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Abstract

Main theorem | (informal)

(Single-sorted) algebraic theories = finitary monads on Set
J generalize
o/ -relative algebraic theories = finitary monads on &/ (&/:LFP category)

Here, we define “o7-relative algebraic theory” via partial Horn theory.

Main theorem Il (informal)

Birkhoff’s variety theorem relative to Set
J generalize
Birkhoff’s variety theorem relative to o/ (o/:LFP category)
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Finitary monads and algebraic theories

Definition

A (single-sorted) algebraic theory, which is also called an equational theory, consists of:

@ a set () of operations,
o for each w € Q, a natural number ar(w) € N,
@ a set F of equations.

Definition

Let (2, F) be a single-sorted algebraic theory. A model of (2, E)) consists of:
@ aset A,
o for each w € Q, a mapping [w] , : A¥®) — A

satisfying all equations in F.
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Finitary monads and algebraic theories

There is a classical result about the correspondence between algebraic theories and finitary monads.
Fact
The following two classes of categories coincide.

o Categories of models of single-sorted algebraic theories

o Eilenberg-Moore categories of finitary monads on Set

single-sorted algebraic theories = finitary monads on Set!
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Finitary monads and algebraic theories

More is true:
@ single-sorted algebraic theories = finitary monads on Set
o S-sorted algebraic theories = finitary monads on Set®

o ‘“ordered” algebraic theories = finitary monads on Pos [Addmek, Ford, Milius, Schrdder, 2021]

In this talk,

generalize
~

Set, Set”, Pos locally finitely presentable (LFP) categories
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9 Locally finitely presentable categories and partial Horn logic

1/1 8



Locally finitely presentable categories and partial Horn logic
Definition
A category & is locally finitely presentable (LFP)

It is cocomplete and has a set G of f.p.objects such that every object is a filtered colimit

def of objects from G.

= | m B [ &
- A purely categorical sentence

LFP categories are characterized as categories of models of various kinds of logical theory.

Fact
The following classes of categories coincide:
@ LFP categories,
o Categories of models of cartesian theories,
o Categories of models of essentially algebraic theories,

o Categories of models of partial Horn theories.
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Locally finitely presentable categories and partial Horn logic

A small category % consists of...
a set ob% (“objects"),

a set mor% (“morphisms"),
a function id: ob% — mor% (“identities”),

°
°

@ a function d: mor¢ — ob%¢ (“domain”),

@ a function ¢: mor¢ — ob% (‘“codomain”), and
°

a partial function o: mor% x mor¢ — mor% (“composition”).

We can define “the theory of small categories” as a partial Horn theory.
Partial Horn theory = a logical theory which can deal with partial functions (and relations). J
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Locally finitely presentable categories and partial Horn logic

We introduce partial Horn theory.

Definition

A multi-sorted first-order signature (or S-sorted signature) X consists of:
@ a set S of sorts,
@ a set Xy of function symbols,
@ a set X, of relation symbols

such that
o for each f € Xt an arity f: 51 X -+ X 8, — s(84,8 € 9) is given,
o for each R € X, an arity R: s1 X -+ X 8, (s; € 5) is given.
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Locally finitely presentable categories and partial Horn logic

Let X be an S-sorted signature.

o Aterm 7 u==x | f(71,...,7n), Where f € ¢;
e A Horn formula ¢ :=T | pA¢' |T=7"| R(71,...,7T,), where R € Xy;
e A context --- ¥ = (21,...,x,) (a finite tuple of distinct variables).

The notation Z.¢ [resp. &.7] means that all variables of ¢ [7] are in the context &. (Horn formula
[term]-in-context)

Definition
@ A Horn sequent over ¥ is an expression of the form
pr—E—y  (“p implies ¥7)

(¢, are Horn formulas over X in the same context Z.)
@ A partial Horn theory T over X is a set of Horn sequents over X.
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What is the difference between ordinary Horn theory and partial Horn theory?
~ It lies in the concept of models.

