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A congruence modular variety is a variety in which the modular
formula holds for congruences:

(T ∨ S) ∧ R = T ∨ (S ∧ R), for any triple (T,S,R) such that : T ⊂ R

I There is a characterization of congruence modudar varieties by
terms and equations.

I One simple non-Mal’tsev example is given with
the generalized right complemented semi-group:
two binary operations: ◦ and ?, and
two axioms:

x ◦ (x ? y) = y ◦ (y ? x)

x ◦ (y ? y) = x

.
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In 1983, Gumm characterized them in ”geometric terms” by the
validity of the Shifting Lemma: given any triple of equivalence
relations (T ,S,R) such that R ∩ S ⊂ T on an algebra A, the following
left hand side situation implies the dotted right hand side one:

x S //
T

..
R ��

y
R�� T
ppx ′

S
// y ′

I The main interest of the Shifting lemma is that
it is freed of any condition involving finite colimits.

I Thanks to the Yoneda embedding, it keeps a meaning in any
finitely complete category E. This led, in 2004, to the notion of
Gumm category introduced by M. Gran and myself.
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Any Mal’tsev variety in a congruence modular one.
Any regular Mal’tev category is a Gumm one.

I In any congruence modular variery or Gumm category,
the Cube Lemma holds: for any triple of equivalence relations
(T ,S,R) on an object X such that R ∩ S ⊂ T , the plain arrows
imply the dotted one:

x
S %%

R

��

T // t S
$$

��

x ′

R

��

T // t ′

R

��
x̄

S $$

T // t̄ S
##

x̄ ′
T

// t̄ ′

I Actually, for any category E,
Cube Lemma and Shifting Lemma are equivalent.
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Main Result: Given any internal category X• in a Gumm category:

R1

d0 ��
d1��

d0

//
d1 //

R0oos0oo

d0 ��
d1��

R•
d0 ��

d1��
X1 ×0 X1

d0

//d1 //
d2 //

X1

OO
OO

d0

//
d1 //

X0oos0oo
OO
OO

X•

OO
OO

together with a vertical internal equivalence relation R• on the
underlying reflexive graph of X•.

I Then the upper horizontal reflexive graph R• is underlying an
internal category.
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Proof.
Consider the following diagram in X1 ×0 X1:

x
R0 ��

α // y
R0��

β // z
R0��

x ′
α′
// y ′

β′
// z ′

it gives rise to the following cube situation:

(1y ,1y )

d2
))

d0

��

d−1
1 (R1)

// (1y ′ ,1y ′) d2 ))

��

(α,1y )

d0

��

d−1
1 (R1)

// (α′,1y ′)

d0

��
(1y , β)

d2
))

d−1
1 (R1)

// (1y ′ , β
′) d2

))
(α, β)

d−1
1 (R1)

// (α′, β′)

which means that αR1α
′ and βR1β

′ implies β.αR1β
′α′.



This give rises to many simple applications in the Gumm regular
context we shall need later on. Given any regular epimorphisms
between reflexive graphs as in the right hand side:

R[f1]

d0 ��
d1��

d0

//
d1 //

X1oooo f1 // //

d0 ��
d1��

Y1

d0 ��
d1��

R[f0]

OO
OO

d0

//
d1 //

X0oooo
f0
// //

OO
OO

Y0

OO
OO

When X• is an internal category, so is the vertical R[f•].

I Accordingly, provided that the factorization
f1 ×0 f1 : X1 ×0 X1 → Y1 ×0 Y1 is a regular epimorphism, the
reflexive graph Y• is an internal category as well.

I this a the case, for instance, when one of right hand side
downward squares
is a pullback, or a regular pushout.
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An internal category X• is reflexive graph in E as on the right hand
side:

X1 ×0 X1
d0

//d1 //
d2 //

X1
d0

//
d1 //

X0oos0oo

together with a multiplication d1 satisfying the well known axioms:
1) unit axioms:
1’) domain unit axiom: d1((1d0(α), α) = α;
1”) codomain unit axiom: d1(α,1d1(α)) = α;
2) incidence axioms:
2’) domain incidence axiom: d0(d1(α, β)) = d0(α)
2”) codomain incidence axiom: d1(d1(α, β)) = d1(β)
3) associativity axiom: d1(α,d1(β, γ)) = d1(d1(α, β), γ).

I These are simplicial axioms for specific 3-truncated simplicial
objects.
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From the simplicial notations, the Illusie ”shifting” comonad C on
simplicial objects SimplE, gives rise to:

C(X•) : X1 ×0 X1 ×0 X1
d0

//d1 //
d2 //

X1 ×0 X1
d0

//
d1 //

X1oos0oo

which show that this monad is stable on the subcategory CatE

This internal category C(X•) is nothing but the collection of the
coslice categories of X•.

