Birkhoff subfibrations

Alan Cigoli

(joint work with S. Mantovani)

CT2023, Louvain-la-neuve

Mal'tsev algebras

[Gran '01] For an exact Mal'tsev category \mathcal{E} with coequalizers, the subcategory $Mal(\mathcal{E})$ of Mal'tsev algebras is a Birkhoff subcategory, i.e. a regular epi reflective subcategory of \mathcal{E} , closed under quotients.

$$I: \mathcal{E} \to \mathsf{Mal}(\mathcal{E}), \quad X \mapsto X/[\nabla_X, \nabla_X].$$

Notice: when \mathcal{E} is pointed, I(X) = X/[X, X] and $Mal(\mathcal{E}) = Ab(\mathcal{E})$.

[Janelidze, Kelly '94] Each Birkhoff subcategory of an exact Mal'tsev category yields an admissible Galois structure (with respect to regular epi). In particular this is true for the adjunction

$$\mathsf{Mal}(\mathcal{E}) \underbrace{\overset{I}{\underbrace{}}_{H}}_{H} \mathcal{E}.$$

This amounts to the fact that in a pullback of the form

$$\begin{array}{c|c} B \times_{HI(B)} H(X) & \xrightarrow{\pi_2} H(X) \\ \pi_1 & & \downarrow^{H(\phi)} \\ B & \xrightarrow{\eta_B} & HI(B), \end{array}$$

with ϕ a regular epi, π_2 is a unit up to iso.

Case study: Mal(C/B)

Let us focus on $\mathcal{E} = \mathcal{C}/B$, where \mathcal{C} is a semi-abelian category which is also peri-abelian [Bourn '10] and B an object of \mathcal{C} .

Consequences of the hypothesis:

- For each normal subobject L ≤ X, [L, L] ≤ X [Gray, Van der Linden '15];
- The reflection $I: C/B \to Mal(C/B)$ simplifies to

(some questions about commutator theory are involved)

Question

Since C/B is a fibre of the fibration Cod: $Arr(C) \to C$, how does the reflection above interact with change of base?

Units are stable under change of base:

We are going to "saturate" regular epi in order to set up a new Galois structure on each fibre. We consider morphisms f in C/B such that $\beta^* f$ is a regular epi for some $\beta : B' \to B$ in C. We call such morphisms proquotients. In the present context, proquotients are precisely those morphisms f in C/B whose restriction to kernels is a regular epi, i.e. such that $i_B^*(f)$ is a regular epi, where $i_B : 0 \to B$ is the initial arrow.

Fact: Mal'tsev algebras are stable under proquotients. Namely, if (A, a) is a Mal'tsev algebra in C/B and $f: (A, a) \to (X, x)$ is a proquotient, then (X, x) is a Mal'tsev algebra as well.

Definition

Let \mathcal{E} be a regular category. A morphism $f: X \to Y$ in \mathcal{E} is called a proquotient if $1_X \times f: X^2 \to X \times Y$ (or equivalently $f \times 1_X$) is a regular epi.

Examples: regular epi, product projections, mono into a terminal object.

If product projections are regular epi (e.g. if \mathcal{E} pointed), then proquotient = regular epi.

Proposition

Let ${\mathcal E}$ be a regular category. Then the following properties hold for the class ${\mathcal P}$ of proquotients:

- 1. it is closed under composition;
- 2. it is stable under pullback;
- **3.** if $g \cdot f$ is in \mathcal{P} and f is a regular epi, then g is in \mathcal{P} .

Definition

Let ${\mathcal E}$ be a regular category and let ${\mathcal X}$ be a regular epi reflective subcategory of ${\mathcal E}$:

$$\mathcal{X} \xrightarrow[H]{\leftarrow \perp} \mathcal{E}.$$

Let \mathcal{F} be a class of morphisms in \mathcal{E} containing all regular epi. \mathcal{X} is an \mathcal{F} -Birkhoff subcategory of \mathcal{E} when it is closed under \mathcal{F} -images, i.e. if for each $f: X \to Y$ in \mathcal{F} , Y belongs to \mathcal{X} as soon as X does.

We are interested in the case $\mathcal{F} = \mathcal{P}$, proquotients.

