Birkhoff's variety theorem for relative algebraic theories

Yuto Kawase

Kyoto University

CT 2023

Abstract

Main theorem I (informal)

```
(Single-sorted) algebraic theories = finitary monads on Set

\downarrow generalize

\mathscr{A}-relative algebraic theories = finitary monads on \mathscr{A} (\mathscr{A}:LFP category)
```

Here, we define "A-relative algebraic theory" via partial Horn theory.

Main theorem II (informal) Birkhoff's variety the

Birkhoff's variety theorem relative to Set \downarrow generalize Birkhoff's variety theorem relative to \mathscr{A} (\mathscr{A} :LFP category)

Contents

Finitary monads and algebraic theories

2 Locally finitely presentable categories and partial Horn logic

3 Relative algebraic theories

Birkhoff's variety theorem

3 Relative algebraic theories

4 Birkhoff's variety theorem

Definition

A (single-sorted) algebraic theory, which is also called an equational theory, consists of:

- a set Ω of *operations*,
- for each $\omega \in \Omega$, a natural number $\operatorname{ar}(\omega) \in \mathbb{N}$,
- a set E of equations.

Definition

```
Let (\Omega, E) be a single-sorted algebraic theory. A model of (\Omega, E) consists of:

• a set A,

• for each \omega \in \Omega, a mapping \llbracket \omega \rrbracket_A : A^{\operatorname{ar}(\omega)} \to A.
```

satisfying all equations in E.

There is a classical result about the correspondence between algebraic theories and finitary monads.

Fact

The following two classes of categories coincide.

- Categories of models of single-sorted algebraic theories
- Eilenberg-Moore categories of finitary monads on Set

single-sorted algebraic theories = finitary monads on $\mathbf{Set}!$

More is true:

- \bullet single-sorted algebraic theories = finitary monads on ${\bf Set}$
- S-sorted algebraic theories = finitary monads on \mathbf{Set}^S
- "ordered" algebraic theories = finitary monads on Pos [Adámek, Ford, Milius, Schröder, 2021]

In this talk,

Set, Set^S, Pos
$$\stackrel{\text{generalize}}{\longrightarrow}$$
 locally finitely presentable (LFP) categories

2 Locally finitely presentable categories and partial Horn logic

3 Relative algebraic theories

4 Birkhoff's variety theorem

LFP categories are characterized as categories of models of various kinds of logical theory.

Fact

The following classes of categories coincide:

- LFP categories,
- Categories of models of cartesian theories,
- Categories of models of essentially algebraic theories,
- Categories of models of partial Horn theories.

A small category ${\mathscr C}$ consists of...

- a set ob \mathscr{C} ("objects"),
- a set $\operatorname{mor} \mathscr{C}$ ("morphisms"),
- a function $\operatorname{id} \colon \operatorname{ob} \mathscr{C} \to \operatorname{mor} \mathscr{C}$ ("identities"),
- a function d: $\operatorname{mor} \mathscr{C} \to \operatorname{ob} \mathscr{C}$ ("domain"),
- \bullet a function $c\colon \mathrm{mor}\mathscr{C}\to \mathrm{ob}\mathscr{C}$ ("codomain"), and
- a partial function $\circ: \operatorname{mor} \mathscr{C} \to \operatorname{mor} \mathscr{C}$ ("composition").
- We can define "the theory of small categories" as a partial Horn theory.
- Partial Horn theory = a logical theory which can deal with partial functions (and relations).

We introduce partial Horn theory.

Definition

A multi-sorted first-order signature (or S-sorted signature) Σ consists of:

- $\bullet\,$ a set S of sorts,
- $\bullet\,$ a set Σ_f of function symbols,
- $\bullet\,$ a set Σ_r of relation symbols

such that

- for each $f \in \Sigma_{\mathbf{f}}$ an arity $f: s_1 \times \cdots \times s_n \to s \, (s_i, s \in S)$ is given,
- for each $R \in \Sigma_r$ an arity $R: s_1 \times \cdots \times s_n \ (s_i \in S)$ is given.

Let Σ be an S-sorted signature.

- A term $\tau ::= x \mid f(\tau_1, \ldots, \tau_n)$, where $f \in \Sigma_f$;
- A Horn formula $\varphi ::= \top | \varphi \land \varphi' | \tau = \tau' | R(\tau_1, \dots, \tau_n)$, where $R \in \Sigma_r$;
- A context $\cdots \vec{x} = (x_1, \dots, x_n)$ (a finite tuple of distinct variables).

