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Štěpán

Ivan Di
Liberti

Cipriano
Cioffo

Yuki
Maehara

15.30
16.00

Philip
Hackney

F. Lucatelli

Nunes

Matheus
Duzi

Davide
Trotta

Social activities Coffee break Coffee break

16.00
16.30

Coffee break Coffee break Social activities Bryce
Clarke

Ryuya
Hora

Jacopo

Emmenegger

Martina
Rovelli

16.30
17.00

Marcello
Lanfranchi

Aline
Michel

Lawvere Session Social activities Poster Session Rui
Prezado

Rhiannon
Griffiths

17.00
17.30

Welcome
Drink

Ruben
Van Belle

N. Martins-

Ferreira

Lawvere Session Social activities Poster Session Poster Session

17.30
18.00

Welcome
Drink

Daniel
Luckhardt

Michael
Hoefnagel

Lawvere Session Social activities Poster Session

Evening Drink ends Conference Dinner

at 19.00 19.30 - 0.00

The plenary talks will take place in room A.10, the parallel talks in room A.02 (if the name of the speaker is on the left) and in room A.03 (if the name of the speaker is on the right).

2



———————————————————————————————

Poster Sessions
———————————————————————————————

Thursday - Room A.04 A/B

Hisashi Aratake

Nicola Carissimi

Boris Chorny

Alex Corner

Florian De Leger

Matthew Di Meglio

Nicola Di Vittorio

Bojana Femić
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Session in honour of Bill Lawvere
———————————————————————————————

Speakers at this commemorative session will highlight some of Bill Lawvere’s many
contributions to Category Theory and beyond, reflect on their importance, and share
personal memories. Anders Kock will give the main presentation, followed by short
contributions by Peter Johnstone, Ieke Moerdijk, Matias Menni, Giuseppe Rosolini and
George Janelidze.

The session will be chaired by Walter Tholen.
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A new direction in non-pointed categorical algebra

George Janelidze

University of Cape Town

In contrast to semi-abelian categories [8], a larger class of categories, tentatively called nearly semi-
abelian was introduced in [7]. There are several definitions whose equivalence to each other requires a
rather long proof, which, at the same time, motivates them. The (seemingly) simplest definition requires
Barr exactness, Bourn protomodularity, the existence of finite coproducts, and the morphism 0 → 1
to be a regular epimorphism; it follows that such a category is semi-abelian if and only if that regular
epimorphism is an isomorphism (or, equivalently, if and only if the category is quasi-pointed in the sense of
[5]). In addition to semi-abelian categories, examples of such categories include all protomodular varieties
of universal algebras and cotoposes (=categories dual to elementary toposes). The results presented in
this talk use a new notion of essentially nullary monad, and a kind of new approach to theory of ideals
and to action representability. Relevant references will also include [6], [4], [1], [2], [3], [10], and [9].
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Enriched accessible categories*

Steve Lack

Macquarie University

Many basic categorical notions, either enriched or unenriched, can be defined in terms of representability
of some functor: examples include the notions of limit, colimit, and adjunction. One therefore obtains
weakened notions of limit, colimit, or adjunction, upon weakening the requirement of representability
of the presheaf in question. An important example arises when one replaces representable functors by
small ones. This gives rise to a whole series of notions which we call “virtual”. We develop a theory
of accessibility based on the resulting notions of virtual colimit, virtual adjoint, virtual reflectivity, and
virtual orthogonality class. The resulting theory is less Set-based than existing theories of accessibility,
and thus well adapted to the enriched setting.

There are also other possibilities than the small functors, which give rise to various other known variants,
such as the “multi”-notions of Diers, the “poly”-notions of Lamarche and others, as well as further
possibilities: some or known, others new; some are general, others involve specific enrichment contexts.

*Joint work with Giacomo Tendas.



Categorification in Representation Theory

Vanessa Miemietz

University of East Anglia

In the last 25 years, tremendous progress has been made in representation theory, using higher categorical
methods. This area is now called categorification. I will explain and motivate the ideas behind this, before
focusing on specific examples.



Universal properties in probability theory *

Paolo Perrone

University of Oxford

In its early days, category theory was developed primarily for algebra, geometry, and topology. Several
constructions and results in algebra and geometry have since been expressed in terms of universal prop-
erties. This point of view has provided us with a much deeper understanding of these structures, and of
algebra and geometry in general. Today it seems almost impossible to imagine, for example, how the field
of algebraic topology would look without category theory, as well as the other way around.

In the last few years we have experienced a rise in applications of category theory to domains such as
probability, statistics, and information theory. What universal properties do we see in these contexts?
The universal constructions of relevance here are less known in the community than their algebraic
and geometric counterparts, but they can give us just as well a deep understanding of some aspects of
probability. In this talk we will focus on three key examples (or more, depending on time and interest):

- We will show how finite products are fundamentally incompatible with the idea of uncertainty and
correlations;
- We will show how the incompatibility above vanishes ”at infinity”, by expressing the Kolmogorov
extension theorem in terms of a cofiltered limit;
- We will formulate De Finetti’s theorem as a particular equalizer construction, which only works in
categories where the arrows have randomness.

We will use the language of *probability monads* and *Markov categories*, which we will briefly introduce,
and for which we will assume no previous knowledge.

*This talk is based on my work so far with Tobias Fritz, Tomáš Gonda, Sean Moss, Eigil F. Rischel, and Dario Stein, as
well as other researchers in the categorical probability community.



Resource-sensitive model theory: a categorical view*

Luca Reggio

University College London

Since the pioneering work of Lawvere in the 1960s, category theory has been applied to yield a syntax-
independent view of the fundamental structures of logic, encompassing for example first-order logic and
extensions to infinitary and higher-order languages.

In this talk, motivated by the needs of finite model theory and descriptive complexity, I will focus on logic
fragments defined by restricting access to the logical resources. Thus, we may consider e.g. finite-variable
logics or logics with bounded quantifier rank. These resource-sensitive logics, along with the corresponding
combinatorial parameters of (relational) structures, play a pivotal role in finite model theory.

A key insight, due to Abramsky, Dawar and their collaborators [1, 5], is that—in many cases of interest—
these resource-sensitive logic fragments can be described by means of comonads on the category of struc-
tures, and the associated combinatorial parameters by means of the Eilenberg-Moore coalgebras for the
comonads. This is at the origin of the framework of game comonads, which I will outline.

In order to capture the essential properties of game comonads and their categories of coalgebras in a
purely axiomatic fashion, I shall introduce the framework of arboreal categories [2, 3]. Roughly speaking,
these are categories having a dense subcategory of paths. Arboreal categories have an intrinsic process
structure that allows to define notions such as bisimulation and back-and-forth systems/games, which
are then transferred to “extensional” structures, e.g. the category of relational structures, via (resource-
indexed) arboreal adjunctions.

This can be regarded as a first step towards a resource-sensitive axiomatic model theory, opening up
a landscape in which the degree of tractability of a logic is related to properties of the corresponding
arboreal adjunction. An example of this perspective “in action” is the recent study of homomorphism
preservation theorems in logic through the lens of arboreal categories [4].

It is interesting to compare this with the use of accessible categories as an axiomatic framework for
abstract elementary classes [6]. Whereas the latter is aimed at extending first-order model theory into
the infinite, replacing compactness by λ-accessibility, we are interested in capturing fine structure “down
below”, typically in fragments of first-order logic. Accordingly, I will explain how Gabriel-Ulmer duality
can be applied to show that finitely accessible arboreal adjunctions cannot distinguish between structures
that are equivalent in the logic L∞,ω, thus determining the expressive power of these adjunctions [7].
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Sweedler theory for double categories

Christina Vasilakopoulou

National Technical University of Athens

Back in the late ’60s, Moss Sweedler introduced the concept of a “measuring k-coalgebra” as a space
of generalized k-algebra maps. A particular case is that of the finite dual of a k-algebra, namely the
coalgebra with the property that coalgebra maps into it naturally correspond to algebra maps into the
classical linear dual of a coalgebra. Gavin Wraith was the first to observe that measuring coalgebras
induce an enrichment of the category of k-algebras in k-coalgebras. Interestingly, in modern terms, this
renders the category of k-algebras an example of a semi-Hopf linear category [2]. Anel and Joyal first
referred to the (tensored and cotensored) enrichment of dg-algebras in dg-coalgebras along with involved
structures related to the bar-cobar construction as “Sweedler theory”, whose terminology we follow.

In this talk, we will investigate how this fact of an enrichment of monoids in comonoids, established in
a broader context of locally presentable and braided monoidal closed categories [4], can lead to a many-
object generalization in the setting of monoidal double categories [7, 1]. In the process of capturing such
results in other double categories of interest, it turns out that the structure of an oplax monoidal double
category [3] is required, which in its trivial one-object case returns the context of a duoidal category and
the respective enrichment results therein [5]. Additionally, what comes naturally together with such dual
algebraic structures are the fibration and opfibration of modules and comodules over them: pleasantly,
these fit into an “enriched fibration” picture [6] in the worked out cases, and are envisioned to provide
insight to further cases of interest, for example that of (co)operads and their (co)modules.

References
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Strongly Finitary Monads and Varieties of Algebras*

Jǐŕı Adámek

Czech Technical University Prague and Technical University Braunschweig

Classical varieties of algebras, presented by equations between terms, are well known to bijectively
correspond to finitary monads on Set. Kurz and Velebil proved a corresponding result for varieties of
ordered algebras (presented by inequations between terms): an enriched monad on the cartesian closed
category Pos is strongly finitary if it is the left Kan extension of its restriction to finite discrete posets.
Strongly finitary monads on Pos bijectively correspond to varieties of ordered algebras, see [4].

For a general monoidal closed category V strong finitarity was introduced by Kelly and Lack [3]: let
J : Vf ↪→ V denote the full subcategory of finite copowers I + I + ...I of the monoidal unit. An enriched
monad T on V is strongly finitary if it is the left Kan extension of its restriction to Vf :

T = LanJT · J.

An analogous result to that for Pos is, surprisingly, also true in some categories that fail to be locally
finitely presentable: metric spaces, complete metric spaces, and complete posets.

Complete Posets

We work in the cartesian closed category CPO of cpos (posets with joins of ω-chains) and continuous
maps (preserving joins of ω-chains). Here J : CPOf ↪→ CPO is the full subcategory of finite sets (considered
as discrete posets).

Using Kelly’s concept of density presentation of the functor J , we prove that an enriched endofunctor
on POS is strongly finitary iff it is finitary and preserves coinserters of reflexive pairs. The proof is based
on the following

Proposition. In every cartesian closed category directed colimits commute with finite products.

Given a finitary signature, a continuous algebra is a cpo with continuous operations. For presentations
of classes of continuous algebras one uses equations between extended terms. They allow (besides the
usual composite terms t = σ(t1, ..., tn) for n-ary operations σ) also formal joins t =

∨
n<ω tn. Let f be an

interpretation of variables in an algebra A. Then the interpretation of extended terms in a A is a partial
map t 7→ f ′(t): it is defined in t =

∨
n<ω tn iff all f ′(tn) are defined and form a chain; then f ′(t) =

∨
f ′(tn).

A variety of continuous algebras is a class presented by a set of equations between extended terms. All
varieties form a category with concrete functors (those commuting with the forgetful functors to CPO)
as morphisms.

Theorem. Every variety of continuous algebras has free algebras, and the resulting monad on CPO
is strongly finitary. Conversely, the Eilenberg-Moore category of a strongly finitary monad on CPO is
concretely isomorphic to a variety.

Corollary. The category of strongly finitary monads on CPO is dually equivalent to the category of
varieties of continuous algebras.

*Joint work with Matěj Dostál and Jǐŕı Velebil. Abstract submitted to CT2023.



Metric Spaces and Complete Metric Spaces

The category Met of metric spaces (extended : the distance ∞ is allowed) has as morphisms the
nonexpanding maps. It is enriched w.r.t. the sum-metric on the cartesian product: the distances in
X ⊗ Y are d((x, y), (x′, y′)) = d(x, y) + d(x′, y′). Here Metf is the category of finite sets (considered as
discrete metric spaces).

Mardare et al. [5] introduced the concept of a (complete) quantitative algebra which is a (complete)
metric space A with n-ary operations that are nonexpanding from An (endowed with the maximum
metric) to A. A quantitative equation is an expression t =ε t

′ where t and t′ are terms and ε ≥ 0 is a
rational number. A quantitative algebra satisfies this equation if the computation of the terms always
results in elements of distance at most ε.

A variety of quantitative algebras is a class presented by a set of quantitative equations.

Theorem. Every variety of quantitative algebras has free algebras, and the resulting monad on Met
is strongly finitary. Conversely, the Eilenberg-Moore category of a strongly finitary monad on Met is
concretely isomorphic to a variety.