Examples:

- Mal(C/B) is a P-Birkhoff subcategory of C/B (with C peri-abelian);
- If E is protomodular, Sub₁(E) is a P-Birkhoff subcategory of E. In particular, if E is a regular category and X an object of E, EqRel_X(E) is a P-Birkhoff subcategory of Gpd_X(E). Here proquotients are internal functors f such that Π₁(f) is a regular epi.

Proposition

Let ${\mathcal E}$ be a regular category and ${\mathcal F}$ a class of morphisms in ${\mathcal E}$ such that:

- **1.** \mathcal{F} contains all regular epimorphims;
- 2. ${\mathcal F}$ is closed under post-composition with regular epimorphims;
- **3.** If $g \cdot f$ is in \mathcal{F} and f is a regular epi, then g is in \mathcal{F} .

A regular epi reflective subcategory \mathcal{X} of \mathcal{E} is \mathcal{F} -Birkhoff if and only if for each $f: X \to Y$ in \mathcal{F} the naturality square of f is a pushout.

Sketch of the proof

Admissibility with respect to proquotients

A \mathcal{P} -Birkhoff subcategory \mathcal{X} of a regular category \mathcal{E} is admissible (with respect to proquotients) in the sense of Janelidze's Galois theory if the reflector $I: \mathcal{E} \to \mathcal{X}$ preserves pullbacks of the form

with ϕ proquotient.

Unlike Birkhoff subcategories (with respect to regular epi), \mathcal{P} -Birkhoff subcategories need not be admissible: a counterexample is given by Mal(NARng) in NARng.

However:

- If C is peri-abelian, Mal(C/B) is an admissible subcategory of C/B;
- ► If \mathcal{E} is protomodular, $\mathbf{Sub}_1(\mathcal{E})$ is an admissible subcategory of \mathcal{E} . In particular, if \mathcal{E} is a regular category and X an object of \mathcal{E} , $\mathbf{EqRel}_X(\mathcal{E})$ is an admissible subcategory of $\mathbf{Gpd}_X(\mathcal{E})$.

In some cases, a characterization of coverings is available.

Proposition

Let *B* be a group, and $f: (X, x) \to (Y, y)$ a proquotient in **Gp**/*B*. The following are equivalent:

1. *f* is a covering with respect to the admissible adjunction

$$\operatorname{Mal}(\operatorname{Gp}/B) \xrightarrow[H]{\overset{l}{\smile}} I \operatorname{Gp}/B;$$

- **2.** $i_B^*(f)$ is a central extension of groups;
- **3.** [K(f), K(x)] = 0.

For example, if $\partial: H \to G$ is a crossed module and $q: G \to B$ its cokernel, then

is a covering.

Let's have a look at the proof of admissibility of $Mal(\mathcal{C}/B)$ for \mathcal{C} peri-abelian. Let (X, x) be an object of \mathcal{C}/B and $f: (A, a) \to I(X, x)$ a proquotient in $Mal(\mathcal{C}/B)$.

$$\begin{array}{c|c} (P,p) & \xrightarrow{\pi_2} & H(A,a) \\ \pi_1 & & \downarrow p.b. & \downarrow H(f) \\ (X,x) & \xrightarrow{\eta_{(X,x)}} & HI(X,x) \end{array} \begin{array}{c} K(p) & \xrightarrow{\pi_2} & K(a) \\ \pi_1 & & & \downarrow p.b. & \downarrow i_B^* H(f) \\ & & & & \downarrow i_B^* H(f) \\ & & & & & K(x) \xrightarrow{i_B^*(\eta_{(X,x)})} ab(K(x)). \end{array}$$

Admissibility of the adjunction

relies on admissibility of

Fibred aspects

Definition

A reflection in $Fib(\mathcal{C})$ is just an adjunction $I \dashv H$

in $Fib(\mathcal{C})$ where H makes (\mathcal{X}, F) a full subfibration of (\mathcal{Y}, G) . We speak of a regular epi reflection when the unit components are regular epimorphisms.

Proposition

Let $H: (\mathcal{X}, F) \to (\mathcal{Y}, G)$ be a full subfibration. TFAE:

- **1.** *H* has a left adjoint in Fib(C);
- **2.** i) for each B in C, $H_B \colon \mathcal{X}_B \to \mathcal{Y}_B$ has a left adjoint I_B ;
 - ii) for each Y in \mathcal{Y}_B and each cartesian arrow $k: X \to I_B(Y)$, the pullback of η_Y along H(k) is a unit up to iso.