The notation $\vec{x}.\varphi$ [resp. $\vec{x}.\tau$] means that all variables of φ [τ] are in the context \vec{x} . (Horn formula [term]-in-context)

Definition

 $\textcircled{O} A Horn sequent over \Sigma is an expression of the form$

$$\varphi \vdash \vec{x} \psi$$
 (" φ implies ψ ")

 $(\varphi,\psi$ are Horn formulas over Σ in the same context $ec{x}.)$

2 A partial Horn theory \mathbb{T} over Σ is a set of Horn sequents over Σ .

What is the difference between ordinary Horn theory and partial Horn theory? \rightsquigarrow It lies in the concept of models.

	(ordinary) Horn theory	partial Horn theory
Axiom	Horn sequent $\varphi \vdash \vec{x} \psi$	Horn sequent $arphi \vdash \stackrel{ec{x}}{\vdash} \psi$
Interpretation of function symbols	total map $M_{\vec{s}} \stackrel{[\![f]\!]_M}{\to} M_s$	partial map $M_{ec{s}} \stackrel{\llbracket f \rrbracket_{\mathcal{M}}}{\longrightarrow} M_s$
Interpretation of relation symbols	subset $\llbracket R \rrbracket_M \subseteq M_{\vec{s}}$	subset $\llbracket R \rrbracket_M \subseteq M_{ec s}$
Validity of φ	" $arphi$ holds."	"All terms in $arphi$ are defined and $arphi$ holds."
Validity of $\varphi \vdash \vec{\vec{x}} \psi$	"If $arphi$ holds then ψ holds."	"If all terms in φ are defined and φ holds, then all terms in ψ are defined and ψ holds."

Especially,

An equation $\tau = \tau$ holds iff the value of the partial map $\llbracket \tau \rrbracket_M$ is defined.

So, we will use the abbreviation $\tau \downarrow$ for $\tau = \tau$.

Notation

Let $\mathbb T$ be a partial Horn theory over an S-sorted signature $\Sigma.$

 $\mathbb{T}\text{-}\mathrm{PMod}\,$: the category of (partial) models of \mathbb{T}

Fact (well-known)

A category \mathscr{A} is LFP iff there exists a partial Horn theory \mathbb{T} satisfying $\mathscr{A} \simeq \mathbb{T}\text{-}\mathrm{PMod}$.

Example (small categories)

We can define the partial Horn theory \mathbb{T}_{cat} of small categories as follows: The $S := \{ob, mor\}$ -sorted signature Σ_{cat} consists of:

 $\mathrm{id}:\mathrm{ob}\to\mathrm{mor},\quad \mathrm{d}:\mathrm{mor}\to\mathrm{ob},\quad \mathrm{c}:\mathrm{mor}\to\mathrm{ob},\quad \circ:\mathrm{mor}\times\mathrm{mor}\to\mathrm{mor}.$

The partial Horn theory \mathbb{T}_{cat} over Σ_{cat} consists of:

$$\begin{array}{c} \top \stackrel{}{\vdash} \stackrel{x: \mbox{ obs}}{\to} \mbox{ id}(x) \downarrow, & (\mbox{ id is total. }) \\ \\ \top \stackrel{f: \mbox{ mor}}{\vdash} \mbox{ d}(f) \downarrow \wedge \mbox{ c}(f) \downarrow, & (\mbox{ d and c are total. }) \\ \\ \mbox{ d}(g) = \mbox{ c}(f) \stackrel{g, f: \mbox{ mor}}{\to} \mbox{ (}g \circ f) \downarrow, \\ \\ (g \circ f) \downarrow \stackrel{g, f: \mbox{ mor}}{\to} \mbox{ d}(g) = \mbox{ c}(f), \end{array}$$

and so on.

 \rightsquigarrow We have $\mathbb{T}_{cat}\text{-}PMod \cong \mathbf{Cat}$.

2 Locally finitely presentable categories and partial Horn logic

③ Relative algebraic theories

4 Birkhoff's variety theorem

Relative algebraic theories

In this part, we fix a partial Horn theory S over an S-sorted signature Σ . Now, we present a new "algebraic concept" relative to S.

