 $P_G = \{x \in G \mid 0 \leqslant x\} =$ *positive cone* of G

• arrows: $f: (G, P_G) \rightarrow (H, P_H)$ such that $f(P_G) \subseteq P_H$:

└─The category PreOrdGrp of preordered groups

Alternative definition of PreOrdGrp

Proposition

The category PreOrdGrp is isomorphic to the following category:

■ objects: P_G → G with P_G submonoid closed under conjugation in G Notation: (G, P_G)

 $P_G = \{x \in G \mid 0 \leq x\} =$ *positive cone* of G

• arrows: $f: (G, P_G) \rightarrow (H, P_H)$ such that $f(P_G) \subseteq P_H$:

$$\begin{array}{ccc} P_G & \stackrel{\bar{f}}{\longrightarrow} & P_H \\ \downarrow & & \downarrow \\ G & \stackrel{f}{\longrightarrow} & H \end{array}$$

The category PreOrdGrp of preordered groups

Some properties

Proposition [M. M. Clementino, N. Martins-Ferreira, A. Montoli (2019)]

PreOrdGrp is complete, cocomplete and a **normal** category in the sense of Z. Janelidze (2010), that is,

- it is pointed;
- it is regular;
- any regular epimorphism is normal (i.e. a cokernel).

└─The category PreOrdGrp of preordered groups

Some properties

Proposition [M. M. Clementino, N. Martins-Ferreira, A. Montoli (2019)]

PreOrdGrp is NOT Barr-exact. Effective descent morphisms coincide with regular epimorphisms.

└─The category PreOrdGrp of preordered groups

Some properties

Proposition [M. M. Clementino, N. Martins-Ferreira, A. Montoli (2019)]

PreOrdGrp is NOT Barr-exact.

Effective descent morphisms coincide with regular epimorphisms.

Regular epimorphisms in PreOrdGrp:

└─The category PreOrdGrp of preordered groups

Some properties

Proposition

PreOrdGrp is neither protomodular nor subtractive.

1 The category PreOrdGrp of preordered groups

2 An absolute Galois structure in PreOrdGrp

3 Generalization of the Galois theory induced by the abelianization functor

An absolute Galois structure in PreOrdGrp

The full subcategory of partially ordered groups

Consider the full subcategory ParOrdGrp of partially ordered groups.

An absolute Galois structure in PreOrdGrp

The full subcategory of partially ordered groups

Consider the full subcategory ParOrdGrp of partially ordered groups.

Objects of ParOrdGrp

= preordered groups (G, \leq) such that the preorder \leq is antisymmetric

= preordered groups (G, P_G) such that the positive cone P_G is a reduced monoid

An absolute Galois structure in PreOrdGrp

A functor to ParOrdGrp

An absolute Galois structure in PreOrdGrp

A functor to ParOrdGrp

I

An absolute Galois structure in PreOrdGrp

A functor to ParOrdGrp

$$V_G = \{x \in G \mid x \in P_G \text{ and } -x \in P_G$$

$$\bigvee_{\substack{f \in G}} I(G, P_G) = ?$$

A functor to ParOrdGrp

$$N_G = \{ x \in G \mid x \in P_G \text{ and } -x \in P_G \}$$

A functor to ParOrdGrp

A functor to ParOrdGrp

$$N_G = \{x \in G \mid x \in P_G \text{ and } -x \in P_G\}$$

An absolute Galois structure in PreOrdGrp

An admissible Galois structure $\Gamma_{abs.}$

This gives rise to a reflection:

$$\Pr{eOrdGrp} \xrightarrow[H]{I} \Pr{OrdGrp}$$

An absolute Galois structure in PreOrdGrp

An admissible Galois structure $\Gamma_{abs.}$

This gives rise to a reflection:

$$\PreOrdGrp \xleftarrow{I}_{H} \PrordGrp$$

Proposition

 $\Gamma_{abs.} = (PreOrdGrp, ParOrdGrp, I, H, \mathcal{E}_{abs.}, \mathcal{Z}_{abs.})$ is a Galois structure, where

- *E*_{abs.} is the class of **all morphisms** in PreOrdGrp;
- *Z*_{abs.} is the class of **all morphisms** in ParOrdGrp.