The same result is true for the full subcategory CMet of complete metric spaces: strongly finitary
monads on it are dually equivalent to varieties of complete quantitative algebras.

Corollary. The category of strongly finitary monads on Met or CMet is dually equivalent to the
category of varieties of (complete) quantitative algebras.
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The Univalence Principle*

Benedikt Ahrens

Delft University of Technology

We argue that univalent foundations (UF) are exactly the right foundations to do (higher) category theory
in. In particular, we show how, in UF, proofs and constructions on mathematical objects, in particular,
on (higher) categories, transfer across equivalence of mathematical structures. The talk is based on [2].

Background

The equivalence principle is an informal principle stating that reasoning in mathematics should be invari-
ant under a suitable notion of “sameness” of mathematical structures. The equivalence principle is not
usually enforced; indeed, the statement 1 ∈ N is not invariant under isomorphism of sets.

Blanc [3] and Freyd [5] devised a syntax for logical statements about categories that is invariant under
equivalence of categories. The obstacle to being invariant under equivalence of categories is equality
of objects. To avoid mentioning equality of objects even in the definition of composition, Blanc and
Freyd work in a dependently typed language; there, morphisms of a category are given, for any pair
(a, b) of objects, by a type hom(a, b), and composition is specified by a family of functions (◦)a,b,c :
hom(b, c)× hom(a, b) → hom(a, c) for any triple (a, b, c) of objects. Composition of morphisms can thus
be specified without an equality hypothesis on the objects of the category.

Makkai [7] extended this idea to a wide class of categorical structures, using a first-order logic with
dependent sorts (FOLDS). To this end, he devises a notion of signature for (higher-)categorical structures,
where a signature specifies the data (sorts and operations on those sorts) of a structure. Such a signature
is given by an inverse category specifying the dependency between the sorts. A model of such a signature
is then given by a suitable functor from that signature into the category of sets. Makkai shows that his
FOLDS is invariant under equivalence of structures. By equipping the sort of arrows A explicitly with an
equality predicate E, and omitting such an equality predicate on objects O, Makkai disallows the source
of non-invariance in his FOLDS. Makkai’s work does not provide an invariant foundation of mathematics,
but rather an invariant “interface” to set theory. Invariance is restricted to statements; FOLDS does not
allow one to express constructions on mathematical structures.

The Univalence Principle

Inspired by Makkai’s work, Voevodsky designed UF as a foundation of mathematics in which both proofs
and constructions on structures can be transported across equivalence of structures. The underlying
formalism of UF is Martin-Löf type theory (MLTT), a higher-order logic with dependent types. Intuitively,
types represent spaces; this is made precise, for instance, in Voevodsky’s interpretation of UF in Kan
complexes [6]. Thus, in UF, mathematical objects are built from spaces rather than sets. Any construction
on a type/space A in UF is automatically invariant under “paths” a ⇝ a′ in A. Discrete types/spaces
play the rôle of sets in UF. To MLTT, Voevodsky added his “univalence axiom” (see, e.g., [6]), which
states that constructions on types are invariant under equivalence of types. Formally, the univalence

*Joint work with Paige R. North and Michael Shulman and Dimitris Tsementzis. Abstract submitted to CT2023.



axiom (for a given universe, that is, a given type of types, U) forces paths in U between two types A and
B to coincide with equivalences between A and B.

Working in UF thus gives one the option to build mathematical objects out of discrete spaces (“sets”)—
whenever equality of elements is desired—or, instead, of more general spaces where such an equality is
not desired or feasible. Groups, rings, and other algebraic structures are suitably formalized to have an
underlying discrete space. Categories are used differently in different contexts. On the one hand, categories
are sometimes used in the spirit of an (essentially) algebraic theory, with equality on objects. On the other
hand, categories might be used “categorically”, where the use of equality is avoided. UF offer the option
of defining two different notions of category, each purpose-built for the aforementioned uses. The first
kind, of “strict” category is defined using a discrete type of objects. The second kind of category is defined
using a not-necessarily-discrete type of objects. However, without imposing any further restriction, such
a category has superfluous data in the form of the spatial data on the type of objects. This issue can
be solved by imposing a “completeness” condition as in [1]: one asks that the spatial structure coincides
with the categorical structure by imposing that for any objects a, b : C0, the paths a ⇝ b correspond
to isomorphisms a ∼= b. (Under Voevodsky’s interpretation of UF in Kan complexes [6], categories
are interpreted as truncated Segal spaces, and the univalence condition corresponds to a completeness
condition for such Segal spaces.) Most categories of interest are univalent, but not strict. For univalent
categories, one can then show a univalence principle: paths C ⇝ D correspond to adjoint equivalences
C ≃ D; consequently, any construction on univalent categories is invariant under equivalence of categories.

In our work, we extend the completeness (or univalence) condition given in [1] for categories to other
mathematical structures. Specifically, we define a notion of theory for mathematical structures. For any
theory, we obtain, mechanically, a notion of model, univalence of models, and equivalence of models. We
then prove a univalence principle for univalent models: we show that paths between univalent X and Y
correspond to equivalences X ≃ Y . As before, this entails that any construction on univalent models
in UF transports along equivalence of models. Our notion of theory encompasses many mathematical
structures, such as structured sets, structured categories (e.g., monoidal categories), higher categories
(e.g., bicategories, double bicategories), “enhanced” (higher) categories (e.g., involutive categories), and
many more.

References

[1] Ahrens, B.; Kapulkin, K.; Shulman, M. Univalent categories and the Rezk completion. Mathematical
Structures in Computer Science Volume 25 (2015), no. 05, 1010–1039

[2] Ahrens, B.; North, P. R.; Shulman, M.; Tsementzis, D. The Univalence Principle.
https://arxiv.org/abs/2102.06275v3, 2022, to be published in Memoirs of the AMS
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Spectra of Modelled Spaces à la Coste, Revisited*

Hisashi Aratake

Research Institute for Mathematical Sciences, Kyoto University

In this talk, we present the results of [1], which shed new light on Coste’s theory of spectra [3].

Another construction of Coste spectra: Coste’s theory of spectra generalizes various constructions
of spectra of algebras, such as Zariski spectra of rings and prime spectra of distributive lattices, which
give rise to dual adjunctions between categories of algebras and categories of “locally algebra-ed” spaces
(or toposes). Coste’s framework was greatly inspired by Cole’s theory of topos-theoretic spectra [2], but
the conditions involved in it are much more easily verified. A Coste context, which Coste originally called
a localisation triple, consists of a triple (T0, T,Λ) such that

� T0 is a (for simplicity, single-sorted) cartesian L-theory,
� Λ is a set of pairs (φ(u), ψ(u,v)) of Horn L-formulas with T0 |= ψ(u,v) ⊢ φ(u), and
� T is a coherent L-theory obtained by adding to T0 some axioms of the form φ(u) ⊢ ∨

i ∃viψi(u,vi)
for finitely many pairs (φ(u), ψi(u,vi)) ∈ Λ.

Λ determines a class of “admissible homomorphisms” between T0-models. For example, in the context
for Zariski spectra, admissible homomorphisms of rings are ring homomorphisms reflecting invertible
elements. Additionally, a Coste context is said to be spatial if each (φ(u), ψ(u,v)) ∈ Λ satisfies T0 |=
ψ(u,v) ∧ ψ(u,v′) ⊢ v = v′. Most examples of Coste contexts are spatial in this sense, while a notable
exception is the context for the étale topos of a ring. We write T0-Mod for the category of T0-models
and A-ModSp for the category of T -modelled spaces and “admissible morphisms.” Coste argued that,
for any spatial Coste context, the global section functor Γ has a right adjoint Spec

A-ModSp T0-Modop

Γ

Spec

⊢

.

However, most of his proofs remain unpublished, and Osmond [6] has recently filled the details in the
case of general (not necessarily spatial) Coste contexts, where A-ModSp is replaced by the bicategory of
T -modelled toposes and admissible morphisms.

Our main contributions are twofold: we provide an alternative construction of spectra of T0-models for
spatial Coste contexts, and we prove that it is equivalent to Coste’s original construction. We outline it
below: for a T0-model A, using Λ, Coste defined a join-semilattice VA which is (categorically equivalent
to) a subcategory of the coslice category A\T0-Mod. Let Aλ denote the codomain of λ ∈ VA. Every
λ : A → Aλ is an epimorphism in T0-Mod. We define the underlying set of Spec(A) as the set of all
the ideals I ⊆ VA for which the colimit AI := lim−→λ∈I Aλ is a T -model. It is equipped with the topology

generated by the basic open sets Dλ = { I ∈ Spec(A) | λ ∈ I } for λ ∈ VA. This construction is essentially
the same as Coste’s.

*Abstract submitted to CT2023.



For an open subset U of Spec(A), we define the sheaf S of T0-models on Spec(A) by

SU :=

{
s ∈

∏

I∈U
AI

∣∣∣∣∣
∀J ∈ U, ∃λ ∈ J (i.e. J ∈ Dλ), ∃a ∈ Aλ,
Dλ ⊆ U, and ∀I ∈ Dλ, sI = aI .

}
,

where aI is the image of a under Aλ → AI . For λ ∈ VA, there exists a canonical homomorphism
Aλ → S(Dλ), which is not necessarily an isomorphism. The construction of S directly generalizes the
usual one of the structure sheaves of Zariski spectra of commutative rings. We then prove that the stalk
SI at I is isomorphic to AI , and this observation leads to a direct proof of Coste adjunction. These
results involve only elementary arguments on the locally finitely presentable category T0-Mod. We also
prove that the sheaf topos Sh(Spec(A)) equipped with the structure sheaf S is equivalent to Coste’s
construction as T -modelled toposes. Since this latter result employs more sophisticated methods in topos
theory and categorical logic, we will not present any technical details in this talk.

Limits, colimits and spectra of modelled spaces: Cole and Coste considered more general construc-
tions of spectra of modelled toposes, and it is natural to reconsider spectra of modelled spaces in our
framework. Indeed, we extend the above construction to “relative spectra” of T0-modelled spaces. Let
T0-ModSp be the category of T0-modelled spaces.

Theorem For any T -modelled space (X,P ), there exists an adjunction between the slice categories

A-ModSp/(X,P ) T0-ModSp/(X,P )

forgetful

Spec

⊢

.

Our proof again relies only on elementary categorical arguments on T0-Mod. Relativization of spectra is
crucial to yield the “limit part” of the following theorem:

Theorem The categories T0-ModSp and A-ModSp have small limits and colimits.

In this sense, we would like to emphasize that a Coste context is an appropriate setting for treating limits
and colimits of modelled spaces. Completeness and cocompleteness of the category of locally ringed spaces
were proved in [5] and [4], respectively. As an interesting corollary of the above theorem, we can see that
the category of ringed spaces whose stalks are fields is complete and cocomplete.
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The formal theory of relative monads*

Nathanael Arkor

Masaryk University

The theory of monads on categories admits a fruitful generalisation to the theory of monads in a 2-
category [1]. In this way, many of the usual theorems regarding monads – for instance, that every
adjunction induces a monad, and that every monad is realised by initial and terminal resolutions –
may be proven just once, recovering as special cases the corresponding statements for ordinary monads,
enriched monads, internal monads, and so on.

The notion of a relative monad is a generalisation of the notion of a monad, where the underlying functor
is permitted to be an arbitrary functor, rather than an endofunctor [2, 3]. The theory of relative monads
is in many respects similar to that of monads: for instance, every relative adjunction induces a relative
monad, and every relative monad admits a Kleisli category and an Eilenberg–Moore category that induce
the relative monad. However, to a significant extent, the theory of relative monads is much richer than
the theory of monads [4, 3, 5].

In this talk, I will explain how the theory of relative monads may be carried out in a 2-dimensional setting,
analogous to the formal theory of monads. In contrast to the theory of monads, for which it suffices to
consider 2-categories, to capture relative monads requires a more expressive framework.

I will begin by explaining the subtleties behind formalising the notion of a relative monad compared to
the notion of a monad, which will motivate the introduction of virtual equipments [6]. I will then discuss
some of the fundamental results in the formal theory of relative monads in a virtual equipment. Particular
attention will be paid to the aspects of the formal theory that is notably distinct from the formal theory
of monads. I will conclude the talk by discussing some aspects of the theory of relative monads that have
arisen in our work that are new even in classical setting of relative monads in Cat. This talk is based on
a recent preprint [7].
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Cartesian cubical model categories*

Steve Awodey

Carnegie Mellon University

The category of Cartesian cubical sets is introduced and endowed with a Quillen model structure, using
ideas coming from recent constructions of cubical systems of univalent type theory.