As a special case of the previous situation, we consider a full subfibration of the codomain fibration Cod: $Arr(\mathcal{C}) \rightarrow \mathcal{C}$ of a semi-abelian category \mathcal{C} .

Theorem

Let C be a semi-abelian category and $H: (\mathcal{X}, F) \to (\operatorname{Arr}(C), \operatorname{Cod})$ a full subfibration. Then the following are equivalent:

- 1. *H* has a left adjoint that gives rise to a regular epi reflection in Fib(C);
- 2. i) The restriction $H_0: \mathcal{X}_0 \to \mathcal{C}/0 \cong \mathcal{C}$ has a left adjoint I_0 , such that each unit component is a regular epi with characteristic kernel.
 - ii) For each B in C, the square

is a pullback in Cat.

Actually, 2.i) is sufficient to recover the entire regular epi reflection in $\text{Fib}(\mathcal{C}).$

Birkhoff subfibrations

Definition

Given a regular epi reflection

$$(\mathcal{X}, F) \xrightarrow[H]{\leftarrow} I (\operatorname{Arr}(\mathcal{C}), \operatorname{Cod})$$

in Fib(C), (X, F) is called a \mathcal{P} -Birkhoff subfibration of (Arr(C), Cod) if for each B in C, the restriction

$$\mathcal{X}_{B} \underbrace{\overset{\leq}{\overset{\perp}{\underset{H_{B}}{\overset{\perp}{\overset{}}}}} \mathcal{C}/B$$

of $I \dashv H$ to the fibre over *B* makes \mathcal{X}_B a \mathcal{P} -Birkhoff subcategory of \mathcal{C}/B , where \mathcal{P} is the class of proquotients.

Proposition

Each Birkhoff reflection

$$\mathcal{X}_{0} \underbrace{\overset{I_{0}}{\underbrace{\perp}}}_{H_{0}} \mathcal{C},$$

whose unit components have characteristic kernel, determines (up to iso) a unique \mathcal{P} -Birkhoff reflection in $Fib(\mathcal{C})$, whose restriction to the fibre over 0 is $I_0 \dashv H_0$.

Examples

By means of the above proposition, we can obtain examples of $\mathcal P\text{-Birkhoff}$ subfibrations of $(\textit{Arr}(\mathcal C), \textit{Cod})$ by taking

- 1. ${\mathcal C}$ an abelian category and ${\mathcal X}_0$ any Birkhoff subcategory of ${\mathcal C}.$
- 2. C = Gp and \mathcal{X}_0 any subvariety; characteristic subgroups are precisely the subgroups closed under automorphisms, and so are the kernels of the units of an adjunction.
- **3.** C a semi-abelian category which is also peri-abelian and $\mathcal{X}_0 = Ab(C)$. In which case, for each B, $\mathcal{X}_B = Mal(C/B)$.
- C a semi-abelian category satisfying (NH) and (SH) and X₀ its subcategory of *n*-nilpotent or *n*-solvable objects, for any n > 0. Here the condition (NH) guarantees that for an object X, the iterated Higgins commutators

$$\begin{cases} [X, X]_{0}^{\text{Nil}} = X\\ [X, X]_{n+1}^{\text{Nil}} = [X, [X, X]_{n}] & \text{for } n \ge 0 \text{ (nilpotent case)} \end{cases}$$
$$\begin{cases} [X, X]_{0}^{\text{Sol}} = X\\ [X, X]_{n+1}^{\text{Sol}} = [[X, X]_{n}, [X, X]_{n}] & \text{for } n \ge 0 \text{ (solvable case)} \end{cases}$$

are characteristic subobjects of X.

Admissibility

Proposition

Let C be a semi-abelian category and let (X, F) be a \mathcal{P} -Birkhoff subfibration of $(\operatorname{Arr}(C), \operatorname{Cod})$. Then, for each B in C, the restriction

$$\mathcal{X}_{B} \underbrace{\overset{I_{B}}{\underbrace{\perp}}}_{H_{B}} \mathcal{C}/B$$

of $I \rightarrow H$ to the fibre over B is an admissible Galois structure with respect to proquotients.

The latter might be seen as a prototype of Galois structure in Fib(C)...

Thank you!