Definition ([K])

A S-relative signature consists of:

- a set Ω of operators;
- for each $\omega \in \Omega$, a Horn formula-in-context $\vec{x}.\varphi$, written $ar(\omega)$ and called *arity of* ω ;
- for each $\omega \in \Omega$, a sort $s \in S$, written $type(\omega)$ and called *type of* ω .

Given S-relative signature Ω , we can extend Σ to an S-sorted signature $\Sigma + \Omega$ by adding $\omega \in \Omega$ as a function symbol $\omega: s_1 \times \cdots \times s_n \to s$, where $\operatorname{ar}(\omega) = (x_1:s_1, \ldots, x_n:s_n).\varphi$ and $\operatorname{type}(\omega) = s$.

Definition ([K])

2

- A Horn sequent $\varphi \vdash \vec{x} \psi$ over $\Sigma + \Omega$ is called an <u>S</u>-relative judgement if φ is over Σ .
 - An S-relative algebraic theory consists of:
 - an S-relative signature Ω ,
 - a set E of \mathbb{S} -relative judgements.

Relative algebraic theories

 $\mathbb S:$ a partial Horn theory over an $S\text{-sorted signature }\Sigma.$

Definition ([K])

Let Ω be an S-relative signature. An $\Omega\text{-algebra}\ \mathbb{A}$ consists of:

- a partial \mathbb{S} -model A,
- for each $\omega \in \Omega$, a total map $\llbracket \omega \rrbracket_{\mathbb{A}} : \llbracket \operatorname{ar}(\omega) \rrbracket_{A} \to A_{\operatorname{type}(\omega)}.$

Definition ([K])

An Ω -algebra \mathbb{A} is called a model of an \mathbb{S} -relative algebraic theory (Ω, E) if all \mathbb{S} -relative judgements belonging to E are valid in \mathbb{A} .

Notation

Let (Ω, E) be an $\mathbb S\text{-relative algebraic theory.}$

 $Alg(\Omega, E)$: the category of models of (Ω, E) and $(\Sigma + \Omega)$ -homomorphisms

 $\mathbb{S}:$ a partial Horn theory

In \mathbb{S} -relative algebraic theory ...

- Each operator $\omega \in \Omega$ needs not be total, but its domain must be defined by "S's language."
- We can use (Horn) implications as axioms, but its precondition must not contain any operator
 ω ∈ Ω. Preconditions must be written in "S's language."

Relative algebraic theories

 \mathbb{S} : a partial Horn theory

Main theorem I [K]

The following are equivalent for a category \mathscr{C} .

- \mathfrak{G} is a category of models of an S-relative algebraic theory, i.e., there exists an S-relative algebraic theory (Ω, E) satisfying $\mathscr{C} \simeq Alg(\Omega, E)$.

 $\mathbb{S}\text{-relative algebraic theories} = \text{finitary monads on } \underbrace{\mathbb{S}\text{-}PMod}_{\text{an arbitrary LFP category}}$

 \uparrow generalize

(single-sorted) algebraic theories = finitary monads on \mathbf{Set}

Corollary (well-known)

Cat is finitary monadic over Quiv (the category of quivers, or directed graphs).

Proof.

Define the partial Horn theory $\mathbb{S}_{\mathrm{quiv}}$ of quivers as follows:

$$S_{\text{quiv}} := \{ \mathbf{e}, \mathbf{v} \}, \quad \Sigma_{\text{quiv}} := \{ \mathbf{s}, \mathbf{t} : \mathbf{e} \to \mathbf{v} \}, \quad \mathbb{S}_{\text{quiv}} := \{ \top \vdash f : \mathbf{e} \\ \mathbf{s}(f) \downarrow \land \mathbf{t}(f) \downarrow \}.$$