‘ (ordinary) Horn theory

partial Horn theory

Axiom

Interpretation of
function symbols

Interpretation of
relation symbols

Validity of ¢
Validity of
pr—"—1

Especially,

Horn sequent ¢ —E P
total map Mz [[ﬂfu My

subset [R],, C Ms
“p holds.”

“If © holds then %) holds.”

Horn sequent ¢ —E P
partial map Mz U4 M

subset [R],, € Ms
“All terms in ¢ are defined and ¢ holds.”

“If all terms in ¢ are defined and ¢ holds,
then all terms in ¢ are defined and ¢ holds.”

An equation 7 = 7 holds iff the value of the partial map [7],, is defined.

So, we will use the abbreviation 7| for 7 = 7.
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Locally finitely presentable categories and partial Horn logic

Notation
Let T be a partial Horn theory over an S-sorted signature 3.
T-PMod : the category of (partial) models of T

Fact (well-known)
A category <f is LFP iff there exists a partial Horn theory T satisfying </ ~ T-PMod.
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Locally finitely presentable categories and partial Horn logic

Example (small categories)

We can define the partial Horn theory T.,; of small categories as follows:
The S := {ob, mor}-sorted signature Y., consists of:

id: ob — mor, d:mor — ob, c¢:mor — ob, o:mor X mor — mor.

The partial Horn theory T..; over ¥.,¢ consists of:

TH90 iq(z)),  (idis total. )

mor

T d(f)L Ac(f), (d and c are total. )

- g, f : mor o
d(g) = C(f} I (g0 )b (go f is defined iff d(g) = c(f). )
(g0 )} 220 d(g) = e(f),

and so on.
~~ We have T.,-PMod = Cat.
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© Relative algebraic theories
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Relative algebraic theories

In this part, we fix a partial Horn theory S over an S-sorted signature 3. Now, we present a new
“algebraic concept” relative to S.

Definition ([K])
A S-relative signature consists of:
@ a set () of operators;

o for each w € , a Horn formula-in-context #., written ar(w) and called arity of w;
o for each w € Q, a sort s € S, written type(w) and called type of w.

Given S-relative signature 2, we can extend X to an S-sorted signature 3 + (2 by adding w € Q as a
function symbol w: $1 X -+ X 8, — s, where ar(w) = (z1:81,...,Zn:8,).¢ and type(w) = s.

Definition ([K])

@ A Horn sequent ¢ —Z 1 over 3 + € is called an S-relative judgement if ¢ is over X.
Q An S-relative algebraic theory consists of:

an S-relative signature 2,
a set F of S-relative judgements.
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Relative algebraic theories

’ S: a partial Horn theory over an S-sorted signature 3.

Definition ([K])

Let Q2 be an S-relative signature. An Q-algebra A consists of:
@ a partial S-model A,
o for each w € (, a total map [w], : [ar(w)] 4 = Atype(w)-

Definition ([K])

An Q-algebra A is called a model of an S-relative algebraic theory (2, E) if all S-relative judgements
belonging to E are valid in A.

Notation
Let (2, E) be an S-relative algebraic theory.
Alg(Q, E) : the category of models of (2, E) and (X + §2)-homomorphisms
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‘ S: a partial Horn theory ‘

‘ (Multi-sorted) algebraic theory (2, E) ‘ S-relative algebraic theory (2, E)

Base category Set® S-PMod
Operator S1 X oo X Sy —3 s (L1:81, .00 Tpi8p). 0 — 5
Axiom equation 7 = 7’ S-relative judgement  —%— 1)
Alg(Q, E) Alg(, E)
F<\—{>U Fl|U
Set” S-PMod

In S-relative algebraic theory ...
o Each operator w € () needs not be total, but its domain must be defined by “S's language.”

