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MOTIVATION

Motivations: Areas of application:
» to find analogs of the > metric spaces,
theorem) from set theory in other categories, representation spaces
» for systematic and convenient metrization of » metric measure spaces
families of equivalence classes of spaces, like » Riemannian manifolds. moduli

the Gromov-Hausdorff space, moduli spaces,

: spaces, manifolds with currents, etc.
and representation spaces,

» new perspective on many other

> to prove general theorems in the developed areas

categorical framework that give insights and
concrete useful applications in many different
areas of mathematics,

> to work with categories with large classes of
morphisms.



MOTIVATION: EXAMPLE OF METRIZATION
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Definition 26
A pointed measure on a topological space Z is a pair (i, p) where p € Z and p is a
Borel measurc on Z. A pointed subset of Z is a pair (X, p) where X C Z and p € Z.

Definition 27
Given a subset F of a metric space Z, let N3 (F, €) denote the open e-ncighborhood
of FinZ.
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Definition 28
We say that two pointed measures (41, p1). (2. p2) on a metric space Z are (¢, R)-
related if, for every closed F; C Bz(pi. R).

W (F) < pa(NS(FLo) +e ma(Fa) < (N3(Ere)) +e.

and distz(p1. pa) < €. We say two pointed subsets (X1, 1), (Xa. p2) of Z are (¢, R)-
related if distz (1, p) < € and

Bz(p1.R) N X; C Ny(Xz,€), Bz(p2. R) N X, C Ny(Xy.€).

A sequence {(X;, i)}, of pointed closed subscts of Z converges (o (Xoo, poc) in
the pointed Hausdorff topology if, for every e, R > 0, there is an I such that i > I
implies that (Xi. pi) and (Xoo, poo) are (€, R)-related.
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(e, R)-related as pointed measures. Sor
Let Ne,g(M, p) denote the set of all [M”, ] € M" such that (M, ') s (¢, R)-
related to (M. p) for some ¢ < ¢ and R > R. We show below that this is an open
set.

Definition 30
A pseudometric d on a set X is a function d : X x X — [0,00) satisfying all the
properties of a metric with onc cxception: it may happen that d(x, y) = 0 cven if
x#y.

LEMMA B.1
Let Z be a set equal to a disjoint union Z = | |3°, M; of its subsets M;. Suppose that
Jfor each i there is a metric disty; on M;, suppose that there is a collection {L;}jc,
of subsets L; C Z, and suppose that for each j there is a pseudometric disty,;
on Lj. Suppose as well that if x,y € Lj 0\ M; for some i, j, then distag; (x,y) =
distz; (x, y). Lastly, we assume that for any x,y € Z there is a sequence x = x1.,%2,
<2 X = y such that for eachi either x;,x; 1 € My for some k or x;,X;41 € L for
some j. Then there is a pseudometric distz on Z such that

distz(x,y) = disty, (. ) for any x,y € My, for any i;

*  distz(x,y) <distz; (x,y) forany x,y € L, for any j.
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DEFINITIONS |

A seminorm on a category C is a function
|.1l: €4 = [0, 00] such that

(N1) [lidx|| = O for every object X € C,,
(N2) [ gll < [l + [lgll-

An isomorphism f: X — Y with inverse
g: Y — Xis called a norm isomorphism if

Il = llgll = 0.
A seminorm is called a norm if for all objects
X, Y the following holds

(N3) if there are modulators f: X — Y and
g: Y — X, then X and Y are norm
isomorphic; and

(N4) if for all ¢ > 0 thereis f: X — Y with
|If]| < e, thenthereis f: X — Y with
Il = 0.

Induced metric:

d+

”.”(X, Y) = % (d”_”(X, Y)+ d||_||(Y,X))

Left dual:
If]]*" = sufp“ (Il =15 £

(where sup? f(x) = sup{a} U{f(x) | x € X })
xeX

Alternative approaches:
> Kubis (2017)
» Perrone (2023)



DEFINITIONS I
NORMS FROM CAPACITIES

By a concrete category with generalized subobjects
(C; GS) we understand a concrete category (C, F) additionally
endowed with an extension

SC
F
ST N
Cc —F . SET
and a selection function GS assigning to each X € C, a subset

of Sub(SX), called (generalized) subobjects , such that

1. for each X € C, the order preserving induced functor
| GS|(X): GS(X) — Sub(F(X)), Cw (Fs)1(C)

is well-defined.,

2. iff: X - Yand C € GS(Y), then there is a B € GS(X)
(written B = f*(C)) with |B| = (Ff)*(|C|), that is maximal
in GS(Y) with this property.

Note: |C| := (FsC)(source C) C F(X).

A precapacity wona
concrete category with
subobjects (C; GS) is a function

c: || GS(X)— [—o0,00]
XeSC,

and it is called a capacity if it
is monotone or antimonotone,
i.e. for B, C € GS(X) with

B C C we have

c(source B) < c(source C).

Each precapacity gives rise to
a norm by the assignment

Ifllc .= sup® cf*C — c(C).
CeGS(Y),
c(C)<oo



METRIC SPACES

MET = compact metric spaces

M = (M, drq) and multivalued maps.

SMET
[ N
MET —— SET

F(M) =P(M x M)
F(f)=AP{(y,y) |y €flx],y €
fix'1, (x,x') € P},

SMET = SET

GS(M) = P(F(M))

Caiam = M. sup? inf du(p).
PeA peP

[fllgiam = sup®  |xx|—|yy|.
x,x'eM,
yeflxly' €f[x’]

Generalizing a classical theorem of Feudenthal and Hurewicz
we show that || f||giam iS @ norm on MET. Moreover the metric

dg...,, induced by this norm is almost the Gromov-Hausdorff

distance dgy; to be precise the identity map

isometry classes of isometry classes of
({compact metric spaces}’ dGH) - ({compact metric spaces} ddlam)

is 2-Lipschitz with Cauchy continuous inverse.

Lemma behind

Let M, M’ be compact metric spaces. For all L, / with

I > L > 0 it holds for sufficiently small § > 0 that for every
h: M’ — M’ with Hthiam < ¢ and ddiam(M/,M) < Lwe
have that

» h.(M)is I-dense, and
> ||h|iL,, < 41+ C5 where C = C(I — L, M).

Core of the Proof
N PM G A1) Lo, [0, o)



FUTURE WORK

Current state: Insall and Luckhardt (2021). » Define a norm on this category by means
New version under way. of a Choquet style integral: For a directed
» Generalize lemma from last slide. Apply to set | = (/,<) and an order preserving
other categories (approximation theorems function F: | — [0, 1], thought of as the
in its own rights). distributiorl oia probability measure, set
> starting with a normed category C define for f € C[X, Y]
a normed completion of the category:
Objects are defined by some directed /f(i)d/—' = /1 — F(sup{i| f(i) <t})dt
igdex category / and a morphism
X: | — T/C satisfying the Cauchy where f(i) == inf{|lg|| | g €
condition (compare Kubi$, 2017, Def. 3.3): C[X;, Y;] with ¢ji(g) = pr; f }, where ¢j is
g the universal map
Ve >0:3i.: Vi— i withi > i.: || X5, e. CIX;, Y] — colimje; C[X;, Y.
The set of morphisms between X and Y is > Generalize the notion of a normed
given by all category to 2-categories. This
fle C[X, Y] = lim; colim; C[X;, Y]] such generalization should for instance capture

that |imsup,-/-H)‘j"||*L < |imsup||f/H < 0. coarse structure.
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