Then, we can define an \mathbb{S}_{quiv} -relative algebraic theory (Ω, E) such that $Alg(\Omega, E) \simeq \mathbf{Cat}$. $\Omega := \{\circ, \mathrm{id}\}:$

$$ar(\circ) := (g, f : e).\mathbf{s}(g) = \mathbf{t}(f), \quad type(\circ) := e;$$

$$ar(id) := (x : v).\mathsf{T}, \quad type(id) := e;$$

$$E := \begin{cases} \top \vdash x : v \quad \mathrm{s}(\mathrm{id}(x)) = x \wedge \mathrm{t}(\mathrm{id}(x)) = x, \\ \mathbf{s}(g) = \mathbf{t}(f) \vdash g, f : e \quad \mathrm{s}(g \circ f) = \mathrm{s}(f) \wedge \mathrm{t}(g \circ f) = \mathrm{t}(g), \\ \top \vdash f : e \quad f \circ \mathrm{id}(\mathrm{s}(f)) = f \wedge \mathrm{id}(\mathrm{t}(f)) \circ f = f, \\ \mathbf{s}(h) = \mathbf{t}(g) \wedge \mathbf{s}(g) = \mathbf{t}(f) \stackrel{h, g, f : e}{\vdash} (h \circ g) \circ f = h \circ (g \circ f) \end{cases}$$

Our main theorem finishes the proof.

2 Locally finitely presentable categories and partial Horn logic

3 Relative algebraic theories

Fact (Birkhoff's variety theorem)

 (Ω, E) : a single-sorted algebraic theory. $\mathscr{E} \subseteq Alg(\Omega, E)$: fullsub. Then, the following are equivalent.

• \mathscr{E} is definable by equations, i.e., $\mathscr{E} = Alg(\Omega, E + {}^{\exists}E')$.

- **2** $\mathscr{E} \subseteq Alg(\Omega, E)$ is closed under:
 - products,
 - subobjects,
 - surjective images.

Fact (multi-sorted version, existing work)

 $(\Omega,E):$ an S-sorted algebraic theory. $\mathscr{E}\subseteq Alg(\Omega,E):$ fullsub. Then, the following are equivalent.

- \mathscr{E} is definable by equations, i.e., $\mathscr{E} = Alg(\Omega, E + {}^{\exists}E')$.
- **2** $\mathscr{E} \subseteq Alg(\Omega, E)$ is closed under:
 - products,
 - subobjects,
 - surjective images,
 - filtered colimits.

Birkhoff's variety theorem

Question

Is it possible to generalize Birkhoff's theorem to our relative algebraic theories?

Birkhoff's variety theorem

 \mathbb{S} : a partial Horn theory over an S-sorted signature Σ .

Proposition

Let (Ω, E) be an S-relative algebraic theory. Then, $Alg(\Omega, E + E') \subseteq Alg(\Omega, E)$ is closed under:

- products,
- filtered colimits.

In general, $Alg(\Omega, E + E') \subseteq Alg(\Omega, E)$ is not closed under:

- surjections (surjective images),
- subobjects.

We will modify them as follows:

Birkhoff's variety theorem

 \mathbb{S} : a partial Horn theory over an S-sorted signature Σ .

Main theorem II [K]

Let (Ω, E) be an S-relative algebraic theory. Consider the forgetful functor $U: Alg(\Omega, E) \to S-PMod$. Then, the following are equivalent for a full subcategory $\mathscr{E} \subseteq Alg(\Omega, E)$.

() There exists a set of S-relative judgements E' satisfying $\mathscr{E} = Alg(\Omega, E + E')$.

- $@ \ \mathscr{E} \subseteq Alg(\Omega, E) \text{ is closed under:}$
 - products,
 - Σ -closed subobjects,

U-retracts, (A morphism p is called a U-retraction if U(p) is a retraction.)

filtered colimits.

This generalizes existing Birkhoff's theorem in the following sense:

Birkhoff's variety theorem: closed monomorphisms

 \mathbb{T} : a partial Horn theory over an S-sorted signature Σ .

Definition ([K])

A subobject $A \subseteq B$ in T-PMod is called T-closed (or Σ -closed) if the following diagrams form pullback squares for any $f, R \in \Sigma$.

$$\begin{array}{cccc} A_{s_1} \times \dots \times A_{s_n} & \longleftrightarrow & \operatorname{Dom}(\llbracket f \rrbracket_A) & & A_{s_1} \times \dots \times A_{s_n} & \longleftrightarrow & \llbracket R \rrbracket_A \\ & & & & \downarrow & & \downarrow & & \downarrow \\ B_{s_1} \times \dots \times B_{s_n} & \longleftrightarrow & \operatorname{Dom}(\llbracket f \rrbracket_B) & & B_{s_1} \times \dots \times B_{s_n} & \longleftrightarrow & \llbracket R \rrbracket_B \end{array}$$

Definition (informal)