@ We can use (Horn) implications as axioms, but its precondition must not contain any operator
w € ). Preconditions must be written in “S's language.”
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Relative algebraic theories
‘ S: a partial Horn theory

Main theorem | [K]
The following are equivalent for a category €.
© % is finitary monadic over S-PMod, i.e., there exists a finitary monad 7" over S-PMod satisfying
€ ~ S-PMod” .

@ @ is a category of models of an S-relative algebraic theory, i.e., there exists an S-relative algebraic
theory (Q, E) satisfying € ~ Alg(Q2, E).

S-relative algebraic theories = finitary monads on S-PMod
an arbitrary LFP category

1 generalize

(single-sorted) algebraic theories = finitary monads on Set

1/1 20



Corollary (well-known)

Cat is finitary monadic over Quiv (the category of quivers, or directed graphs).

Proof.
Define the partial Horn theory Squiv of quivers as follows:
Sauv = {e, v}, S = {5,670 5 v} Squv = {T =S s(AL A B(A).
Then, we can define an Squiv-relative algebraic theory (€2, E) such that Alg(Q2, E) ~ Cat.
Q := {o,id};
ar(o) := (g, f : €).s(g) =t(f), type(o):=¢;
ar(id) := (z : v).T, type(id) :=e;
T+ s(id(z)) = = A t(id(z)) = ,
L] 0= 2 sgen=s(nge n = o)
' L8 foidis()) = Fnidun) o f =

T
h,g,f:e . .
s(h) =t(g) As(g) =t(f) =—— (hog)of=ho(gof)
Our main theorem finishes the proof. O
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@ Birkhoff's variety theorem
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Fact (Birkhoff's variety theorem)

(Q, E): a single-sorted algebraic theory. & C Alg(2, E): fullsub.
Then, the following are equivalent.

@ & is definable by equations, i.e., & = Alg(Q, E+ " E').
Q & C Alg(Q, E) is closed under:

products,
subobjects,
surjective images.

Fact (multi-sorted version, existing work)
(2, E): an S-sorted algebraic theory. & C Alg(S2, E): fullsub.
Then, the following are equivalent.
@ & is definable by equations, i.e., & = Alg(Q, E + ~FE').
Q & C Alg(Q, E) is closed under:

products,
subobjects,
surjective images,
filtered colimits.

1/1 23



Birkhoff's variety theorem

Question J

Is it possible to generalize Birkhoff's theorem to our relative algebraic theories?
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Birkhoff's variety theorem

’ S: a partial Horn theory over an S-sorted signature 3.

Proposition

Let (2, E) be an S-relative algebraic theory.

Then, Alg(Q, E + E') C Alg(Q2, E) is closed under:
@ products,
o filtered colimits.

In general, Alg(Q2, E+ E') C Alg(Q, E) is not closed under:
@ surjections (surjective images),

@ subobjects.

We will modify them as follows:

modify

S dify .
surjections MY U-retractions
subobjects " ~»" Y-closed subobjects
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Birkhoff's variety theorem

’ S: a partial Horn theory over an S-sorted signature 3. ‘

Main theorem Il [K]

Let (2, E) be an S-relative algebraic theory. Consider the forgetful functor U: Alg(f2, E) — S-PMod.

Then, the following are equivalent for a full subcategory & C Alg(Q), E).
@ There exists a set of S-relative judgements F’ satisfying & = Alg(Q, E + E').
Q & C Alg(Q, E) is closed under:

products,
Y.-closed subobjects,
U-retracts, (A morphism p is called a U-retraction if U(p) is a retraction.)

filtered colimits.

This generalizes existing Birkhoff's theorem in the following sense:

S:=(the theory of sets) ~- the original version of Birkhoff’s theorem
S:=(the theory of S-sorted sets) ~- the S-sorted version of Birkhoff's theorem
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Birkhoff's variety theorem: closed monomorphisms

‘ T: a partial Horn theory over an S-sorted signature 3.

Definition ([K])

A subobject A C B in T-PMod is called T-closed (or ¥-closed) if the following diagrams form pullback
squares for any f, R € 3.