An absolute Galois structure in PreOrdGrp

An admissible Galois structure $\Gamma_{abs.}$

This gives rise to a reflection:

$$\operatorname{PreOrdGrp} \underset{H}{\overset{I}{\longleftarrow}} \operatorname{ParOrdGrp}$$

Proposition

 $\Gamma_{abs.} = (PreOrdGrp, ParOrdGrp, I, H, \mathcal{E}_{abs.}, \mathcal{Z}_{abs.})$ is a Galois structure, where

- *E*_{abs.} is the class of **all morphisms** in PreOrdGrp;
- *Z*_{abs.} is the class of **all morphisms** in ParOrdGrp.

Proposition

 $\Gamma_{abs.}$ is admissible.

Admissibility of a Galois structure

Reminder [G. Janelidze (1990)]

A Galois structure $\Gamma=(\mathscr{C},\mathscr{F},F,U,\mathcal{E},\mathcal{Z})$ is admissible when F preserves all pullbacks of the form

where $\phi \in \mathcal{Z}$.

Admissibility of a Galois structure

Reminder [G. Janelidze (1990)]

A Galois structure $\Gamma=(\mathscr{C},\mathscr{F},F,U,\mathcal{E},\mathcal{Z})$ is admissible when F preserves all pullbacks of the form

$$\begin{array}{cccc} B \times_{UF(B)} U(X) & \xrightarrow{\pi_2} & U(X) \\ & & & & \downarrow \\ & & & & \downarrow \\ & & B & \xrightarrow{\eta_B} & UF(B) \end{array}$$

where $\phi \in \mathcal{Z}$.

Reminder

If \mathscr{C} and \mathscr{F} admit all pullbacks, $F: \mathscr{C} \to \mathscr{F}$ is a reflector, and \mathscr{E} and \mathscr{Z} are the classes of all morphisms, then

 Γ is admissible \Leftrightarrow F is semi-left-exact.

An absolute Galois structure in PreOrdGrp

Trivial extensions

Reminder

An arrow $f: A \rightarrow B$ in \mathcal{E} is a (Γ -)trivial extension when the square

$$\begin{array}{ccc} A & \stackrel{\eta_A}{\longrightarrow} & UF(A) \\ f & & & \downarrow UF(f) \\ B & \stackrel{\eta_B}{\longrightarrow} & UF(B) \end{array}$$

is a pullback.

An absolute Galois structure in PreOrdGrp

Central extensions

Reminder

An arrow $f: A \to B$ in \mathcal{E} is a (Γ -)central extension when there exists an effective descent morphism $p: E \to B$ in \mathcal{E} such that $p^*(f)$ is a (Γ -)trivial extension,

Central extensions

Reminder

An arrow $f: A \to B$ in \mathcal{E} is a (Γ -)central extension when there exists an effective descent morphism $p: E \to B$ in \mathcal{E} such that $p^*(f)$ is a (Γ -)trivial extension, that is, the left-hand square below is a pullback, where $\pi_1 = p^*(f)$ is the pullback of f along p:

An absolute Galois structure in PreOrdGrp

Normal extensions

Reminder

An arrow $f: A \to B$ in \mathcal{E} is a **(** Γ **-)**normal extension when f is an effective descent morphism and $f^*(f)$ is a (Γ -)trivial extension.

Characterization of $\Gamma_{abs.}$ -trivial and $\Gamma_{abs.}$ -central extensions

Theorem [M. Gran, A. Michel (2021)]

Let (f, \overline{f}) : $(G, P_G) \rightarrow (H, P_H)$ be a morphism in PreOrdGrp. Then:

• (f, \overline{f}) is a $\Gamma_{abs.}$ -trivial extension if and only if the restriction $\phi: N_G \to N_H$ of f to $N_G = \{x \in G \mid x \in P_G \text{ and } -x \in P_G\}$ is a group isomorphism.