 $A \subseteq B \text{ is } \Sigma\text{-closed} \quad \stackrel{\mathrm{def}}{\Leftrightarrow} \quad \text{all structures of } A \text{ are induced from those of } B.$

$$S := \{*\}, \quad \Sigma_{\text{mon}} := \{e : 1 \to *, \quad \cdot : * \times * \to *\},$$

$$\mathbb{I}_{\mathrm{mon}} := \left\{ \begin{array}{ccc} \top \vdash & e \downarrow, & \top \vdash & x, y \downarrow, \\ \top \vdash & x, y, z & (x \cdot y) \cdot z = x \cdot (y \cdot z), \\ \top \vdash & x & x \cdot e = x = e \cdot x \end{array} \right\}.$$

Then, we have $\mathbb{T}_{mon}\text{-}PMod \cong Mon$.

An inclusion $\mathbb{N} \hookrightarrow \mathbb{Z}$ in \mathbf{Mon} is $\mathbb{T}_{\mathrm{mon}}\text{-closed}.$

$$\Sigma'_{\mathrm{mon}} := \Sigma_{\mathrm{mon}} + \{ \bullet^{-1} : * \to * \},$$

$$\mathbb{T}'_{\mathrm{mon}} := \mathbb{T}_{\mathrm{mon}} + \begin{cases} x^{-1} \downarrow \bigsqcup{x} x^{-1} \cdot x = e = x \cdot x^{-1}, \\ x \cdot y = e = y \cdot x \bigsqcup{x, y} x^{-1} = y \end{cases} \end{cases}$$

Then, we have $\mathbb{T}'_{\mathrm{mon}}\operatorname{-PMod}\cong\mathbf{Mon}.$

The inclusion $\mathbb{N} \hookrightarrow \mathbb{Z}$ in \mathbf{Mon} is not $\mathbb{T}'_{\mathrm{mon}}\text{-closed}.$

 $\mathbb{T}\text{-closedness}$ depends on $\mathbb{T}!$

 $\mathbb S:$ a partial Horn theory over an S-sorted signature $\Sigma.$

Main theorem II (recall)

Let (Ω, E) be an S-relative algebraic theory. Consider the forgetful functor $U : Alg(\Omega, E) \to S$ -PMod. Then, the following are equivalent for a full subcategory $\mathscr{E} \subseteq Alg(\Omega, E)$.

() There exists a set of S-relative judgements E' satisfying $\mathscr{E} = Alg(\Omega, E + E')$.

$$@ \ \mathscr{E} \subseteq Alg(\Omega, E) \text{ is closed under:}$$

- products,
- Σ -closed subobjects, \leftarrow depending on syntax
- U-retracts,
- filtered colimits.

References

- [ARV11] J. Adámek, J. Rosický, and E. M. Vitale. Algebraic theories. Vol. 184. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2011.
- [AR94] J. Adámek and J. Rosický. *Locally presentable and accessible categories*. Vol. 189. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1994.
- [Adá+21] J. Adámek et al. "Finitary monads on the category of posets". In: Math. Structures Comput. Sci. 31.7 (2021), pp. 799–821.
- [Joh02] P. T. Johnstone. *Sketches of an elephant: a topos theory compendium. Vol. 2.* Vol. 44. Oxford Logic Guides. The Clarendon Press, Oxford University Press, Oxford, 2002.
- [Kaw23] Y. Kawase. Birkhoff's variety theorem for relative algebraic theories. 2023. arXiv: 2304.04382 [math.CT].
- [KP93] G. M. Kelly and A. J. Power. "Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads". In: J. Pure Appl. Algebra 89.1-2 (1993), pp. 163–179.
- [PV07] E. Palmgren and S. J. Vickers. "Partial horn logic and Cartesian categories". In: Ann. Pure Appl. Logic 145.3 (2007), pp. 314–353.