Recently, there has been renewed interest in the cubical approach to homotopy theory. This is due to
connections with the formal system of (homotopy) type theory, which is being used for the purpose
of computerized proof checking [AC13]. Unlike previous cubical models of homotopy theory such as
[Jar02, Mal09], however, the cubes used for this purpose are generally assumed to be closed under finite
products; we call such cube categories Cartesian. Among the advantages of this model, as proposed by
F.W. Lawvere, is the tinyness of the geometric interval I, which indeed plays a role in the current theory.

We define the Cartesian cube category 2 to be the Lawvere theory of bipointed objects, the opposite of
which is therefore the category of finite, strictly bipointed sets B = 2op. Thus 2 is the free finite product
category with a bipointed object [0] ⇒ [1]. Our homotopy theory is based on the category of Cartesian
cubical sets, which is the category of presheaves on 2,

cSet = Set2
op
,

and thus consists of all covariant functors B→ cSet. Among these is an evident distinguished one, namely
that which “forgets the points”; it is represented by the generating 1-cube [1],

I = B([1],−) : B→ cSet .

In cubical sets, the bipointed object 1 ⇒ I turns out to have the (non-algebraic) property that its two
points have a trivial intersection.

0

��

// 1

��

1 // I
We call such an object in a topos an interval, and this is the universal one.

For the purpose of homotopy theory, this interval provides a good cylinder X + X ↣ I × X for every
object X, as well as a good path object XI ↠ X ×X for every fibrant object X. The notion of fibrancy
here is given in terms of a Quillen model structure:

Theorem 1. There is a Quillen model structure (C,W,F) on cSet, in which the cofibrations C are a
subclass of monomorphisms determined axiomatically, the fibrations F are the maps f : X → Y for which
the canonical map

(f I × I, eval) : XI × I→ (Y I × I)×Y X
has the right-lifting property against all cofibrations, and the weak equivalencesW are the maps f : X → Y
for which Kf : KY → KX is bijective on connected components whenever K is fibrant.

*This material is based upon work supported by the Air Force Office of Scientific Research under awards number FA9550-
21-1-0009, FA9550-20-1-0305 and FA9550-15-1-0053. Abstract submitted to CT2023.



Although 2 is a strict test category in the sense of [Gro83], this model structure is not the test one
determined by the method of [Cis06], nor is it Reedy [Ree74], although 2 is generalized Reedy in the
sense of [BM08]. Instead, it is based on a new construction derived from the interpretation of type theory
and making use of the univalence axiom of Voevodsky [CK21]. Our main goal is not merely to arrive at
the above stated theorem, but to investigate the relationship between the model structure and certain
features of the system of cubical type theory [CCHM], in which univalence is constructively valid. The
resulting Quillen model category provides a natural model for the system of [Uni13], but not simply as
a consequence of the powerful result of Shulman [Shu19], which applies only to ∞-toposes presented by
simplicial model categories. Thus our investigation also explores the possibility of a cubical presentation
of a higher topos.
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On the profinite fundamental group of a connected Grothendieck topos*

Clemens Berger

Université Côte d’Azur

There are several notions of finiteness relevant for topos theory [6]. A combination of two of them (local
finiteness and decomposition-finiteness) is used here as a convenient concept of finiteness for a general
Grothendieck topos. The subcategory of sums of finite objects is shown to be an atomic Grothendieck
topos admitting a canonical point. The profinite automorphism group of this point may serve as fundamen-
tal group, at least in the connected case. The emerging interplay between finitely generated Grothendieck
toposes and Galois categories is instructive. Our approach is closely related to Barr’s abstract Galois
theory [2, 3] and is also expressable by means of a certain universal factorisation of the global section
functor, cf. Johnstone [4]. In a Grothendieck topos, local finiteness is equivalent to decidable Kuratowski-
finiteness which is well-known in literature [1, 5]. An object is said to be decomposition-finite if it is a
finite sum of connected objects. This added “geometric” finiteness changes quite a bit the baseline.
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A skew approach to enrichment for Gray categories*

John Bourke

Masaryk University

The classic setting for enriched category theory concerns enrichment in symmetric monoidal closed cat-
egories [6]. Iterative enrichment in symmetric monoidal closed categories allows one to capture categories,
2-categories and Gray-categories [5], where the last of these are categories enriched in the Gray-tensor
product. Each of these can be viewed as semistrict n-categories for n = 1, 2, 3.

One would like to carry on further up the dimensions, but it is known since Crans [3] that any
symmetric monoidal closed structure on the category of Gray-categories must have undesirable limitations
— for instance, none exists which models weak higher-dimensional transformations or interacts well with
Lack’s model structure on Gray-Cat [1].

In this talk, I will explain how Szlachányi’s skew monoidal categories [7] enable us to overcome this
obstruction. In particular I will describe closed skew monoidal structures on the category of Gray-
categories capturing higher lax transformations and higher pseudo-transformations. This builds on the
mapping space of Gohla [4]. In addition, I will discuss the interaction between these skew monoidal
structures and the model structure on Gray-Cat, and what categories enriched in these skew structures
— the resulting semi-strict 4-categories — look like.

This is joint work with Gabriele Lobbia and the results are based on our recent preprint [2].
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Nearly groupoids

Dominique Bourn

Université du Littoral, Calais, France

It is well known that internal categories in Mal’tsev varieties or categories are necessarily groupoids. In
congruence modular varieties and their categorical versions, Gumm categories, this is no more the case
[1].

Here we shall investigate what are the specific properties of internal categories in these varietal and
categorical contexts. They are nearly groupoids with commutative monoids of endomorphisms, according
to the following definition:
A nearly groupoid is a category in which any morphism is both monomorphic and epimorphic.

From [2], we shall also compare the structures of the fibers GrdY E, the internal groupoids in E with Y
as ”object of objects”, when E is a Mal’tsev or a Gumm category. They are both protomodular and
naturally Mal’tsev categories, but of course GrdY E has a weaker structure when E is a Gumm category.

We shall also bring some precisisons about the structure of the fibers CatY E when E is a Gumm category.
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Tambara modules as actions of a monoidal profunctor*

Dylan Braithwaite

University of Strathclyde

Tambara modules [3] are a notion of bimodule between categories equipped with an action of a monoidal
category (often referred to as actegories [1]). While originally defined for applications in representation
theory, Tambara modules have recently found use in the theory of modular data accessors; where they
are central in a representation theorem which greatly facilitates their efficient machine encoding in kinded
polymorphic languages [5, 2].

Being profunctors equipped with a strength in the action of a monoidal category, it is oft-said that
Tambara modules are the corresponding notion of profunctor required when generalising from categories
to actegories. Indeed in the seminal paper on the topic, Tambara refers to these modules as profunctors
with a two-sided action [4]. However, in the usual definition there is no object which literally acts on
the profunctor in any categorical sense, so we are led to ask if there is some way in which this analogy is
made formal. In other words, is there any way for some Tambara module T , to complete the schematic
below so that T ’s strength can be genuinely viewed as an action?

M C

? T

M D

functorial (covariant)

functorial (contravariant)

monoidal action

monoidal action

M−strength

In this talk we will discuss how Tambara modules can be seen exactly as modules for certain monoid
objects in a category of profunctors. The action of a monoidal category M on categories C and D
extends to an action of Psh(M×Mop) on Psh(C×Dop), by an actegorical version of Day convolution [1,
Example 3.2.8]. We hence obtain a notion of action of a monoid in Psh(M×Mop) on an object of
Psh(C × Dop), which is equivalent to a generalised form of profunctorial strength. In particular we find
that, restricting our attention to the hom-profunctor onM, we recover the typical definition of Tambara
module.

We can similarly define two-sided actions with respect to Day convolution, thus positioning these gener-
alised Tambara modules into a double category Tamb of bimodules in the usual way.

This gives a particularly conceptual way to understand Pastro–Street theory (viz. [3, 2]) as simply deal-
ing with the the constructions of the free and cofree modules over the hom-profunctor. Moreover this
effortlessly extends to a more general theory of modules over arbitrary monoidal profunctors, for which
the existing work continues to apply. The ‘generalised Pastro–Street theory’ also hints at a generalised
class of optics where residual data is exchanged by a class of ‘heteromorphisms’ prescribed by the chosen
monoidal profunctor.

Finally, realising that the actegories forming the boundaries between Tambara modules are themselves
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bimodules of monoidal categories, we see that the aforementioned double category Tamb appears as the
double category of arrows in a triple category, Tamb:

N N ′

Q′

M M′

P P ′

biactegory

monoidal profunctor

lax
monoidal functor

generalised Tamb. module

lax
bilinear functor

monoidal
natural transformation

Cubes in this triple category are a suitble notion of morphism of generalised Tambara modules.
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Green 2-functors as pseudomonoids for the Day convolution product*

Nicola Carissimi

Université de Lille

Ordinary Mackey functors, frequently used in representation theory and topology and valued in abelian
groups, have been categorified in [1], which provides an axiomatic framework for the notions of induction
and restriction in equivariant mathematics. The notion of a Mackey 2-functor M consists indeed of
an algebraic gadget taking values on additive categories which encodes for every inclusion of groupoids
H ↪→ G a restriction functorM(G) →M(H), as well as two isomorphic adjoints. A typical example is
the one associating to every groupoid G the category of k-linear representation kG-Mod.

Ordinary Green functors are monoids in the category of Mackey functors, and can be seen as equivariant
version of rings the same way Mackey functors can be seen as equivariant version of abelian groups.
The notion of Green 2-functor is introduced in [2] and it consists of a particular Mackey 2-functor with a
pseudomonoid structure in the appropriate category of 2-functors such that the external product structure
associated to that of pseudomonoid “preserves” left and right adjoints in both variables. Equivalently, a
Frobenius formula is satisfied.

The theory developed in [1] also provides a universal construction of a bicategory Mot of Mackey 2-motives
through which it is possible to factor every Mackey 2-functor.

Gop ADD

Mot

mot

M

M̂

This universal property provides a canonical biequivalence between the bicategory of Mackey 2-functors,
which is a 2-full subcategory of PsFun(Gop,ADD), and the bicategory of all (additive) pseudofunctors in
PsFun(Mot,ADD).

The aim of our work is to characterize Green 2-functors as just pseudomonoids with respect to the Day
convolution product in the bicategory of (additive) pseudofunctors Mot → ADD. In order to do so, we
need a monoidal structure on the category of 2-motives coming from the categorical product of G, as well
as the usual monoidal structure on ADD. Then, the Day convolution can be done thanks to the theory
of bicoends introduced in [3].
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Principal bundles in sites and 2-sites and quotient stacks*

Elena Caviglia

University of Leicester

Principal bundles over topological spaces are an important and useful notion in geometry, with links to
cohomology theories. We will capture this notion in a categorical way and produce a new concept of
principal bundle that makes sense in any site that has all pullbacks and a terminal object. We will then
be able to further generalize this concept to dimension 2, where the setting will be a 2-site.

The topological group involved in the standard notion of principal bundle becomes, in a general site,
a group object in the underlying category. And locally trivial morphisms are generalized considering
pullbacks along the morphisms of a covering family for the Grothendieck topology. It will be important
to notice that these generalized principal bundles are closed under pullbacks. And this will allow us to
construct generalized quotient prestacks. We will also see a sketch of the proof of the fact that these new
objects are indeed prestacks. Among generalized quotient prestacks, we will see the important particular
case of classifying prestacks.

Furthermore, we will present a theorem that states that, if the site is subcanonical and the underlying
category satisfies some mild conditions, our generalized quotient prestacks are stacks. We will see the
key ideas behind the proof of this result, that will involve some important properties of the canonical
Grothendieck topology on a category.

We will then move to dimension 2, introducing a notion of principal 2-bundles that makes sense in a
2-site. In this context the group object involved in the definition will become a 2-group in the underlying
2-category. Pullbacks will then be replaced by comma objects, and we will show that principal 2-bundles
are closed under comma objects. Finally, we will see how much of our 1-dimensional theory of quotient
stacks can be generalized to this 2-dimensional setting.
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A twisted Boardman–Vogt tensor product for operads*

Eugenia Cheng

School of the Art Institute of Chicago

We define a generalisation of the Boardman–Vogt tensor product for operads, in which one operad acts
on the other so that in the resulting theory, rather than the operations from the two operads commuting
with each other, they interact via a parametrised interchange. We use a twisted version of the theory of
commutativity of Garner–López Franco, and iterate the construction to produce operads for k-degenerate
n-categories.

The aim is to provide a framework for studying degenerate weak n-categories in the Trimble framework
[5]. A k-degenerate (n + k)-category has only one j-cell for all 0 ≤ j < k. We can then perform a
“dimension shift” and regard the k-cells as 0-cells of an n-category, with k monoidal structures coming
from composition along bounding j-cells for each 0 ≤ j < k in the original (n+ k)-category. Hence there
is a slogan: A k-degenerate (n+ k)-category “is” a k-tuply monoidal n-category.