Characterization of $\Gamma_{abs.}$ -trivial and $\Gamma_{abs.}$ -central extensions

Theorem [M. Gran, A. Michel (2021)]

Let (f, \overline{f}) : $(G, P_G) \rightarrow (H, P_H)$ be a morphism in PreOrdGrp. Then:

- (f, \overline{f}) is a $\Gamma_{abs.}$ -trivial extension if and only if the restriction $\phi: N_G \rightarrow N_H$ of f to $N_G = \{x \in G \mid x \in P_G \text{ and } -x \in P_G\}$ is a group isomorphism.
- (f, \overline{f}) is a $\Gamma_{abs.}$ -central extension if and only if its kernel Ker (f, \overline{f}) lies in ParOrdGrp.

An absolute Galois structure in PreOrdGrp

From preordered groups to V-groups

Remark

All these results can be generalized to V-groups (for V a commutative, unital and integral quantale).

 \rightarrow See the following article for more details: A. Michel, *Torsion theories and coverings of V-groups*, Appl. Categ. Struct. 30 (2022), 659-684.

- 1 The category PreOrdGrp of preordered groups
- 2 An absolute Galois structure in PreOrdGrp
- **3** Generalization of the Galois theory induced by the abelianization functor

Goal

Generalize the Galois structure Γ_{ab} to the context of **preordered groups**:

	Grp	PreOrdGrp
"Suitable" adjunction	$Grp \xrightarrow[u]{ab}{u} Ab$	PreOrdGrp ?
Admissible Galois	Γ _{ab}	Γ = ?
structure		
Characterization of	Central = normal	$Central \stackrel{?}{=} Normal$
central and normal	$=$ reg. epis $f: A \rightarrow B$	Description of both
extensions	s.t. $\operatorname{Ker}(f) \subseteq Z(A)$	classes ?

Generalization of the Galois theory induced by the abelianization functor

Commutative objects

Consider the full subcategory of **commutative objects** in PreOrdGrp.

 \square Generalization of the Galois theory induced by the abelianization functor

Commutative objects

Consider the full subcategory of commutative objects in PreOrdGrp.

It is the full subcategory PreOrdAb of preordered abelian groups, i.e. of preordered groups (G, P_G) such that $G \in Ab$.

The functor to the subcategory of commutative objects

The functor to the subcategory of commutative objects

The functor to the subcategory of commutative objects

$$P_{G}$$

$$\int_{G \xrightarrow{\eta_{G}}} C(G, P_{G}) = ?$$

$$C(G, P_{G}) = G/[G, G]$$

The functor to the subcategory of commutative objects

The functor to the subcategory of commutative objects

Galois structure Γ_C

This gives rise to an adjunction:

Galois structure Γ_C

This gives rise to an adjunction:

$$\begin{array}{c} C \\ PreOrdGrp \xrightarrow{C} \\ \swarrow \\ V \end{array} \xrightarrow{V} PreOrdAb. \end{array}$$

Proposition

 $\Gamma_C = (PreOrdGrp, PreOrdAb, C, V, \mathcal{E}_C, \mathcal{Z}_C)$ is an admissible Galois structure, where

- *E_C* is the class of **regular epimorphisms** in PreOrdGrp;
- **\mathbb{Z}_C** is the class of **regular epimorphisms** in PreOrdAb.

Generalization of the Galois theory induced by the abelianization functor

Abelian objects

Consider the full subcategory of abelian objects in PreOrdGrp.

Abelian objects

Consider the full subcategory of abelian objects in PreOrdGrp.

It is the full subcategory of preordered groups (G,P_G) such that $G\in \mathsf{Ab}$ and $P_G\in \mathsf{Ab}$

Abelian objects

Consider the full subcategory of abelian objects in PreOrdGrp.

It is the full subcategory of preordered groups (G, P_G) such that $G \in Ab$ and $P_G \in Ab$, i.e. it is the category **Mono**(**Ab**) of monomorphisms in the category of abelian groups.

 \square Generalization of the Galois theory induced by the abelianization functor

The functor to the subcategory of abelian objects

Consider the composite

 \square Generalization of the Galois theory induced by the abelianization functor

The functor to the subcategory of abelian objects

Consider the composite

with $A(G, P_G) = (G, grp(P_G))$ for any $(G, P_G) \in \text{PreOrdAb}$, where $grp(P_G)$ is the group completion of P_G .