The definition of homomorphisms

Definition ([PV07])

A Σ -homomorphism $h: M \to N$ between partial Σ -structures consists of:

 $\bullet\,$ a total map $h_s:M_s\to N_s$ for each sort $s\in S$

such that for each function symbol $f: s_1 \times \cdots \times s_n \to s$ in Σ and relation symbol $R: s_1 \times \cdots \times s_n$ in Σ , there exist total maps (dashed arrows) making the following diagrams commute.

$$N_{s_1} \times \cdots \times N_{s_n} \longleftrightarrow \llbracket R \rrbracket_N$$

An example of ordered algebra

Example (posets)

We present the partial Horn theory \mathbb{T}_{pos} of posets. Let $S := \{*\}$, $\Sigma_{pos} := \{\leq : * \times *\}$. The partial Horn theory \mathbb{T}_{pos} over Σ_{pos} consists of:

$$\top \vdash \underbrace{x}_{} x \leq x, \quad x \leq y \land y \leq x \vdash \underbrace{x, y}_{} x = y, \quad x \leq y \land y \leq z \vdash \underbrace{x, y, z}_{} x \leq z.$$

Then, we have \mathbb{T}_{pos} -PMod $\simeq \mathbf{Pos}$.

Example (**Pos-relative algebras**)

We present a **Pos**-relative algebraic theory (Ω, E) .

$$\Omega := \{-\}, \quad \text{ar}(-) := (x, y). y \le x, \quad \text{type}(-) := *$$

$$E:=\{x\leq y\mid \xrightarrow{x,y,z} (x-z)\leq (y-z), \quad y\leq z\mid \xrightarrow{x,y,z} (x-z)\leq (x-y)\}.$$

Then, a model of (Ω, E) is just a "poset with subtraction". For example, \mathbb{N} with usual subtraction is a model of (Ω, E) .

Example (partial Boolean algebras)

The (single sorted) partial Horn theory \mathbb{S}_{rsrel} of reflexive and symmetric relations is defined as follows:

$$\Sigma_{\text{rsrel}} := \{ \odot : * \times * \}, \quad \mathbb{S}_{\text{rsrel}} := \{ \top \vdash x \odot x, \quad x \odot y \vdash y \odot x \}.$$

We define a \mathbb{S}_{rsrel} -relative algebraic theory (Ω, E) as follows: $\Omega := \{0, 1, \neg, \lor, \land\}:$ $ar(0) = ar(1) := ().\top, \quad ar(\neg) := x.\top, \quad ar(\lor) = ar(\land) := (x, y).x \odot y;$ $\top \vdash \frac{x}{x} x \odot 0, \ x \odot 1; \qquad x \odot y \vdash \frac{x, y}{x} x \odot \neg y;$ $x \odot y, y \odot z, z \odot x \xrightarrow{x, y, z} x \odot (y \lor z), x \odot (y \land z);$ $x \odot y, \ y \odot z, \ z \odot x \xrightarrow{x, y, z} (x \lor y) \lor z = x \lor (y \lor z), \ (x \land y) \land z = x \land (y \land z);$ $x \odot u \vdash x, y$ $x \lor y = u \lor x, x \land y = u \land x;$ E := $x \odot y \vdash x, y \to (x \land y) \lor x = x, \ x \land (y \lor x) = x$ $\top \vdash \frac{x}{x} \land \forall 0 = x, \ x \land 1 = x, \ x \lor \neg x = 1, \ x \land \neg x = 0;$ $x \odot y, y \odot z, z \odot x \stackrel{x, y, z}{\vdash} (x \land y) \lor z = (x \lor z) \land (x \lor z);$ $x \odot u, \ u \odot z, \ z \odot x \xrightarrow{x, y, z} (x \lor u) \land z = (x \land z) \lor (u \land z)$

An algebra of (Ω, E) is called *partial Boolean algebra* in [berg2012].

Our main theorem I is a direct generalization of the finitary and Set-enriched case of C.Ford, S.Milius, and L.Schröder's result in [C. Ford et al., 2021]. They described (enriched) λ -accessible monads on a category belonging to a special class of locally λ -presentable categories. That class is categories of models of "relational" λ -Horn theories.

A characterization of f.p.objects

 \mathbb{T} : a partial Horn theory over an S-sorted signature Σ .

Theorem ([K])

For any Horn formula $\vec{x}.\varphi$, the functor $\mathbb{T}\text{-}PMod \ni A \mapsto [\![\vec{x}.\varphi]\!]_A \in \mathbf{Set}$ is representable, i.e., there exists a partial model $\langle \vec{x}.\varphi \rangle_{\mathbb{T}}$ satisfying

 $\mathbb{T}\operatorname{-PMod}(\langle \vec{x}.\varphi\rangle_{\mathbb{T}},A)\cong \llbracket \vec{x}.\varphi \rrbracket_A \quad (\forall A\in\mathbb{T}\operatorname{-PMod}).$

Theorem ([K])

The following are equivalent for each object $A \in \mathbb{T}$ -PMod.