ASIX...XASHHDom([[f]]A) ASIX-~-><ASn<—’[[RﬂA

J ! J [

B,, x --- x By, <— Dom([f]z) B,, x ---x By, <= [R]g

Definition (informal)

. £ .
A C B is Y-closed ‘i‘é all structures of A are induced from those of B.

1/1 27



S::{*}v Zmon::{6:1—>>l<7 '2*)<*—>*}’
T,y
T'—e\la T'—Iliy\l”
Tinon := TM@'?J)'Z:%(Z/'Z),

T—L z.e=z=¢-x

Then, we have Tyon-PMod = Mon.

An inclusion N < Z in Mon is Ty,on-closed.

2 on = Zmon + {0_1 Dk —> k)

1 1

r=e=x-x ,

x«y:e:y-xlﬂx_l

z  —E

T;non ‘= Tmon + {
=Y

Then, we have T, ,,-PMod = Mon.

} .

The inclusion N < Z in Mon is not T’ -closed.

mon

T-closedness depends on T!
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S: a partial Horn theory over an S-sorted signature 3.

Main theorem Il (recall)
Let (2, ) be an S-relative algebraic theory. Consider the forgetful functor U : Alg(Q2, E) — S-PMod.
Then, the following are equivalent for a full subcategory & C Alg(Q), E).

@ There exists a set of S-relative judgements E’ satisfying & = Alg(Q, E + E’).

Q & C Alg(Q, E) is closed under:

products,

Y-closed subobjects, < depending on syntax
U-retracts,

filtered colimits. )
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The definition of homomorphisms

Definition ([PV07])

A Y-homomorphism h : M — N between partial X-structures consists of:
@ a total map hs : My — N; for each sort s € S

such that for each function symbol f:s; X --- X s, — s in ¥ and relation symbol R : s1 X -+ X s, in X, there
exist total maps (dashed arrows) making the following diagrams commute.

My % -+ x My, < Dom([f],;) —2

|
hslxmxhsnl ER lhs
~

Ng, X -+ X Ns,, «— Dom([f]y) —=— Ns

M, x -+ x Ms, < [R],,
|
hslx-uxhs"l ER

Ns; X -+ x Ng, «— [R]y
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An example of ordered algebra

Example (posets)

We present the partial Horn theory Tpos of posets. Let S := {*}, Xpos := {<: * X x}. The partial Horn theory

Tpos over Yipos consists of:

x7y x?y?‘z

T»Lxgx, c<yANy<zr———uz=y, zyANy<zt———zx< 2.

Then, we have Tpos-PMod ~ Pos.

Example (Pos-relative algebras)
We present a Pos-relative algebraic theory (22, E).

Q:={-}, ar(—):=(z,y)y <z, type(—):==*

E::{xSyM(x—z)g(y—z), ygzw(x—z)g(x—y)}.

Then, a model of (2, E) is just a “poset with subtraction”. For example, N with usual subtraction is a model of

(Q, E).

v
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Example (partial Boolean algebras)

The (single sorted) partial Horn theory S;qe1 of reflexive and symmetric relations is defined as follows:
:L.7
Yrsrel i= {@ : * X %},  Sperel i= {T#x@x, x@yiy@x}.

We define a S;sre1-relative algebraic theory (2, E) as follows:
Q:={0,1,—,V,A};
ar(0) = ar(1) := (). T, ar(0):==z.T, ar(V)=ar(A):=(z,y).z0y;
X z,y
TH————200, 20 1; TOYH————2x O y;

$7y7z
TOY, YOz, 2QrH——"—2 0 (yVz), 0 (yA=2);

z0yY, YO z, z@xw(x\/y)\/z:x\/(y\/z), (xAY)ANz=xA(yAz);

Z,
x@y}iy:v\/yzy\/x, TANYy=yANx;

T,y
zQYyH——— (@ Ay)Vez=z, zA(yVz)=umz;
T—L 2v0=z, 2Al=z, zV-2z=1, zA-z=0;

Ty, YOz, ZQxM(x/\y)\/z:(m\/z)/\(x\/z);

TQyY, YOz, z@m}w(xVy)/\z:(x/\z)V(y/\z)

An algebra of (2, E) is called partial Boolean algebra in [berg2012].