The functor to the subcategory of abelian objects

 $\Rightarrow F(G, P_G) = (ab(G), grp(\eta_G(P_G))) \quad \text{ for any } (G, P_G) \in \mathsf{PreOrdGrp}$

Galois structure Γ

This gives rise to an adjunction: $F \rightarrow U$.

Galois structure Γ

This gives rise to an adjunction: $F \rightarrow U$.

The adjunction $A \rightarrow W$ is induced by the adjunction

(studied in the paper "*A Galois theory for monoids*" by A. Montoli, D. Rodelo and T. Van der Linden (2014)).

Galois structure Γ

This gives rise to an adjunction: $F \rightarrow U$.

Proposition

 $\Gamma = (\mathsf{PreOrdGrp},\mathsf{Mono}(\mathsf{Ab}),\mathsf{F},\mathsf{U},\mathcal{E},\mathcal{Z})$ is a Galois structure, where

- *E* is the class of **regular epimorphisms** in PreOrdGrp;
- **\mathbb{Z}** is the class of **regular epimorphisms** in Mono(Ab).

Characterization of Γ -central and Γ -normal extensions

Proposition

Γ is admissible.

Characterization of Γ -central and Γ -normal extensions

Proposition

Γ is admissible.

Theorem [M. Gran, A. Michel (2023)]

Let (f, \overline{f}) : $(G, P_G) \rightarrow (H, P_H)$ be a regular epimorphism in PreOrdGrp. Then, the following conditions are equivalent:

Characterization of Γ -central and Γ -normal extensions

Proposition

Γ is admissible.

Theorem [M. Gran, A. Michel (2023)]

Let (f, \overline{f}) : $(G, P_G) \rightarrow (H, P_H)$ be a regular epimorphism in PreOrdGrp. Then, the following conditions are equivalent:

1 (i)
$$\operatorname{Ker}(f) \subseteq Z(G)$$
;
(ii) for any $(x, y) \in \operatorname{Eq}(\overline{f})$, $y - x \in P_G$
(\overline{f} is a special Schreier surjection in Mon

2
$$(f, \overline{f})$$
 is a Γ -normal extension.

3 (f, \overline{f}) is a Γ -central extension.

Conclusion

	Grp	PreOrdGrp
"Suitable" adjunction	$Grp \xrightarrow{ab} \\ \downarrow \\ u \\ u \\ Ab$	$PreOrdGrp \xrightarrow[]{F} Mono(Ab)$
Admissible	Γ _{ab}	Г
Galois		(extensions = reg. epis)
structure		
Central	Reg. epis $f: A \rightarrow B$	Reg. epis (f,\overline{f}) : $(G,P_G) \rightarrow (H,P_H)$
=	s.t. $\operatorname{Ker}(f) \subseteq Z(A)$	s.t. <i>f</i> is an algebraically central ext.
normal	(f = alg. central ext.)	and \bar{f} is a special Schreier surjection

References

References

- M.M. Clementino, N. Martins-Ferreira, and A. Montoli, On the categorical behaviour of preordered groups, J. Pure Appl. Algebra 223 (2019), 4226-4245.
- M.M. Clementino, and A. Montoli, *On the categorical behaviour of V-groups*, J. Pure Appl. Algebra 225 (2021), 106550.
- M. Gran, and A. Michel, *Torsion theories and coverings of preordered groups*, Algebra Univers. 82 (22) (2021).
- M. Gran, and A. Michel, Central extensions of preordered groups, Preprint (2023).
- G. Janelidze, *Pure Galois theory in categories*, J. Algebra 132, no. 2 (1990), 270-286.
- G. Janelidze, and G.M. Kelly, *Galois theory and a general notion of central extension*, J. Pure Appl. Algebra 97 (1994), 135-161.
- Z. Janelidze, The pointed subobject functor, 3 × 3 lemmas, and subtractivity of spans, Theory Appl. Categ. 23, no. 11 (2010), 221-242.
- A. Michel, Torsion theories and coverings of V-groups, Appl. Categ. Struct. 30 (2022), 659-684.
- A. Montoli, D. Rodelo, and T. Van der Linden, A Galois theory for monoids, Theory Appl. Categ. 29, no. 7 (2014), 198-214.