Studying degenerate higher categories is interesting as it not only gives us a way to “test” definitions in
low dimensions, but it also gives us insight into precisely where the obstructions are that cause weak higher
categories to be genuinely different from strict ones. One of the challenges of studying degenerate higher
categories is to construct a monad for them. The issue is that a free (n + k)-category on k-degenerate
data is not itself k-degenerate, so the free (n + k)-category monad does not immediately restrict to one
for k-degenerate structures. Rather, such a monad must be derived.

The framework for higher categories that we will use is a generalisation of Trimble’s definition: we use
iterated enrichment, where at each iteration the composition is weakened by the action of an operad.
Given an operad E in a monoidal category V we write V-CatE for the category of (small) categories
enriched in V and weakened by E. A Trimble theory of higher categories is then given by for each n ≥ 0

� a category Vn of n-categories and (strict) n-functors, and

� a contractible operad En ∈ Vn, with
� Vn+1 := Vn-CatEn .

The use of strict functors in this definition gives it strict interchange laws, making it less weak than a
fully weak definition, but recent work [4, 1] has demonstrated that such a framework can still be weak
enough to be equivalent to fully weak structures. Another feature is that while interchange is strict, it is
parametrised by the operad actions, and invokes the action of one of the operads on the other. This is
what gives rise to the “twist” we need in our generalised tensor product.

The idea of the Boardman–Vogt tensor product is to start with operads A and B in V, then construct
an operad A ⊗ B in V, in which all operations of A commute with all operations of B in a form of
interchange. However, for higher categories we want to start with an operad A in V and an operad B in
V-CatA, which gives an action of A on B. We then wish to define an operad A⋉ B in V whose algebras
are doubly-degenerate objects of V-CatA-CatB. Thus we need to replace the commutativity condition in

*Joint work with Richard Garner. Abstract submitted to CT2023.



the tensor product with parametrised interchange, via the action of A on B; this is analogous to the move
from direct to semi-direct products of groups, hence our choice of notation.

We use the general framework for commutativity of Garner–López Franco [3]. In that work, the Boardman–
Vogt tensor product is constructed as an example of a universal commuting cocone; we will generalise this
to a definition of “universal twisted commuting cocone”. The generalisation is complicated by not only
the action of A on B, but also by the need to reduce the dimensions of B, and also the need to introduce
symmetric actions. (We hope to find a smoother way to address this in a future work.)

Main definition

Let A be an operad in V and B and operad in V-CatA. Then we define an operad A ⋉ B as a universal
twisted commuting cocone over A and B.

Theorem 1

The algebras for A⋉B are the doubly-degenerate objects of V-CatA-CatB.

This theorem provides the induction step for our eventual proof by induction. The iteration is in analogy
with iterated loop spaces as follows. A k-fold loop space can be seen as analogous to a k-degenerate
higher category. The little k-cubes operad Cn detects k-fold loop spaces, and the iterative nature can be
seen by the decomposition of Ck as an iterated Boardman–Vogt tensor product of k copies of C1 [2] that
is Ck ≃ C1 ⊗ · · · ⊗ C1 (k times). Our analogous result uses the twisted tensor product and is proved
by induction:

Main Theorem

Consider a Trimble theory of higher categories parametrised by operads Pj ∈ j-Cat, j ≥ 0. Then the
operad

Pn ⋉ · · ·⋉ Pn+k−1

is an operad in n-Cat whose algebras are precisely the k-degenerate (n + k)-categories, expressed as n-
categories with extra structure.

The eventual aim is to prove stabilisation for Trimble higher categories. While the technicalities of that
are still some way off, the present work takes us significantly closer and presents a clear strategy for
proceeding towards that goal.
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A variant of a Dwyer-Kan theorem for model categories*

Boris Chorny

University of Haifa (Oranim)

If all objects of a simplicial combinatorial model category A are cofibrant, it is possible to construct
the homotopy model structure on the category of small functors SA , where the fibrant objects are the
levelwise fibrant homotopy functors, i.e., functors preserving weak equivalences. When A fails to have
all objects cofibrant, we construct the bifibrant-projective model structure on SA and argue that it is an
adequate substitute for the homotopy model structure. Next, we present a generalization of a theorem
of Dwyer and Kan, characterizing which functors f : A → B induce a Quillen equivalence SA ⇆ SB

equipped with the bifibrant-projective model structures above. As an application to Goodwillie calculus,
we discuss the Quillen equivalence between the category of small linear functors from simplicial sets to
simplicial sets and the category of small linear functors from topological spaces to simplicial sets.
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Birkhoff subfibrations*

Alan Cigoli

Università degli Studi di Torino

The category Mal(E) of internal Mal’tsev algebras in an exact Mal’tsev category E with coequalizers is
always a Birkhoff subcategory of E (see [3]). In particular, one can consider E = C/B, where C is a
semi-abelian category and B an object of C. The present work originates from the following question:
how does the reflection

Mal(C/B) � � ⊥
H
// C/B

Ioo
(1)

interact with the change-of-base functors β∗ : C/B → C/B′ for each β : B′ → B? First of all, does (1)
extend to a regular epi reflective subfibration of the codomain fibration Cod: Arr(C) → C? It turns out
that this is the case precisely when C is a peri-abelian category (see [1]).

Moreover, in the latter situation, Mal(C/B) is not only a Birkhoff subcategory of C/B, which guarantees
admissibility (with respect to regular epis – see [5]) in the sense of [4], but it is also admissible with
respect to a larger class of morphisms. A new Galois structure is then available and, for example, one
can interpret crossed modules as coverings in this context.

Actually, a further inspection reveals that most of the properties mentioned above rely on a single feature
of the reflection (1) in the peri-abelian context. Namely, the fact that the kernels of the unit components
for B = 0 are characteristic subobjects (see [2]). So the results apply to any such reflection. We will also
give a characterization of regular epi reflective subfibrations in Fib(C) of the codomain fibration.
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Biased elementary doctrines and quotient completions*

Cipriano Junior Cioffo

Università degli Studi di Padova

Quotient completions are pervasive construction in mathematics and logic that have been deeply studied
in category theory. A first explicit description of the free exact category of a left exact one was provided
in [1]. Later in [2], the result was generalized for weakly left exact categories. In [7], Maietti and Rosolini
introduced the elementary quotient completion in order to give an abstract description of the quotient
construction in [5] for the Minimalist foundation [8]. In order to do that, they relativize the notions of
equivalence relation and quotient for Lawvere’s elementary doctrines, which are suitable functors of the
form P : C Ñ Pos, from a category C with strict finite products to the category Pos of posets and order
preserving functions [3, 4]. As shown in [7, 6], the elementary quotient completion generalizes the exact
completion of a category with weak finite limits but strict finite products.

In this talk, we fill the gap between the elementary quotient completion and the exact completion of
weakly left exact categories, extending the former construction to categories with weak finite products.
Hence, we obtain a comprehensive generalization of the exact completion for weakly left exact categories.

In order to do that, we present the notion of biased elementary doctrine, which is a suitable functor
P : C op Ñ Pos from a category with weak finite products. The structure of biased elementary doctrines
is similar to the classical one, but the properties are restated taking into account a sort of bias due to
the weak universal property of weak finite products. As expected, biased elementary doctrines generalize
Lawvere’s elementary doctrines.

For these structures we detect a class of elements, that we called proof-irrelevant, in the fibers of weak finite
products that are used to obtain the two main constructions. The first one is the strictification, which
associates to every biased elementary doctrine P : C op Ñ Pos an elementary doctrine Ps : Cs

op Ñ Pos
on the finite product completion Cs of C . The second is a quotient completion which extends both the
elementary quotient completion and the exact completion of weakly left exact categories, even in case of
weak finite products. For this construction we discuss a universal property similar to that in [2].

Our main example comes from the intensional level of the Minimalist foundation [8, 5]. The syntactic
category of this theory, denoted by CM, has strict finite products and weak pullbacks and is equipped with
an elementary doctrine GmTT : CMop Ñ Pos. For each object A P CM, the slice category CM{A inherits
a functor, the slice doctrine, GmTT{A : CM{A Ñ Pos, which has the structure of a biased elementary
doctrine and its quotient completion provide a genuine example of elementary quotient completion that
is not an exact completion.
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The right-connected completion of a double category*

Bryce Clarke

Inria Saclay, Palaiseau, France

A double category is an internal category in the 2-category CAT, and is called right-connected if its
identity-assigning map is right adjoint to its codomain-assigning map. Intuitively, a right-connected double
category is one in which each vertical morphism has an underlying horizontal morphism. An important
example of a right-connected double category arises from an algebraic weak factorisation system (L,R) on
a category C, where the vertical morphisms are the R-algebras and the horizontal morphisms come from C.
Riehl [5] showed that this example extends to a 2-functor from the 2-category AWFSlax of algebraic weak
factorisation systems to the 2-category DBL of double categories, and its essential image was characterised
by Bourke and Garner [2] to consist of those right-connected double categories which satisfy a certain
monadicity condition. A natural question arises: can we construct an algebraic weak factorisation system
from an arbitrary double category?

In this talk, I will introduce the right-connected completion
L
(D) of a double category D, and provide

several instances where
L
(D) satisfies the required monadicity condition to induce an algebraic weak

factorisation system. In addition, I will exhibit many examples of the right-connected completion of
well-known double categories, demonstrating why this completion is also interesting in its own right.

Two different approaches to constructing the right-connected completion will be established. The first
approach involves characterising the internal nerve of a right-connected double category via a certain
relative left 2-adjoint, which sends a category C to the free right-connected double category Rc(C) relative
to the vertical double category V(C). This allows for an explicit description of

L
(D) in terms of its nerve

given by DBL(Rc(−),D) : ∆op → CAT. The second approach involves using comma objects in the slice
2-category CAT/C to construct the cofree left-adjoint-left-inverse on a split epimorphism in CAT, and
applying this to the codomain-assigning map of a double category.

The right-connected completion characterises the 2-category RcDBL of right-connected double categories
as a coreflective sub-2-category of DBL, and the counit components

L
(D) → D are shown to satisfy a

certain comonadicity condition under a mild assumption on D. In this situation, we are able to view
vertical morphisms in

L
(D) as vertical morphisms in D equipped with additional coalgebraic structure.

This highlights an interesting duality with algebraic weak factorisation systems, where the unit components
of a reflective 2-adjunction between CAT and RcDBL satisfy an analogous monadicity condition, and thus
allow the vertical morphisms in a right-connected double category to be seen as horizontal morphisms
equipped with additional algebraic structure.

One of the main applications of the right-connected completion is to present a unified double-categorical
framework for the study of delta lenses from computer science [4]. The double category of delta lenses [3]
arises as the right-connected completion of the double category of categories, functors, and cofunctors [1].
This double category satisfies the monadicity condition characterising delta lenses as the R-algebras for an
algebraic weak factorisation system on CAT, as well as the comonadicity condition characterising delta
lenses as coalgebras for a comonad on a category of cofunctors.
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Weak Vertical Composition*

Alexander Corner

Sheffield Hallam University

We continue our study of semi-strict tricategories in which the only weakness is in vertical composition,
that is, composition along bounding 1-cells. These tricategories can be conveniently constructed as
categories enriched in Bicats, the category of bicategories and strict functors, with monoidal structure
given by Cartesian product. In previous work we showed that these were equivalent to braided monoidal
categories, which we now extend to an equivalence of totalities.

In [2] we showed that any doubly-degenerate Bicats-category X has an underlying braided monoidal cat-
egory UX, and that given any braided monoidal category B there is a doubly-degenerate Bicats-category
ΣB such that UΣB is braided monoidal equivalent to B. This shows that weak vertical composition is
“enough” to achieve braided monoidal categories in the doubly-degenerate case, a typical test case for
whether a theory of tricategories is fully weak. For this construction we closely followed the work of [5] who
treated the similar case of semi-strict tricategories in which the weakness lies in horizontal composition.

Both our work and that of [5] worked as an object-level correspondence, whereas here we extend this
comparison to totalities. That is, we extend the object-level comparison of [2] to a comparison of 2-
categories of doubly-degenerate Bicats-categories and braided monoidal categories. The first task then
is to assemble doubly-degenerate Bicats-categories into a 2-category. In order to make an equivalence
with the 2-category of braided monoidal categories we need to consider weak functors, so the first step is
to make that definition. Note that as in [3] we do not simply take homomorphisms and transformations
of tricategories as this gives the “wrong” structure in the doubly-degenerate case and in particular would
not be expected to form a 2-category; a priori tricategories and their higher morphisms assemble into a
tetracategory which does not form a coherent 2-dimensional structure. So we use a higher-dimensional
generalisation of Lack’s icons [4] to ensure a coherent 2-category totality and the “correct” totality for
the doubly-degenerate structures.

