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The category PreOrdGrp of preordered groups

Preordered group

Definition

A preordered group pG ,ďq is a group pG ,`, 0q endowed with a
preorder relation ď on G which is compatible with `:

a ď c and b ď d ñ a` b ď c ` d for a, b, c, d P G .

Example

The group Z of integers with the usual order ď: pZ,ďq
pZ,ďq is a partially ordered abelian group.
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The category PreOrdGrp of preordered groups

Morphism of preordered groups

Definition

A morphism of preordered groups f : pG ,ďG q Ñ pH,ďHq is a
group morphism f : G Ñ H which preserves the preorder:

a ďG b ñ f paq ďH f pbq.

All preordered groups and morphisms between them define a category
denoted by PreOrdGrp.
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The category PreOrdGrp of preordered groups

Alternative definition of PreOrdGrp

Proposition

The category PreOrdGrp is isomorphic to the following category:

objects: PG G with PG submonoid closed under
conjugation in G Notation: pG ,PG q

PG “ tx P G | 0 ď xu “ positive cone of G

arrows: f : pG ,PG q Ñ pH,PHq such that f pPG q Ď PH :

PG PH

G H

f̄

f
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The category PreOrdGrp of preordered groups

Some properties

Proposition [M. M. Clementino, N. Martins-Ferreira, A. Montoli
(2019)]

PreOrdGrp is complete, cocomplete and a normal category in the
sense of Z. Janelidze (2010), that is,

it is pointed;
it is regular;
any regular epimorphism is normal (i.e. a cokernel).
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The category PreOrdGrp of preordered groups

Some properties

Proposition [M. M. Clementino, N. Martins-Ferreira, A. Montoli
(2019)]

PreOrdGrp is NOT Barr-exact.
Effective descent morphisms coincide with regular epimorphisms.

Regular epimorphisms in PreOrdGrp:
PG PH

G H

f̄

f
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The category PreOrdGrp of preordered groups

Some properties

Proposition

PreOrdGrp is neither protomodular nor subtractive.
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An absolute Galois structure in PreOrdGrp

The full subcategory of partially ordered groups

Consider the full subcategory ParOrdGrp of partially ordered groups.

Objects of ParOrdGrp
= preordered groups pG ,ďq such that the preorder ď is antisym-
metric
= preordered groups pG ,PG q such that the positive cone PG is a
reduced monoid
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An absolute Galois structure in PreOrdGrp

A functor to ParOrdGrp

Consider then the functor I : PreOrdGrpÑ ParOrdGrp:

PG

I pG ,PG q “ ?

G
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A functor to ParOrdGrp

Consider then the functor I : PreOrdGrpÑ ParOrdGrp:

NG “ tx P G | x P PG and ´ x P PGu
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A functor to ParOrdGrp
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PG
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A functor to ParOrdGrp

Consider then the functor I : PreOrdGrpÑ ParOrdGrp:

NG “ tx P G | x P PG and ´ x P PGu

PG ηG pPG q

I pG ,PG q “ pG{NG , ηG pPG qq
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An absolute Galois structure in PreOrdGrp

An admissible Galois structure Γabs.

This gives rise to a reflection:

PreOrdGrp K ParOrdGrp
I

H

Proposition

Γabs. “ pPreOrdGrp,ParOrdGrp, I ,H, Eabs.,Zabs.q is a Galois struc-
ture, where

Eabs. is the class of all morphisms in PreOrdGrp;
Zabs. is the class of all morphisms in ParOrdGrp.

Proposition

Γabs. is admissible.
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An absolute Galois structure in PreOrdGrp

Admissibility of a Galois structure
Reminder [G. Janelidze (1990)]

A Galois structure Γ “ pC ,F ,F ,U, E ,Zq is admissible when F
preserves all pullbacks of the form

B ˆUF pBq UpX q UpX q

B UF pBq

π2

π1 Upφq

ηB

where φ P Z.