I With any X• we can associate two meaningful parameters:
1) the endosome given by the following pullback in the fiber
CatX0E:

EndX•

��

// // X•

��
∆X0

OO

// // ∇X0

I It is the collection of the endomorphisms of X• and determines a
monoid in the fiber PtX0E.
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2) when E is regular, the support given by the following
decomposition and which produces a preorder:

SuppX• )) ))

�� ��

X1

d0 �� d1��

66 66

(d0,d1)
// X0 × X0

p0 �� p1��
X0

OO
OO

X0

OO

X0

OO
OO

I Proposition
When E is regular, a category X• is a groupoid if and only if
its endosome is group and its support an equivalence relation.

I It is clear that a groupoid is such that its endosome is group and
its support an equivalence relation.
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The converse is obtained in two steps:

Lemma
In any category E, when the endosome of an internal category X• is a
group, then the internal category X op

• ×0 X• is groupoid:

X op
• ×0 X•

p //

p̄
��

X•

��
X op
• // ∇X0



Proof.

Given any map (g, f ) in X op
• ×0 X• : x

f //
y

g
oo

If the endosome of X• is a group,
- 1) then g.f is an isomorphism; so g is a split epimorphism.
- 2) f .g is an isomorphism as well; so g is a split monomorphism.
Accordingly g is an isomorphism, and f as well by duality.
So, X op

• ×0 X• is groupoid.



Lemma
When SuppX• is an equivalence relation, the horizontal projection p:

X op
• ×0 X•

p // //

p̄

��

X•
����

SuppX•
����

'
uu

X op
• // // (SuppX•)op // // ∇X0

is a regular epimorphism.

Proof.
If the support SuppX• is an equivalence relation, we get the
isomorphism '. So, the projection p is necessarily a regular
epimorphism since so is X op

• � (SuppX•)op.

I Then, when, moreover, X op
• ×0 X• is a groupoid, so is X•.
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It is well known that in a Mal’tsev variety or category E,
any internal category is is necessarily an internal groupoid.

I These are not the only contexts. Martins-Ferreira, Rodelo, and
van der Linden (2014) showed:

Proposition
In any regular category E the two following conditions are equivalent:
- any preorder is an equivalence relation;

- any internal category is a groupoid.
This is the case in particular for any n-permutable category.

I Then, from a work Chadja and Rachunek (1983), we get:

Proposition
A variety V is n-permutable for some integer n if and only if any
internal category is a groupoid.



It is well known that in a Mal’tsev variety or category E,
any internal category is is necessarily an internal groupoid.

I These are not the only contexts. Martins-Ferreira, Rodelo, and
van der Linden (2014) showed:

Proposition
In any regular category E the two following conditions are equivalent:
- any preorder is an equivalence relation;

- any internal category is a groupoid.
This is the case in particular for any n-permutable category.

I Then, from a work Chadja and Rachunek (1983), we get:

Proposition
A variety V is n-permutable for some integer n if and only if any
internal category is a groupoid.



It is well known that in a Mal’tsev variety or category E,
any internal category is is necessarily an internal groupoid.

I These are not the only contexts. Martins-Ferreira, Rodelo, and
van der Linden (2014) showed:

Proposition
In any regular category E the two following conditions are equivalent:
- any preorder is an equivalence relation;

- any internal category is a groupoid.
This is the case in particular for any n-permutable category.

I Then, from a work Chadja and Rachunek (1983), we get:

Proposition
A variety V is n-permutable for some integer n if and only if any
internal category is a groupoid.



In a Gumm category E, starting from results of G. Janelidze
and M.C. Pedicchio on pseudogroupoids (2001),
M. Gran and myself (2004) showed that on a reflexive graph X•:

1) there is at most one multiplication satisfying the unit axioms and
the domain incidence axiom;
2) any multiplication satisfying the domain unit axiom is left
cancellable;
3) any multiplication satisfying axioms 1) and 2) is associative;
4) the inclusion functor CatE � GphE is a full inclusion.



Clearly, left cancellability is equivalent to requiring that any morphism
in the category X• is a a monomorphism.

I Accordingly, in a Gumm category, on a reflexive graph X•,
there is at most one structure of internal category
which is necessarily left and right cancellable,

I or equivalently in which any morphism is both monomorphic and
epimorphic.

I It is worth to give a name to this specific class of categories.
I propose nearly groupoid.