In [2] we characterised doubly-degenerate Bicats-categories as a particularly strict form of 2-monoidal
category [1] in which one tensor product is weak but the other is strict, as is interchange. This suggests a
characterisation of a weak functor as a weak monoidal functor with respect to each monoidal structure,
together with some interaction axiom(s). To put this on a secure footing we will proceed abstractly via
monads and distributive laws. First we construct Bicats-categories as algebras for a 2-monad on the
2-category Cat-2-Gph of 2-graphs enriched in Cat (equivalently graphs enriched in Cat-Gph). The 2-
monad in question is a composite of a 2-monad S for vertical composition and a 2-monad T for horizontal
composition, composed via a strict distributive law coming from strict interchange.

We can then characterise strict TS-algebras via a T -algebra and S-algebra structure together with an
interaction axiom. We go on to characterise a weak map of TS-algebras as a weak map with respect to the
T -algebra structure and to the S-algebra structure, together with an interaction axiom. Transformations
are just transformations of the T -structure and the S-structure, with no further interaction axiom required.

This gives us a 2-category TS-Algw and we will look at dd-Bicats-Cat, the full sub-2-category whose
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objects are the doubly-degenerate algebras. Using a weak Eckmann-Hilton argument we show that a
weak map of doubly-degenerate TS-algebras in our case can be characterised as just a weak map of
the S-structures interacting well with the Eckmann-Hilton-induced braiding; conversely such a weak
map of doubly-degenerate S-algebras can be given the structure of a map of TS-algebras. We will
characterise transformations similarly, and show that a transformation of the S-structures is automatically
a transformation of the T -structures.

We are then ready to construct a biadjoint biequivalence by extending U to a 2-functor

dd-Bicats-Cat→ BrMonCat.

Biessential surjectivity was shown in [2] and so in this work we prove local essential surjectivity on 1-cells,
and local full and faithfulness on 2-cells.

The focus of this talk will be a discussion of how we can study weak maps of doubly-degenerate Bicats-
categories in the following ways:

1. as weak maps of TS-algebras;

2. as weak maps of both a T -algebra and an S-algebra, plus an interaction between them;

3. as a weak map of S-algebras, along with an Eckmann-Hilton argument.

While Bicats-categories may appear to be composed of a peculiar mix of strictness and weakness, the
strictness of horizontal composition yields dramatic technical advantages. This comparison at the level
of totalities can also be considered as a blueprint for comparing Trimble theories of 3-categories, which
we defer to future work.
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Frobenius structures in ∗-autonomous categories*

Cédric de Lacroix

Aix-Marseille Université (AMU) - Laboratoire d’Informatique et Systèmes (LIS)

The set [L,L] of join-preserving endomaps over a complete lattice L is a well-known quantale where the
multiplication is the composition of maps. One may wonder under which condition this quantale is a
Frobenius quantale. Following [1], a Frobenius quantale is a tuple (Q, ∗,⊥(−), (−)⊥) where ⊥(−), (−)⊥ :
Q→ Qop, called the left and right linear negations, are two inverse antitone maps s.t. y\⊥x = y⊥/x. In
a series of successive works the following result is established:

Theorem 1 (See [9, 10, 6, 5]). The quantale ([L,L], ◦) of sup-preserving endomaps of a complete lattice
L is a Frobenius quantale if and only if L is a completely distributive lattice.

Here1 we study this theorem from a categorical perspective as suggested by the three following facts. First,
the category SLatt of complete lattices and join-preserving maps is a ∗-autonomous category. Second,
completely distributive lattices are exactly the nuclear objects – ie those objects L s.t. the canonical map
mix : L∗ ⊗ L→ [L,L] is an isomorphism – in this category (see [4]). Third, the quantale ([L,L], ◦) is the
canonical monoid of the internal hom of an object with itself in SLatt. Therefore we investigate whether
the theorem holds in an arbitrary ∗-autonomous category.

To do so we give a definition of Frobenius structures in a symmetric monoidal category (V,⊗, I, σ)
mimicking the definition of Frobenius quantales. Other definitions have already been given (see [7, 8]), we
use this one described here as it permits us to show some nice results. An important property of SLatt
is that every object L comes with its dual Lop. The notion of dual pair abstracts this situation. A dual
pair in a monoidal category V is a triple (A,B, ϵ), with ϵ : A⊗B → I in V, yielding via Yoneda natural
isomorphisms

hom(X,B) ≃ hom(A⊗X, I) and hom(X,A) ≃ hom(X ⊗B, I) .

We informally say that (A,B) is a dual pair. Clearly, (A,A∗) is a dual pair in any ∗-autonomous category.
This notion provides the framework by which to study objects that are dual to each other only up to
isomorphism: for example (A∗ ⊗A, [A,A]) is a dual pair in any ∗-autonomous category.

Given two dual pairs (A,B, ϵ) and (A′, B′, ϵ′), to each morphism f : A → A′ there exists a unique
morphism ρ(f) : B′ → B, the right adjoint of f , s.t. ϵ′ ◦ f ⊗B′ = ϵ ◦ A⊗ ρ(f). Of course if the ambient
monoidal category V is symmetric, (B,A, ϵ ◦ σ) is also a dual pair and the notion of Galois connection is
a special case of adjointness.

Moreover if A is endowed with an associative multiplication µA, then A acts on its dual B on the left and
on the right. Those actions are the only maps s.t. ϵ◦(A⊗αℓA) = ϵ◦(µA⊗B) and ϵ◦(αρA⊗A) = ϵ◦(B⊗µA).
In a quantale they are exactly the left and right implications −\− and −/−.
We define a Frobenius structure as a tuple (A,B, ϵ, µA, l, r) where (A,B, ϵ) is a dual pair, (A,µA) is a
semigroup and l, r : A→ B are invertible maps forming a Galois connection s.t. αℓA◦(A⊗r) = αρA◦(l⊗A).

*Joint work with Luigi Santocanale. Abstract submitted to CT2023.
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With this definition and a few basic properties of Frobenius structures, it is direct to derive the following:

Theorem 2. If A is nuclear, then there is a map l such that ([A,A], ◦, [A,A]∗, l, l) is a Frobenius structure.

Moreover, if the ambient category has an epi-mono factorization system, then the image of mix can always
be endowed with a Frobenius structure. This result comes from a more general theorem: much like the
image of the intuitionistic negation of a Heyting algebra gives rise to a Boolean algebra, the image of a
morphism f : A→ B may be endowed with a Frobenius structure:

Theorem 3. Let V be a ∗-autonomous category with a factorization system. Let (A,µA) be a semigroup
and (A,B) be a dual pair. Let f : A→ B be a map, put ψA = ϵ◦(A⊗f) and suppose that ψA = ψA ◦σA,A.
Factor f as f = m ◦ e with e : A→ C epi and m : C → B mono. If C is a magma with multiplication µC
and e is a magma homomorphism, then there exist maps ψC : C ⊗ C → I and g : C → C∗, transposing
into each other, making (C,C∗, µC , g, g) into a Frobenius structure.

The converse of Theorem 2 requires another condition to hold: the object must be pseudo-affine. An
objet A of a monoidal category is pseudo-affine if the tensor unit I embeds into A as a retract. This
condition is quite natural as it holds for every object in usual monoidal categories.

Theorem 4. In a ∗-autonomous category, if A is a pseudo-affine object and the canonical monoid
([A,A], ◦) is part of a Frobenius structure, then A is nuclear.

The pseudo-affine condition cannot be discarded. We use the category of P -Set described in [3] to
construct a counter-example and demonstrate the following theorem:

Theorem 5. For a well-chosen quantale (Q, ∗), there exists an object A in the Q-Set category which is
not nuclear but whose internal hom [A,A] is part of a Frobenius structure.

References

[1] de Lacroix, C.; Santocanale, L. Unitless Frobenius Quantales. Applied Categorical Structures 31
(2023).

[2] Lacroix, C. ; Santocanale, L. Frobenius Structures in Star-Autonomous Categories. CSL 31, (2023).

[3] Schalk, A. ; De Paiva, V. Poset-valued sets or how to build models for linear logics. Theoretical
Computer Science 315 (2004), 83-107.

[4] Higgs, D. ; Rowe, K. Nuclearity in the category of complete semilattices. J. Pure Appl. Algebra 57
(1989), 67-78.

[5] Santocanale, L. Dualizing sup-preserving endomaps of a complete lattice. ACT (2020), 335-346.

[6] Santocanale, L. The Involutive Quantaloid of Completely Distributive Lattices. RAMiCS (2020),
286-301.

[7] Street, R. Frobenius monads and pseudomonoids. J. Math. Phys 45 (2004), 3930-3948.

[8] Egger, J. The Frobenius relations meet linear distributivity.. Theory And Applications Of Categories
24 (2010). pp. 25-38.

[9] Kruml, D. ; Paseka, J. Algebraic and categorical aspects of quantales. Handbook Of Algebra 5(2008).
323-362.
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Triple delooping for multiplicative higher operads*

Florian De Leger

Czech Academy of Sciences

Baez and Dolan [1] introduced a plus construction for operads, in order to give a definition of weak
n-categories. Starting from the initial operad and iterating this construction, one gets the operad for
monoids, then the operad for (one-coloured) non-symmetric operads. Iterating yet again this construction
gives an operad for higher operads. Using homotopy theory for polynomial monads developed in [2], we
proved a triple delooping for multiplicative higher operads analogous to the double delooping of Dwyer-
Hess [3] and Turchin [4] concerning the space of long knots. In this talk, we will recall the concepts
involved in this triple delooping and give an overview of the proof.
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A universal Kaluzhnin–Krasner

embedding theorem*

Bo Shan Deval

Université catholique de Louvain

Given two groups A and B, the Kaluzhnin–Krasner universal embedding theorem states that the wreath
product A ≀ B acts as a universal receptacle for extensions from A to B [2]. For a split extension, this
embedding is compatible with the canonical splitting of the wreath product, which is further universal in a
precise sense. This result was recently extended to Lie algebras [3] and cocommutative Hopf algebras [1].

In this talk we will explore the feasibility of adapting the theorem to other types of algebraic structures.
By explaining the underlying unity of the three known cases, our analysis gives necessary and sufficient
conditions for this to happen.

We will also see that the theorem cannot be adapted to a wide range of categories, such as loops, associative
algebras, commutative algebras or Jordan algebras. Working over an infinite field, we may prove that
amongst non-associative algebras, only Lie algebras admit a Kaluzhnin–Krasner theorem.
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Ultracategories Take 4: finally almost simple*

Ivan Di Liberti

Stockholm University

The talk condenses some recent efforts in understanding the geometry of coherent topoi and its reper-
cussion on coherent logic. After the contributions of Makkai, Marmolejo and Lurie, we investigate the
existing approaches to the general concept of ultracategory in the quest of settling the most natural,
concise, compact, and possibly correct definition. We start by showing that coherent topoi are right Kan
injective with respect to flat embeddings of topoi. We recover the ultrastructure on their category of
points as a consequence of this result. We speculate on possible notions of ultracategory in various arenas
of formal model theory.
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Rational dagger categories

Matthew Di Meglio

University of Edinburgh

The category of Hilbert spaces and bounded linear maps has many properties in common with the
category of abelian groups. For example, they both have finite biproducts and finite equalisers, they are
both enriched in the category of abelian groups, and they both have an orthogonal factorisation system.
The notion of abelian category is a well-studied abstraction of categories that are similar to the category of
abelian groups. Unfortunately, the category of Hilbert spaces and bounded linear maps is not an abelian
category, despite satisfying almost all of the axioms.

Heunen’s Hilbert categories were an initial attempt at defining an abelian-category-like abstraction that
does include the category of Hilbert spaces [1]. Inspired by the work of Abramsky, Coecke, Harding and
Selinger on a new category-theoretic approach to quantum mechanics, in a Hilbert category, adjoints of
linear maps are encoded in the structure of an involutive contravariant endofunctor called the dagger, and
products and equalisers are required to be, in a certain sense, compatible with the dagger. Unlike abelian
categories, the extra structure of a symmetric monoidal product, and, in particular, one whose monoidal
unit is simple, was needed to prove that the morphisms of a Hilbert category have additive inverses.