Reminder

If C and F admit all pullbacks, F : C Ñ F is a reflector, and E
and Z are the classes of all morphisms, then

Γ is admissible ô F is semi-left-exact.
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An absolute Galois structure in PreOrdGrp

Trivial extensions

Reminder

An arrow f : AÑ B in E is a (Γ-)trivial extension when the square

A UF pAq

B UF pBq

ηA

f UF pf q

ηB

is a pullback.
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An absolute Galois structure in PreOrdGrp

Central extensions

Reminder

An arrow f : A Ñ B in E is a (Γ-)central extension when there
exists an effective descent morphism p : E Ñ B in E such that p˚pf q
is a pΓ-)trivial extension,

that is, the left-hand square below is a
pullback, where π1 “ p˚pf q is the pullback of f along p:

UF pE ˆB Aq E ˆB A A

UF pE q E B.

UF pπ1q

π2

π1

ηEˆBA

f

pηE
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An absolute Galois structure in PreOrdGrp

Normal extensions

Reminder

An arrow f : A Ñ B in E is a (Γ-)normal extension when f is an
effective descent morphism and f ˚pf q is a (Γ-)trivial extension.
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An absolute Galois structure in PreOrdGrp

Characterization of Γabs.-trivial and Γabs.-central extensions

Theorem [M. Gran, A. Michel (2021)]

Let pf , f̄ q : pG ,PG q Ñ pH,PHq be a morphism in PreOrdGrp.
Then:

pf , f̄ q is a Γabs.-trivial extension if and only if the restriction
φ : NG Ñ NH of f to NG “ tx P G | x P PG and ´ x P PGu is
a group isomorphism.

pf , f̄ q is a Γabs.-central extension if and only if its kernel
Kerpf , f̄ q lies in ParOrdGrp.
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An absolute Galois structure in PreOrdGrp

From preordered groups to V -groups

Remark

All these results can be generalized to V-groups (for V a commu-
tative, unital and integral quantale).

Ñ See the following article for more details:
A. Michel, Torsion theories and coverings of V -groups, Appl. Categ.
Struct. 30 (2022), 659-684.
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Generalization of the Galois theory induced by the abelianization functor

1 The category PreOrdGrp of preordered groups

2 An absolute Galois structure in PreOrdGrp

3 Generalization of the Galois theory induced by the
abelianization functor



GALOIS STRUCTURES IN PREORDERED GROUPS

Generalization of the Galois theory induced by the abelianization functor

Goal

Generalize the Galois structure Γab to the context of preordered groups:

Grp PreOrdGrp

“Suitable” Grp K Ab
ab

u
PreOrdGrp K ?

adjunction
Admissible Galois Γab Γ “ ?
structure

Characterization of Central = normal Central ?
“ Normal

central and normal = reg. epis f : A � B Description of both
extensions s.t. Kerpf q Ď Z pAq classes ?
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Generalization of the Galois theory induced by the abelianization functor

Commutative objects

Consider the full subcategory of commutative objects in PreOrdGrp.

It is the full subcategory PreOrdAb of preordered abelian groups,
i.e. of preordered groups pG ,PG q such that G P Ab.
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Generalization of the Galois theory induced by the abelianization functor

The functor to the subcategory of commutative objects

Consider then the functor C : PreOrdGrpÑ PreOrdAb:

PG

C pG ,PG q “ ?

G
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Generalization of the Galois theory induced by the abelianization functor

The functor to the subcategory of commutative objects
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Generalization of the Galois theory induced by the abelianization functor

The functor to the subcategory of commutative objects

Consider then the functor C : PreOrdGrpÑ PreOrdAb:

PG ηG pPG q

C pG ,PG q “ pabpG q, ηG pPG qq

G abpG q “ G{rG ,G s

η̄G
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Generalization of the Galois theory induced by the abelianization functor

Galois structure ΓC

This gives rise to an adjunction:

PreOrdGrp K PreOrdAb.
C

V

Proposition

ΓC “ pPreOrdGrp,PreOrdAb,C ,V , EC ,ZC q is an admissible Galois
structure, where

EC is the class of regular epimorphisms in PreOrdGrp;
ZC is the class of regular epimorphisms in PreOrdAb.