I Nearly groupoids are stable under subobjects in CatE.
Any subcategory of a groupoid is a nearly groupoid.

I Seen as a special kind of category, a preorder is a nearly
groupoid.
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Let X• be an internal category.

The following conditions are equivalent:
1) it is a nearly groupoid;
2) the shifted categories of X• and of X op

• are preorders:

X1 ×0 X1 ×0 X1
d0

//d1 //
d2 //

X1 ×0 X1
d0

//
d1 //

X1oos0oo

X1 ×0 X1 ×0 X1
d1

//d2 //
d3 //

X1 ×0 X1
d1

//
d2 //

X1oos1oo

3) in set theoretical terms: any slice and coslice of the category in
question is a preorder.



There is an observation that M. Gran and myself did not draw:

the unicity of the internal category structure implies that:
any unitary magma structure on a split epimorphism (f , s) : X � Y in
the fiber PtYE is a commutative monoid,

I because any split epimorphism can be considered as a specific
kind of reflexive graph which, moreover, coincides with its dual.

I whence the following:

Corollary
In any Gumm category, a unitary magma structure on a split
epimorphism (f , s) is necessarily underlying a left and right
cancellable commutative monoid.
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Accordingly any internal category in a Gumm category is a nearly
groupoid such that its endosome:

EndX•

��

// // X•

��
∆X0

OO

// // ∇X0

is commutative. Or, in other words, any internal category X• is a
commutative nearly groupoid.
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In this context, the characterization of the internal categories is more
constrained. For that we shall need some more results.
In the same way as in the Mal’tsev varieties, we get:

I Proposition
In a congruence modular variety V, any split epimorphism
(f , s) : X � Y has a universal associated abelian group object in the
fiber PtYV.



In this context, the characterization of the internal categories is more
constrained. For that we shall need some more results.
In the same way as in the Mal’tsev varieties, we get:

I Proposition
In a congruence modular variety V, any split epimorphism
(f , s) : X � Y has a universal associated abelian group object in the
fiber PtYV.



Start with the following left hand side pushout:

R[f ]
ωf // // Dpf R[ωf ]

d0 ��
d1��

d0

//
d1 //

R[f ]

d f
0 ��

d f
1��

ωf // //oooo Dpf
ψf��

X
OOsf

0

OO

f
// // Y
OO θf

OO

R[f ]

OO
OO

d0

//
d1 //

Xoooo
OO
OO

f
// // Y
OOθf

OO

and complete the diagram with the kernel relations.
I In any E, on the vertical left hand side, we get a reflexive relation.

It is symmetric since the twisting isomorphism on R[f ] produces
an involutive isomorphism on Dpf .

I Since V is a Gumm category, according to our main result
the vertical left hand side reflexive relation is transitive.
So, we get a let hand side vertical equivalence relation.

I Moreover, in any congruence modular variety V, the equivalence
relations R[d f

0] and R[ωf ] do permute,
which is equivalent to saying that the downward square indexed
by 0 is a regular pushout.
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Accordingly the vertical right hand side split epimorphism Dpf � Y
is endowed with a structure of internal groupoid (=abelian group).

I We can then show that it is the universal abelian group object
associated with (f , s) by adding the left hand side part:
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I and by checking that the comparison morphism ε(f , s) is a
regular epimorphism.

I So, the inclusion Ab(PtYV) � PtYV is stable under
monomorphism.
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Theorem
In a congruence variety V, any unitary magma structure on a split
epimorphism (f , s) is necessarily an abelian group.

Proof.
In any Gumm category, any unitary magma structure on a split
epimorphism (f , s) is necessarily a commutative left and right
cancellable monoid.

I So, since any variety is exact, we can then universally embed
any unitary magma structure on (f , s) into an abelian group:

X
f ��

// // Ab(f , s)

f̄ ��
Y

s
OO

Y
s̄
OO

mimicking the construction of Z from N.
I Since the abelian objects in PtYV are stable under

monomorphism, the split epimorphism is necessarily abelian.
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Corollary
Any internal category in a congruence modular variety V is a nearly
groupoid whose endosome is an abelian group.

I we have then many applications, for instance:

Proposition
An internal category X• in a congruence modular variety V is
a groupoid if and only if its support in an equivalence relation.

Proof.
Straightforward since any endosome is an abelian group.
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Congruence distributivity is a special kind of congruence modularity.

In a congruence distributive variety,
- any internal group is trivial
- any groupoid is an equivalence relation.

I so, in a congruence distributive variety,
any internal category has no endomap.

I Question: in a congruence distributive variety, is any internal
category a preorder?
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