In this talk, I will introduce the notion of rational dagger category—a new dagger-category analogue of
the notion of abelian category. They are so named because they are necessarily enriched in the category
of rational vector spaces. The axioms are similar to those of a Hilbert category, except that a monoidal
structure is not required, and only kernels rather than arbitrary equalisers are assumed to exist (the latter
being derivable from the former with the other axioms). Starting with natural dagger-category variants
of the axioms of an abelian category, an extra axiom, which amounts to requiring that all diagonal
morphisms be normal monomorphisms, was found to be necessary to ensure the existence of additive
inverses of morphisms. In the process of proving that these additive inverses exist, I discovered a simple
characterisation of when an object in a semiadditive category is an internal group, namely, the codiagonal
morphism on the object should be the cokernel of a split monomorphism.

Whilst the dagger category of Hilbert spaces and bounded linear maps is the motivating example of a
rational dagger category, there are other interesting examples, such as the dagger category of matrices over
a formally-complex involutive division ring and the dagger category of finite-dimensional inner-product
spaces over a Baer-ordered involutive division ring. New notions of dagger section and orthogonal product,
which are more-inclusive variants of the familiar notions of dagger monomorphism and dagger product,
will also be introduced. These arise naturally when considering the family of all normal monomorphisms
in dagger categories that are similar to the dagger category of Hilbert spaces. Phrasing the axioms for a
rational dagger category in terms of dagger sections rather than dagger monomorphisms is necessary to
include the above-mentioned matrix dagger categories as examples.
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Beck’s monadicity in a 2-derivator*

Nicola Di Vittorio

Centre of Australian Category Theory, Macquarie University (Sydney, Australia)

The theory of derivators was introduced independently by Grothendieck and Heller in the 1980s (see
[2] and [3]) with the aim of formalising homotopy theory. They realised that a consistent amount of
this theory (particularly homotopy limits and colimits) can be captured by working with collections of
homotopy categories of diagram categories.

In recent years, Riehl and Verity started a program to develop (∞, 1)-category theory in a model inde-
pendent fashion using ∞-cosmoi, a well-behaved notion of (∞, 2)-category. They noticed that working
inside the homotopy 2-category of an ∞-cosmos is enough to recover a number of ∞-categorical notions,
allowing even for internalisation of adjunctions from 2-categorical data (see [5]).

Inspired by these two lines of research, in my Master of Research thesis [1] I introduced a 2-dimensional
version of derivator theory that has∞-cosmology as a model. In this talk I will explain how one can adapt
the ∞-cosmological argument provided in [4] to prove Beck’s monadicity theorem inside a 2-derivator,
extending the 1-categorical and the ∞-cosmological result to a more general context.
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Ternary semidirect products in semi-abelian categories*

Arnaud Duvieusart

Università degli Studi di Milano
Dipartimento di Matematica “Federigo Enriques”

One of the successes of the theory of semi-abelian categories is the link between the notions of split exact
sequence, binary semidirect product, and internal action [1, 2, 3]. In the categories of groups and Lie
algebras, a notion of n-semidirect products has been introduced by Carrasco and Cegarra [4, 5], which
allows to construct the semidirect product of a sequence of objects (Ai)i=0,...,n, using a system of actions
of Aj on Ai for j > i, and additional functions Ak ×Aj → Ai for j > i > k satisfying certain axioms.

In this talk, we will study the 3-semidirect products in a semi-abelian category, using the definition of
Cegarra and Carrasco; we show that such ternary semi-direct products may be seen as liftings of (split)
short exact sequences to the category of C-actions, and give an internal version of the induced structure
on the given objects. We will pay special attentions to the case of algebraically coherent categories, where
the axioms can be simplified [6].
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Categorical incarnations of infinite games*

Matheus Duzi

University of São Paulo, Brazil

We present a new categorical approach to the study of infinite games in combinatorics. To this end, we
define the categories GameA and GameB of infinite games which are shown to be complete, cocomplete,
cartesian closed, regular and extensive.

We describe these categories in various equivalent forms, as they admit underlying functors to well-
established categories, such as the categoryCUltMet1 of complete ultrametric spaces of diameter at most
1 with 1-Lipschitz mappings as morphisms, the category Tree of arborescences with homomorphisms of
directed rooted trees as morphisms and the topos SetN

op
.

As an application of this framework, we show how some classical topological games can be seen as functors
into these ludic categories, so that a result of Scheepers about covering and tightness topological games
can be seen as a consequence of the existence of natural transformations between the game functors.
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Grothendieck topologies and weak limits*

Jacopo Emmenegger

Università di Genova

The construction of the elementary quotient completion of an elementary doctrine is an excellent tool to
produce models of constructive theories for mathematics, see [3, 4]. The construction freely adds quotients
of (definable) equivalence relations to an elementary doctrine, which is an algebraic description of a logical
theory with equality.

The elementary quotient completion extends the well-known categorical construction of the exact com-
pletion Aex/wlex of a given category A with weak limits [1] provided that products are strong. In fact,
most of the works that characterise models as exact completions invoke that the given category A has
strong finite products. This matches with the situation of an elementary doctrine, whose base category
is required to have finite products. Indeed, equality involves considering pairs of elements.

On the other hand, the peculiarity of strong finite products with respect to weak limits is certainly
apparent. In the work [2] for his PhD thesis, one of the collaborators determined a suitable set of
conditions to present an extension of the notion of elementary doctrine with respect to a base category B
with just weak finite products. It requires that equality behaves with some kind of bias with respect to
a specific weak product diagram—hence the name biased elementary doctrine. He also showed how
the elementary quotient completion extends to the wider settings as a 2-functorial left adjoint.

We show how the two extensions refer to the same situation which involves the product completion
Apr := (Famfin (Aop))op of a category A . When A has weak finite limits there is a Grothendieck topology
Θ where covers contain a diagram of weak binary products. This observation allows us to state our main
results. Let A be a category with weak limits.

Theorem 1 Let P be a doctrine on Apr which is a Θ-sheaf. Then P is elementary if, and only if, the
restriction of P to A is biased.

Theorem 2 There is a full embedding Aex/wlex ↪→ sh(Apr,Θ) of the exact completion in the category of
Θ-sheaves which is exact and preserves any local exponential which exists in Aex/wlex.

References

[1] Carboni, A. and Vitale, E.M., Regular and exact completions, Journal of Pure and Applied Algebra,
vol. 125 (1998), pp. 79–117.

[2] Cioffo, C.J., Homotopy setoids and generalized quotient completion, PhD thesis, Università degli
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Bifunctor Theorem and strictification tensor product for double
categories with lax double functors *

Bojana Femić

Mathematical Institite of Serbian Academy of Sciences and Arts

Double categories have extensively been studied in recent years. Some of their positive aspects are: they
feature inclusiveness of algebraic structures in a sense that makes them a more suitable framework to
work in than bicategories, and also they provide a simplified way to studying monoidal products on
bicategories.

In this talk we present constructions that we carried out in double categories generalizing some results
on 2-categories from [3] (where strict 2-functors were considered) and [2] (where lax functors were
considered).

To start with, we construct a double category Laxhop(A,B) of lax double functors between double cate-
gories A,B, horizontal oplax and vertical lax transformations, and modifications among the latter two.
Mimicking the construction carried out in [1] for double categories and strict double functors, by viewing
⟦A,B⟧ := Laxhop(A,B) formally as if it were an inner-hom for the category Dbllx of double categories
and lax double functors, we construct a double category A ⊗ B. Although the laxity of double functors
prevents ⟦−,−⟧ from being a bifunctor, and − ⊗ − from being a (Gray type) monoidal product in Dbllx,
we obtain the following results.

We characterize lax double quasi-functors in analogy to “quasi-functors of two variables” for 2-categories
of Gray, and we introduce their double category q- Laxhop(A×B,C). We extend the latter characterization
to an isomorphism of double categories Laxhop(A, ⟦B,C⟧) � q- Laxhop(A × B,C). On the other hand, we
construct a double functorF : q- Laxhop(A×B,C)→ Laxhop(A×B,C) to the double category of lax double
bifunctors. This is a double category version of the Bifunctor Theorem proved for 2-categories in [2]. We
show when this double functor F restricts to a double equivalence. For a consequence we derive double
functors known as currying and uncurrying functors in Computer Science, here in the context of double
categories.

For the double category A ⊗ B we prove a universal property that it satisfies by constructing a double
category isomorphism q- Laxhop(A × B,C) � Dblhop(A ⊗ B,C), where the right hand-side is the double
category of strict double functors, horizontal oplax and vertical lax transformations, and modifications.
Consequently, we obtain Dblhop(A ⊗ B,C) � Laxhop(A, ⟦B,C⟧). These two results reveal that lax double
(quasi-)functors of the obvious form strictify when considered as double functorsA ⊗ B→ C.

We finish by showing the application of the double functor F on monads by taking the domain double
categoryA × B to be trivial. Namely, we obtain that when a lax double quasi-functor acts on the trivial
double category it is a distributive law between double monads. In this way it turns out that F is
a generalization to non-trivial double categories of the classical Beck’s result, that a distributive law
between two monads makes it possible for them to compose.

No prior knowledge of double categories is necessary, as we will introduce them in the talk.

*Abstract submitted to CT2023.
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Stabilized profunctors and stable species of structures*

Marcelo Fiore�

Department of Computer Science and Technology
University of Cambridge

We shall examine the fundamental biequivalence between the compact closed bicategoryProfG of profunc-
tors (aka bimodules or distributors) between groupoids and natural transformations between them, and the
2-category CocontG of cocontinuous functors between categories of presheaves over groupoids (aka cate-
gories of groupoid actions) and natural transformations (aka equivariant functions) between them; as well
as its extension to the biequivalence between the cartesian closed bicategory EspG of generalized species of
structures between groupoids and natural transformations between them [4], and the 2-category AnaG of
analytic functors between presheaf categories over groupoids and quasi-cartesian natural transformations
between them [6].

Our starting point is a basic representation theorem for presheaves over groupoids that leads to the
consideration of groupoids with additional structure called kits. Kits have both combinatorial and logical
character. From a combinatorial viewpoint, they serve to restrict presheaves to stabilized ones that
give rise to stabilized-presheaf categories. From a logical perspective, we will consider a class of Boolean
kits. These are drawn from Boolean algebras associated to groupoids by means of a general universal
construction to be introduced and discussed. In this context, the dualities of profunctors and of Boolean
algebras will be placed side by side to define a bicategory StProfBK of stabilized profunctors between
Boolean kits and natural transformations between them. We shall see that StProfBK is ⋆-autonomous,
with a projection onto ProfG degenerating to its compact closed structure, and that it is biequivalent
to the 2-category LinBK of linear functors (namely, those being left and right local adjoints) between
stabilized-presheaf categories over Boolean kits and cartesian natural transformations between them.

The motivation for the above investigations are developments in category theory (analytic [8] and polyno-
mial [5] functors), structural combinatorics (species of structures [7]), logical calculi (linear logic [6]), and
the semantics of computation (stable domain theory [1, 9]). In these, symmetric-algebra (aka Fock-space or
Lafont-exponential) structure plays a fundamental role and in the present context has led us to introduce
a bicategorical model of classical differential linear logic on StProfBK that may be seen as simultaneously
extending and refining the model on ProfG that underlies the bicategory EspG of generalized species of
structures. We shall see that the induced cartesian closed coKleisli bicategory StEspBK of stable species
of structures is biequivalent to the 2-category StAnaBK of stable and analytic functors (equivalently,
epi-preserving finitary parametric right adjoints) between stabilized-presheaf categories over Boolean kits
and cartesian natural transformations between them.

This is joint work with Zeinab Galal and Hugo Paquet [3].

*Abstract submitted to CT2023.
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Notes in Mathematics 1234, 126–159.

[9] Taylor, P. Quantitative domains, groupoids and linear logic. In Category Theory and Computer
Science (1989), Lecture Notes in Computer Science 389, 155–181.



Slices of Higher Categories

Rhiannon Griffiths

Cornell University

Globular operads are a kind of operad whose algebras share a strong formal similarity with higher cat-
egories. This approach to higher categories has been worked on extensively by Michael Batanin and by
Tom Leinster, who defined fully weak n-categories as algebras for a specified globular operad [1], [4]. In
a preprint of Michael Batanin [2], it is conjectured that it should possible to take ‘slices’ of globular op-
erads. The kth slice was said to be the symmetric operad obtained by considering only the k-dimensional
data. Thus, given some notion of higher category, the slices of the corresponding globular operad should
isolate the algebraic structure of those higher categories in each dimension. However, due to the gaps
in knowledge surrounding globular operads at the time, it was not possible to formulate a definition of
slices.

In this talk, I will show that using the theory of presentations developed in [3], we can define slices for
any globular operad and that, up to isomorphism, the slices do not depend on the choice of presentation.
We will also demonstrate how to build a presentation for the globular operad corresponding to any theory
of algebraic higher category in such a way that the coherence theorem is satisfied automatically. This
strategy will provide us with many concrete examples, and we will see that although weak higher categories
are far more complex than their strict counterparts, the slices for fully weak structures are fairly simple
objects, while the slices for stricter variations are typically more complex.

