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Many geometries, one language

This is a tough question... and we don’t have an answer

BUT

Operads generate geometrical theories

new models of geometries described with tangent categories
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Tangent categories

“Tangent category theory

is a categorical language

for differential geometry.”

Rosicky 1984

Cockett, Cruttwell 2014
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A projection p
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Tangent categories

Categories with biproducts

Every category with biproducts has a canonical tangent structure
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tangent categories.”

Cockett, Lemay, Lucyshyn-Wright 2020
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Tangent monads

A tangent category

A monad

A distributive law

A tangent monad is a monad is the 2-category of tangent categories



Tangent monads

Theorem.
The Eilenberg-Moore category of a 

tangent monad is a tangent category. 

Cockett, Lemay, Lucyshyn-Wright 2020



Tangent monads

Theorem.
The Eilenberg-Moore category of a 

tangent monad is a tangent category. 

Cockett, Lemay, Lucyshyn-Wright 2020



Tangent monads

Theorem.
The Eilenberg-Moore category of a 

tangent monad is a tangent category. 

Cockett, Lemay, Lucyshyn-Wright 2020



Tangent monads
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Theorem.
Let (𝑋, 𝐵) be the tangent category of 

biproducts. A tangent monad (𝑆, 𝜆) over 

(𝑋, 𝐵) is equivalent to a coCartesian

differential monad, that is a monad 𝑆
equipped with a differential combinator:

𝜕: 𝑆𝑋 → 𝑆(𝑋 ⊕ 𝑋)

Ikonicoff, Lemay 2021

Ikonicoff, Lanfranchi, Lemay 2023
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Tangent monads

Theorem.
Let 𝑋 be the category with biproducts. If 

(𝑆, 𝜕) is a cCDM over 𝑋, then 𝐴𝑙𝑔𝑆 is a 

tangent category.

Moreover, if 𝐴𝑙𝑔𝑆 has reflexive 

coequalizers then also 𝐴𝑙𝑔𝑆
𝑜𝑝

is a tangent 

category.

Cockett, Lemay, Lucyshyn-Wright 2020
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Operads are tangent monads

“Operads are

machines that produce

geometrical theories.”
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Operads generate tangent categories Ikonicoff, Lanfranchi, Lemay 2023

Theorem.
Let 𝑃 be an operad.

The categories 𝐴𝑙𝑔𝑃 and 𝐴𝑙𝑔𝑃
𝑜𝑝

are 

tangent categories.
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Thanks.

The Rosický Tangent Categories of Algebras over an Operad

https://arxiv.org/abs/2303.05434
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