GALOIS STRUCTURES IN PREORDERED GROUPS

Generalization of the Galois theory induced by the abelianization functor

Galois structure ΓC

This gives rise to an adjunction:

PreOrdGrp K PreOrdAb.
C

V

Proposition

ΓC “ pPreOrdGrp,PreOrdAb,C ,V , EC ,ZC q is an admissible Galois
structure, where

EC is the class of regular epimorphisms in PreOrdGrp;
ZC is the class of regular epimorphisms in PreOrdAb.



GALOIS STRUCTURES IN PREORDERED GROUPS

Generalization of the Galois theory induced by the abelianization functor

Abelian objects

Consider the full subcategory of abelian objects in PreOrdGrp.

It is the full subcategory of preordered groups pG ,PG q such that
G P Ab and PG P Ab, i.e. it is the category MonopAbq of monomor-
phisms in the category of abelian groups.
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Generalization of the Galois theory induced by the abelianization functor

The functor to the subcategory of abelian objects

Consider the composite

PreOrdGrp PreOrdAb MonopAbqC

F

A

with ApG ,PG q “ pG , grppPG qq for any pG ,PG q P PreOrdAb, where
grppPG q is the group completion of PG .
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Generalization of the Galois theory induced by the abelianization functor

The functor to the subcategory of abelian objects

ñ F pG ,PG q “ pabpG q, grppηG pPG qqq for any pG ,PG q P PreOrdGrp

PG ηG pPG q grppηG pPG qq

G abpG q abpG q

η̄G

η̂G

jG

ηG

ηG
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Generalization of the Galois theory induced by the abelianization functor

Galois structure Γ

This gives rise to an adjunction: F % U.

PreOrdGrp K PreOrdAb K MonopAbq
C

F

V

A

W

U

The adjunction A %W is induced by the adjunction

Mon K Grp
grp

fgt

(studied in the paper “A Galois theory for monoids” by A. Montoli,
D. Rodelo and T. Van der Linden (2014)).
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Generalization of the Galois theory induced by the abelianization functor

Galois structure Γ

This gives rise to an adjunction: F % U.

PreOrdGrp K PreOrdAb K MonopAbq
C

F

V

A

W

U

Proposition

Γ “ pPreOrdGrp,MonopAbq,F ,U, E ,Zq is a Galois structure,
where

E is the class of regular epimorphisms in PreOrdGrp;
Z is the class of regular epimorphisms in MonopAbq.
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Generalization of the Galois theory induced by the abelianization functor

Characterization of Γ-central and Γ-normal extensions

Proposition

Γ is admissible.

Theorem [M. Gran, A. Michel (2023)]

Let pf , f̄ q : pG ,PG q � pH,PHq be a regular epimorphism in
PreOrdGrp. Then, the following conditions are equivalent:

1 (i) Kerpf q Ď Z pG q;
(ii) for any px , yq P Eqpf̄ q, y ´ x P PG

(f̄ is a special Schreier surjection in Mon).

2 pf , f̄ q is a Γ-normal extension.
3 pf , f̄ q is a Γ-central extension.
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Generalization of the Galois theory induced by the abelianization functor

Conclusion

Grp PreOrdGrp

“Suitable” Grp K Ab
ab

u
PreOrdGrp K MonopAbq

F

Uadjunction
Admissible Γab Γ
Galois (extensions = reg. epis)

structure
Central Reg. epis f : A � B Reg. epis pf , f q : pG ,PG q� pH,PHq

= s.t. Kerpf q Ď Z pAq s.t. f is an algebraically central ext.
normal (f = alg. central ext.) and f̄ is a special Schreier surjection
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