Batanin also hypothesised that slices could tell us when one theory of higher category is equivalent to
another. This is significant because fully weak higher categories are often the most useful for applications
to areas such as algebraic topology and homotopy theory, but become too complicated for practical use
in dimensions greater than 2. A solution is to find a notion of semi-strict higher category that is just
weak enough to be equivalent to the fully weak variety, while still being tractable enough to work with
directly. We will consider two different theories of semi-strict higher category, namely n-categories with
weak units and n-categories with weak interchange laws, and examine what their slices can tell us about
their relation to fully weak n-categories. In the case of weak units, this can be done using the slices
directly. In the case of weak interchange laws, this is accomplished by studying what the slices tell us
about the geometric properties and graphical calculi of the associated string and surface diagrams.
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Edgewise subdivision, culf maps, and right fibrations*

Philip Hackney

Department of Mathematics, University of Louisiana at Lafayette

We will discuss a study of culf1 maps between simplicial spaces, a generalization of discrete Conduché
fibrations of categories. This type of map is especially important when the simplicial spaces involved are
decomposition spaces of Gálvez–Kock–Tonks [3] (also known as 2-Segal spaces of Dyckerhoff–Kapranov
[2]), as they are the class of maps for which the incidence coalgebra construction is functorial.

The edgewise subdivision of a simplicial space is a generalization of the twisted arrow category of a
category. Our main result is an equivalence (of ∞-categories) between culf maps over a simplicial space
X and right fibrations over the edgewise subdivision of X. This can be seen as a relative version of
[1], where it is shown that a simplicial space X is a decomposition space if and only if its edgewise
subdivision is a Segal space. This implies that the ∞-category of decomposition spaces is locally an
∞-topos, as each slice is a category of presheaves (this generalizes a theorem of Kock–Spivak [4] about
discrete decomposition spaces).

An important application is to the theory of free decomposition spaces. Every presheaf Z: ∆op
int → Spaces

on the category of inert maps ∆int ⊂ ∆ freely generates a simplicial space (via left Kan extension), and
this simplicial space is always a decomposition space. Moreover, this free functor exhibits an equivalence
between the category of ∆int-presheaves and the sliceDecomp/BN. This relies on the fact that the twisted
arrow category of the monoid of natural numbers is ∆int. It turns out that many important combinatorial
examples of decomposition spaces arise from this construction.
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Some toposes over which essential implies locally connected*

Jens Hemelaer

University of Antwerp

In this talk, we will discuss some of the ideas from the article [2].

In [1], Barr and Paré introduced the notion of a locally connected (or molecular) geometric morphism.
Recall that a geometric morphism f : F → E between toposes is called locally connected if the inverse
image functor f∗ : E → F has an E-indexed left adjoint.

The class of locally connected geometric morphisms is stable under composition and pullback, and whether
a geometric morphism is locally connected or not can be checked after base change along an open surjection
[3, Corollary C5.1.7]. Further, the topos of sheaves on a topological space is locally connected (over Set)
if and only if X is locally connected. In this sense, local connectedness is a very natural geometric notion.

A more general notion is that of an essential geometric morphism. We say that a geometric morphism
f : F → E is essential if the inverse image functor f∗ has a left adjoint, without the additional requirement
that this left adjoint is E-indexed. This more general class is not stable under base change anymore, so
“being essential” is in this sense not a geometric property. An importance family of essential geometric
morphisms are the geometric morphisms between presheaf toposes PSh(C)→ PSh(D) that are induced
by functors C → D. The latter geometric morphisms are often not locally connected, so in this situation
the difference between essential and locally connected geometric morphisms is the most clear.

In the talk, we will discuss a question originally asked by Mat́ıas Menni, in his message “Essential vs
Molecular” on the category theory mailing list (May 3, 2017). We will ask: what are the toposes E with
the property that any essential geometric morphism f : F → E is also locally connected? Toposes with
this property will here be called EILC toposes (“Essential Implies Locally Connected”). It follows from
the definition that Set is an EILC topos; the idea behind [2] and behind this talk is to construct more
families of examples, and in this way hopefully get a step closer to a full characterization.

In particular, we will show that a topos of sheaves on a topological space X is EILC if the space X
is Hausdorff, or more generally Jacobson. Jacobson étendues, i.e. étendues locally given by a Jacobson
space, are also EILC. Finally, we can generalize our result to Jacobson étendues over a general EILC base
topos that admits a natural number object. Other examples of EILC toposes are Boolean étendues and
classifying toposes of compact groups (at the time of writing, the question whether every Boolean topos
is EILC remains open). If time permits, we will also discuss the weaker notion of CILC toposes, which
are the toposes E such that any geometric morphism f : F → E is locally connected as soon as the inverse
image functor f∗ is cartesian closed.
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A categorical framework for congruence of bisimilarity *

Tom Hirschowitz and Ambroise Lafont
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Motivation and summary of contribution In research on programming languages, languages are
often modelled mathematically using a set of techniques called operational semantics. The general idea
of operational semantics consists in viewing programs as elements of an inductively-generated object, and
evaluation steps as some sort of binary relation, so that programs and evaluation steps form a graph. Let
us call this graph the evaluation graph.

An important research area about programming languages is behavioural equivalences: its goal is
to delineate conditions under which certain program transformations, typically optimisations, may be
performed without changing observable behaviour, in a suitable sense. We say that the program and its
transform are observationally equivalent.

The difficulty is that, in most cases, observational equivalence is hard to establish. A standard idea to
overcome this problem is to design a different equivalence relation, which entails observational equivalence
but is easier to establish. A typical kind of such alternative equivalence relation is bisimilarity. In order
to establish that two given programs are bisimilar, one merely needs to exhibit a relation between their
reachable vertices in the evaluation graph, such that for each related pair, one program simulates the
other’s behaviour. Such a relation is called a bisimulation.

In this work, we focus on a particular property of bisimilarity, which is crucial for showing that it entails
observational equivalence: the fact that bisimilarity is a congruence, which means that it is preserved
by all constructions of the considered language.

This is far from obvious in general. E.g., it famously fails for Milner’s π-calculus, a simple language of
concurrent programs. Perhaps more significantly, it is famously hard to prove for pure λ-calculus. Indeed,
for a long time, the only known proof relied on a detour through some different mathematical model. It
was only with Howe’s work [2] that a direct, syntactic proof was found.

The issue we want to address in this work is that, although congruence of bisimilarity has been proved
for a wide variety of languages, there is no general, unifying theory.

We are not the first to work on this issue. We notably know of syntactic (Howe, 1996; Bernstein, 1998)
and semantic (Turi and Plotkin, 1997) frameworks, which prove congruence of bisimilarity for quite a few
applications. Our work improves on these frameworks in two important ways:

� We cover languages whose evaluation graph relies on inductively-defined operations on programs,
typically but not exclusively capture-avoiding substitution.

� We cover languages whose evaluation graph may have its edges labelled by programs.

Both features are actually useful in applications, as illustrated on our running example, a λ-calculus with
delimited continuations (Biernacki and Lenglet, 2012). Our framework improves on recent work (2022) by

*Abstract submitted to CT2023.



going beyond capture-avoiding substitution and allowing programs as labels. However, it leaves room for
further improvement. Notably, we do not cover Lenglet and Schmitt’s congruence results for higher-order
process calculi [3].

Overview of framework Our framework comprises four main components: (1) a format for specifying
syntax with inductively-defined operations; (2) a format for specifying evaluation; (3) a definition of
bisimilarity, for any language complying with (1) and (2); and (4) sufficient conditions for bisimilarity to
be a congruence. Let us describe this in a bit more detail.

(1) For us, a syntax is a finitary endofunctor Σ0 on a presheaf category V̂, for some small category
V of vertex types. For inductively-defined operations, we need finer data: we consider a bifunctor
Γ: V̂2 → V̂, required to be cocontinuous (resp. finitary) in its first (resp. second) argument. Typically,
for capture-avoiding substitution, V̂ would be equipped with monoidal structure, and Γ(X,Y ) would be
X ⊗ Y . We omit the proper format for lack of space, but it suffices to generate Γ-algebra structure on
the initial algebra Σ∗

0(∅), i.e., a morphism Γ(Σ∗
0(∅),Σ∗

0(∅)) → Σ∗
0(∅), which is suitably compatible with

the Σ0-algebra structure.

(2) For specifying evaluation, we first need a suitable notion of graph. For this, we postulate a small
category E of edge types. For each edge type α, we furthermore (functorially) postulate source sα,
labels lα1 , . . . , l

α
nα

, and target tα vertex types V. These data induce a functor ∆: V̂ → Ê defined by
∆(V )(α) = V (sα)

∏
i V (lαi )V (tα), and our graphs are objects of the oplax limit of ∆, i.e., triples (V,E, ∂)

with ∂ : E → ∆(V ). We then restrict attention to algebraic graphs, i.e., graphs whose vertex object
V is equipped with suitably compatible Σ0- and Γ-algebra structures. Finally, evaluation is specified
by an endofunctor Σ1 on algebraic graphs, required to fix the vertex object. In applications, the initial
Σ1-algebra, say Z, is the usual, syntactic evaluation graph.

(3) For any algebraic graph G = (V,E, ∂), we define bisimilarity to be the largest enhanced bisimula-
tion relation ∼G ↣ V 2, where enhanced means that it is closed under inductively-defined operations,
i.e., Γ(∼G, V ) ⊆ ∼G over V 2, and bisimulation is straightforwardly defined by analogy with applications.

(4) Finally, we isolate a sufficient condition on Σ1 for bisimilarity over Z to be a congruence, i.e.,
Σ0(∼Z) ⊆ ∼Z. The useful form of this condition appears when Σ1 familial in the sense of Diers (1978),
Carboni and Johnstone (1995), or Weber (2001). Indeed, in this case, we may decompose Σ1 into a family
of “abstract transition rules”. Furthermore, we can extract from any such transition rule a characteristic
morphism which we call its border arity, and our sufficient condition boils down to the border arity
of each rule being a left map in a suitable, cofibrantly generated weak factorisation system. In concrete
applications, this instantiates to a classical acyclicity criterion (Howe, 1996; Bernstein, 1998).

The talk is based on the preprint [1].
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On the commutativity of products with coequalisers

Michael Hoefnagel

Stellenbosch University

This talk presents the work of [1, 2], which develops a categorical–algebraic analysis of the property
that finite products commute with arbitrary coequalisers (∗). This property is closely related to several
categorical/universal–algebraic conditions of independent interest, notably, the property of a category
to be unital or factor-permutable. Moreover, one may consider categories satisfying (∗) as a common
generalisation of both (regular) unital and factor-permutable categories with coequalisers, one which is
well–suited for the notion of (Huq-)central morphism and commutative object. In a pointed category C
satisfying (∗), the full subcategory of commutative objects Com(C) is equivalent the category of internal
commutative monoids in C. Under a suitable condition in C, the inclusion Com(C) → C admits a finite
product preserve left adjoint given by “abelianization”.
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Barr-coexactness for representable spaces*

Dirk Hofmann

CIDMA, Department of Mathematics, University of Aveiro, Portugal

The recent PhD thesis [1] presents a very detailed study of various aspects of compact ordered spaces [7]
and their duality theory. Among the many interesting results, it is shown there that the dual of the cate-
gory of compact ordered spaces and homomorphisms is a variety, generalising this way the corresponding
well-known result for compact Hausdorff spaces.

Our interest in these structures stems from our study of Stone-type dualities [5], where we extended
the context from order to metric structures (and, more general, quantale-enriched structures) which, for
instance, allows us to view duality for compact Hausdorff spaces as an enriched version of Stone duality.
This leads us in particular to the study of enriched compact Hausdorff spaces which constitute a natural
generalisation of Nachbin’s ordered compact spaces (see [9]); due to the analogy with [4] we refer to these
structures as representable spaces.

In this talk we present some improvement of duality results in [5], in particular how to restrict results for
categories of distributors to categories of maps (functors) [6]. Secondly, we investigate those properties
(coexactness, local copresentability) of the category of representable spaces which expose the algebraic
nature of the dual of this category. Finally, we also apply the techniques of [3, 2, 8] in this context.

This talk is based on joint work with Marco Abbadini, Pedro Nora, Carlos Fitas and Maria Manuel
Clementino.

References

[1] Marco Abbadini. On the axiomatisability of the dual of compact ordered spaces. PhD thesis, Università
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Internal Parameterization of Hyperconnected Quotients

Ryuya Hora

Graduate School of Mathematical Sciences, University of Tokyo.

This talk is about my paper [1], especially on the following three points.