- **()** A is finitely presentable in \mathbb{T} -PMod.
- **2** There exists a Horn formula $\vec{x}.\varphi$ over Σ satisfying $A \cong \langle \vec{x}.\varphi \rangle_{\mathbb{T}}$.

Preservation theorems for partial Horn theories

Definition ([K])

Let $\rho: (S, \Sigma, \mathbb{S}) \to (S', \Sigma', \mathbb{T})$ be a theory morphism between partial Horn theories. A ρ -relative judgment is a Horn sequent $\varphi^{\rho} \vdash \vec{x}^{\rho} \psi$, where $\vec{x}.\varphi$ is a Horn formula-in-context over Σ and $\vec{x}^{\rho}.\psi$ is a Horn formula-in-context over Σ' .

Theorem ([K])

Let $\rho: \mathbb{S} \to \mathbb{T}$ be a theory morphism between partial Horn theories. Then, for every replete full subcategory $\mathscr{E} \subseteq \mathbb{T}$ -PMod, the following are equivalent:

- **()** \mathscr{E} is definable by ρ -relative judgments, i.e., there exists a set \mathbb{T}' of ρ -relative judgments satisfying $\mathscr{E} = (\mathbb{T} + \mathbb{T}')$ -PMod.
- **(a)** $\mathscr{E} \subseteq \mathbb{T}$ -PMod is closed under products, \mathbb{T} -closed subobjects, U^{ρ} -retracts, and filtered colimits.

Preservation theorems for partial Horn theories

Taking ρ as the trivial one $\rho: (S, \emptyset, \emptyset) \to (S, \Sigma, \mathbb{T})$, we obtain the first corollary:

Corollary ([K])

Let \mathbb{T} be a partial Horn theory over Σ . Then, for every replete full subcategory $\mathscr{E} \subseteq \mathbb{T}$ -PMod, the following are equivalent:

- \mathscr{E} is definable by Horn formulas, i.e., there exists a set E of Horn formulas satisfying $\mathscr{E} = (\mathbb{T} + \mathbb{T}')$ -PMod, where $\mathbb{T}' := \{\top \vdash \frac{\vec{x}}{-} \varphi\}_{\vec{x}.\varphi \in E}$.
- **2** $\mathscr{E} \subseteq \mathbb{T}$ -PMod is closed under products, Σ -closed subobjects, surjections, and filtered colimits.

Taking ρ as the identity $\mathbb{T} \to \mathbb{T}$, we obtain the second corollary:

Corollary ([K])

Let \mathbb{T} be a partial Horn theory over Σ . Then, for every replete full subcategory $\mathscr{E} \subseteq \mathbb{T}$ -PMod, the following are equivalent:

- \bigcirc \mathscr{E} is definable by Horn sequents, i.e., there exists a set \mathbb{T}' of Horn sequents satisfying $\mathscr{E} = (\mathbb{T} + \mathbb{T}')$ -PMod.
- **2** $\mathscr{E} \subseteq \mathbb{T}$ -PMod is closed under products, Σ -closed subobjects, and filtered colimits.

Filtered colimit elimination

Theorem ([K])

Let (S, Σ, \mathbb{S}) be a partial Horn theory. Assume that:

- S is finite,
- For every model M of \mathbb{S} , "the largest quotient" $M \to \mathcal{Q}M$ is a retraction in \mathbb{S} -PMod.

Let (Ω, E) be an S-relative algebraic theory. Then, for every replete full subcategory $\mathscr{E} \subseteq Alg(\Omega, E)$, the following are equivalent:

- **()** $\mathscr{E} \subseteq Alg(\Omega, E)$ is closed under products, Σ -closed subobjects, and U-local retracts.
- **2** $\mathscr{E} \subseteq Alg(\Omega, E)$ is closed under products, Σ -closed subobjects, U-retracts, and filtered colimits.
- **(9)** $\mathscr{E} \subseteq Alg(\Omega, E)$ is definable by S-relative judgments.

Example

The following partial Horn theories satisfy the assumptions in the above theorem:

- The theory of sets.
- The theory of finite sorted sets.
- The theory of posets.