Our main theorem | is a direct generalization of the finitary and Set-enriched case of C.Ford, S.Milius,
and L.Schréder’s result in [C. Ford et al., 2021]. They described (enriched) A-accessible monads on a
category belonging to a special class of locally \-presentable categories. That class is categories of

models of “relational” A-Horn theories.
Locally A-presentable categories

Categories of models of “relational” A-Horn the

Locally finitely presentabte categories

_ategories of models™™{
Cat “relAtional” finitary Horn thexries

Grp
Ring

Set
Pos
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A characterization of f.p.objects

‘ T: a partial Horn theory over an S-sorted signature 3.

Theorem ([K])

For any Horn formula Z.¢, the functor T-PMod 3 A — [Z.¢] , € Set is representable, i.e., there exists a partial
model (Z.), satisfying

T-PMod((Z.¢), , A) 2 [Z.¢], (VA € T-PMod).

Theorem ([K])

The following are equivalent for each object A € T-PMod.
@ A is finitely presentable in T-PMod.

@ There exists a Horn formula . over ¥ satisfying A = (Z.¢).
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Preservation theorems for partial Horn theories

Definition ([K])
Let p: (S,%,S) — (S’,%',T) be a theory morphism between partial Horn theories. A p-relative judgment is a

Horn sequent ¢” —X— 4, where Z.¢ is a Horn formula-in-context over ¥ and .1 is a Horn
formula-in-context over X'

Theorem ([K])

Let p: S — T be a theory morphism between partial Horn theories. Then, for every replete full subcategory
& C T-PMod, the following are equivalent:

@ & is definable by p-relative judgments, i.e., there exists a set T' of p-relative judgments satisfying
& = (T + T')-PMod.

@ & C T-PMod is closed under products, T-closed subobjects, U”-retracts, and filtered colimits.
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Preservation theorems for partial Horn theories

Taking p as the trivial one p: (S,9,9) — (5,3, T), we obtain the first corollary:

Corollary ([K])

Let T be a partial Horn theory over ¥. Then, for every replete full subcategory & C T-PMod, the following are
equivalent:

@ & is definable by Horn formulas, i.e., there exists a set E of Horn formulas satisfying & = (T + T')-PMod,
where T := {T —2— ¢}z pep-
@ & C T-PMod is closed under products, Y-closed subobjects, surjections, and filtered colimits.

Taking p as the identity T — T, we obtain the second corollary:

Corollary ([K])

Let T be a partial Horn theory over .. Then, for every replete full subcategory & C T-PMod, the following are
equivalent:

Q & is definable by Horn sequents, i.e., there exists a set T' of Horn sequents satisfying & = (T + T’)-PMod.
@ & C T-PMod is closed under products, -closed subobjects, and filtered colimits.
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Filtered colimit elimination

Theorem ([K])

Let (S,X,S) be a partial Horn theory. Assume that:
@ S is finite,
@ For every model M of S, “the largest quotient” M — QM s a retraction in S-PMod.

Let (2, E) be an S-relative algebraic theory. Then, for every replete full subcategory & C Alg(Q, E), the
following are equivalent:

Q@ & C Alg(Q, E) is closed under products, ¥-closed subobjects, and U-local retracts.
Q@ & C Alg(Q, E) is closed under products, Y-closed subobjects, U-retracts, and filtered colimits.
© & C Alg(Q, E) is definable by S-relative judgments.

Example

The following partial Horn theories satisfy the assumptions in the above theorem:
@ The theory of sets.
@ The theory of finite sorted sets.
@ The theory of posets.
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