1. Lawvere’s open problem on quotient toposes

2. Main theorem: Internal Parameterization of Hyperconnected Quotients

3. Key notion, a local state classifier, which is just a colimit of all monomorphisms!

1 Lawvere’s open problem on quotient toposes

Lawvere listed open problems in topos theory in [2]. The first problem is as follows:

“Is there a Grothendieck topos for which the number of these quotients is not small? At the
other extreme, could they be parameterized internally, as subtoposes are?”

He asks whether the number of quotients of a Grothendieck topos is small. Here, a quotient of a topos E
refers to a (suitable equivalence class of) connected geometric morphism from E , i.e., a geometric morphism
whose inverse image part is fully faithful.

Furthermore, for the case where the number of quotients is small, Lawvere further requires an internal
parameterization of them. The word “internal parametrization” here means a bijective correspondence
between quotients and “internal structures.” Recall the case of subtoposes that Lawvere mentions in the
quote. The internal parameterization of subtoposes is the bijective correspondence between subtoposes of a
topos E (i.e., geometric embedding into E) and Lawvere-Tierney topologies in E . Since a Lawvere-Tierney
topology is defined as an internal structure (namely, internal semilattice idempotent homomorphism on
the subobject classifier), this bijective correspondence is worth being called the internal parametrization
of subtoposes. Lawvere seeks a similar internal parameterization for quotient toposes.

There are several motivations for obtaining an internal parametrization of quotients. First, it makes it
possible to classify all quotients just by studying a specific object in the topos without dealing with vast
amounts of data about the entire category. Also, correspondence with an internal structure provides a
new perspective on quotients and may lead to a new operation on the class of quotients.

2 Main theorem: Internal Parameterization of Hyperconnected Quo-
tients

The main result is giving an internal parametrization of hyperconnected quotients. (Here, a hyperconnected
geometric morphism from a topos E is referred to as a hyperconnected quotient of E , emphasizing the
aspect as a quotient of the topos E .) In detail, we introduce the notion of a local state classifier and prove
the following main theorem.

Theorem. Let E be a topos with a local state classifier Ξ (for example, an arbitrary Grothendieck topos).



Then the following three concepts correspond bijectively.

1. hyperconnected quotients of E
2. internal filters of Ξ

3. internal semilattice homomorphisms Ξ→ Ω

Our result gives a partial solution to Lawvere’s open problem in two ways. First, since a hyperconnected
quotient is a particular case of a quotient, it is a solution for the subclass of quotients. The second,
somewhat nontrivial, is that our result solves the case of Boolean toposes. For a Boolean Grothendieck
topos, whose quotients are automatically hyperconnected, we establish the internal parameterization of
all quotients.

3 The key notion, a local state classifier

The key notion to achieving the main theorem is a local state classifier Ξ. The first thing to emphasize
in our context is its theoretical necessity. As mentioned above, a local state classifier plays a central role
throughout our theory, like a subobject classifier in the case of subtoposes.

Despite its theoretical importance, the definition of a local state classifier is unexpectedly simple: it is
just a colimit of all monomorphisms!

Ξ = colim(Cmono → C)

At first glance, this definition might seem odd. In my talk, I will explain as intuitively as possible how
studying hyperconnected quotients leads us to this simple definition and tell some facts about its existence
and properties.

A local state classifier is often given by a familiar concept. For example, the local state classifier of the
topos of directed graphs is the bouquet with 2 edges.

•

That of a group action topos SetG
op

is the set of all subgroups SubGrp(G) of G equipped with the
conjugate action. That of the topos of sheaves over a topological space is the terminal sheaf. These
explicit descriptions enable us to connect the classifications of hyperconnected quotients and existing
mathematical concepts.
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Spectra and the Small Object Argument for Cones*

Jan Jurka

Masaryk University

Given a set I of morphisms in a category satisfying some assumptions, Quillen’s small object argument
[1] can in particular be used to find, for each object, a weakly initial morphism out of this object into an
I-injective object. In this talk I am going to tell you about our recent work [2] that looks at the case in
which I is a set of cones instead of a set of morphisms.

This small object argument for cones can be used in algebraic geometry to construct spectra. The
procedure is as follows. The functor Γ: LRSp → CRingop that maps a locally ringed space (X,F) to a
ring of global sections F(X) has a right adjoint Spec: CRingop → LRSp that assigns to a commutative
ring its spectrum. This observation is often used in order to verify whether some particular construction
is “Spec-like” by checking whether there exists such an analogous adjunction in the context one is working
in. The problem of existence of a right adjoint to Γ can easily be reduced to the problem of existence
of a right adjoint to the embedding LRSp → RSp of locally ringed spaces into ringed spaces. In our
work we consider the analogue of the aforementioned embedding in a quite general setting, formally show
that its right adjoint exists, and then deduce the construction of the right adjoint. This general approach
encompasses many particular well-known “Spec-like” constructions and might be useful for thinking about
new “Spec-like” constructions.
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Measuring how much a model is not positively closed *

Kristóf Kanalas

Masaryk University

Positive model theory is the study of a certain fragment of full first-order logic (called coherent/ℵ0-
geometric/positive/h-inductive): the one dealing with containments between definable sets corresponding
to positive existential formulas, i.e. with theories whose axioms are of the form ∀x⃗(φ(x⃗) → ψ(x⃗)) where
φ and ψ are positive existential (built up from atomic formulas using ⊤, ⊥, ∧, ∨ and ∃). This fragment
captures all first-order theories at the price of extending the signature (so that the homomorphisms
become the same as the elementary maps); a process called Morleyization.

When one works with positive formulas the natural notion of an elementary embedding is what is called
an immersion: a homomorphism preserving and reflecting the validity of positive existential formulas (at
any given tuple from the domain). As mentioned above, if T is a Morleyized first-order theory then all
maps between its models are immersions. Given an arbitrary coherent theory T , one of the central notions
is that of a positively closed model; a model such that any homomorphism out of it is an immersion. (See
e.g. [2].)

Following [4] one can identify theories (of a certain complexity) with categories (having certain exactness
properties), by constructing their so-called syntactic category. In particular coherent theories, interpre-
tations/models and homomorphisms are the same as coherent categories (the ones having finite limits,
pullback-stable image factorization and pullback-stable finite unions), coherent functors and natural trans-
formations. This allows for a translation between logical and category theoretic notions. E.g. immersions
correspond to those natural transformations whose naturality squares at monomorphisms are pullbacks
(called elementary in [1]).

In this talk I would like to study a functor which takes models to distributive lattices (the left Kan-
extension of SubC : Cop → DLat along the Yoneda-embedding, where C is a coherent category and SubC
maps objects to their subobject lattices and arrows (f : x → y) to the pulling back homomorphism
(f∗ : SubC(y) → SubC(x))). It yields the 2-element Boolean-algebra iff it yields a Boolean-algebra iff
the model is positively closed. The length of a surjective chain out of M gives a lower bound on the
Krull-dimension of the associated lattice. The results are (mostly) contained in [3].
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Birkhoff’s variety theorem for relative algebraic theories*

Yuto Kawase

Kyoto University, Japan

Introduction

An algebraic theory, sometimes called an equational theory, is a theory defined by finitary operations
and equations, such as groups and rings. It is well known that algebraic theories correspond to finitary
monads on Set, and moreover, S-sorted algebraic theories correspond to finitary monads on SetS for a
given set S.

It is natural to speculate that finitary monads over general categories would extend such classical algebraic
theories and give “algebraic theories” over those categories rather than SetS . In fact, Ford, Milius, and
Schröder showed in [1] that on a category of models of a relational Horn theory (which is a special case
of locally presentable categories), finitary monads give “algebraic theories” over that category. Moreover,
Adámek showed in [2] that finitary monads on Pos (the category of posets) correspond to so-called ordered
algebraic theories. We substantially generalize their results to locally finitely presentable categories. That
is, we show that for a given locally finitely presentable category A , finitary monads on A correspond to
“algebraic theories over A ”, which are called A -relative algebraic theories.

In A -relative algebraic theories, roughly speaking, ordinary (total) operators are replaced with partial
operators whose domain is identified by a “formula over A ”, and ordinary equations are replaced with
logical sequents whose precondition is over A , which are called A -relative judgements.

S-sorted algebraic theory A -relative algebraic theory

Base category SetS A

Operator s1 × · · · × sn ω
s (x1:s1, . . . , xn:sn).φ

ω
s

Axiom equation τ = τ ′ A -relative judgement φ
x⃗

ψ

In order to treat a logical language intrinsic to a locally finitely presentable category A , we use neither
Cartesian theories nor essentially algebraic theories but partial Horn theories [3] even though all of these
theories characterize locally finitely presentable categories. This is because partial operations appear
centrally in A -relative algebraic theories and because we want to treat relation symbols explicitly, as in
Pos.

Generalized Birkhoff’s theorem

One of the famous results in classical Set-based algebraic theories is the following Birkhoff’s variety
theorem (also called HSP-theorem):

*Abstract submitted to CT2023.



Theorem. Let (Ω, E) be a single-sorted algebraic theory (in our term, Set-relative algebraic theory).
Then the following are equivalent for a full subcategory E ⊂ Alg(Ω, E).

1. E is an equational class, i.e., there exists a set of equations E′ satisfying E = Alg(Ω, E + E′).

2. E ⊂ Alg(Ω, E) is closed under:

� products,

� subobjects,

� quotients, i.e., if p : A → B is a surjective morphism in Alg(Ω, E) and A belongs to E , then
B also belongs to E .

We generalize the above theorem to A -relative algebraic theories. That is, for a given A -relative algebraic
theory, we characterize subclasses defined by A -relative judgements via closedness conditions. In this
generalization, we replace subobjects with Σ-closed subobjects, quotients with U -retracts, and add the
closedness condition under filtered colimits. Note that the closedness condition under filtered colimits
can not be removed even in the case of A := SetS . The classical Birkhoff’s theorem does not depend
on syntax because surjections can be characterized by regular epimorphisms and all the conditions are
purely category-theoretic. In contrast, our theorem depends on syntax because the concept of Σ-closed
subobjects depends on the choice of syntax for A . This is a notable feature of our generalization of
Birkhoff’s theorem.
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[1] Ford, C; Milius, S; Schröder, L. Monads on categories of relational structures. arXiv preprint
arXiv:2107.03880.
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A universal property for (∞, 2)-categories

of lax algebras and lax morphisms*

David Kern

Institut Montpelliérain Alexandre Grothendieck

Given a monad T in a 2-category, its Eilenberg–Moore object — of algebras — can be characterised
as a certain weighted limit of the corresponding 2-functor from the generic monad of [1]. This is used
by [7, 6] to define Eilenberg–Moore objects of homotopy-coherent monads, or (∞, 1)-monads, in (∞, 2)-
categories. If T is a 2-monad (in the 3-category of 2-categories), its 2-category of strong algebras and
strong morphisms admits the same characterisation.

For such a 2-monad, one can also talk of lax morphisms, and even of lax algebras. We will explain that, in
order to understand these in a universal fashion, it is necessary to generalise the study to lax monads[2, 5],
whose classifying Gray-category is considered independently in [4]. We then obtain a characterisation of
2-categories of lax algebras as a weighted limit, which can be used to define (∞, 2)-categories of lax
algebras over an (∞, 2)-monad. Time allowing, we will sketch the ideas of coherence through codescent
objects, that allow one to study lax morphisms (between strong algebras) in terms of strong ones as in [3].
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Signs in objective linear algebra*

Joachim Kock

Universitat Autònoma de Barcelona and University of Copenhagen

Standard objective linear algebra works with slice categories instead of vector spaces and with colimit-
preserving functors instead of linear maps. (Such functors are represented by spans, so that matrix
multiplication becomes pullback composition of spans.) This is useful in algebraic combinatorics, although
the amount of linear algebra that can be carried out in this setting is quite limited. One serious limitation
is the absence of negatives. In this talk, I will explain how this can be overcome, outlining an objective
theory of signs in linear algebra. It turns out one can maintain a nice topos flavour by not having the signs
directly on the objects but rather on ‘states’ (for a monoidal structure which is not the cartesian product).
By using groupoid coefficients instead of set coefficients, the signs can be encoded as homotopies, and
some of the sign rules can be derived rather than stipulated. I will illustrate some of the features of the
theory with an objective treatment of exterior powers.

*Joint work with Jesper Møller. This work has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 101028099.



The Tangent Categories of Algebras over an Operad *

Marcello Lanfranchi

Dalhousie University

Tangent categories, first introduced by Rosickỳ [1] and recently revisited and generalized by Cockett
and Cruttwell [2], provide a categorical axiomatization of the tangent bundle. There are many interesting
examples and applications of tangent categories in a variety of areas such as differential geometry, algebraic
geometry [3], algebra, and even computer science [8], [5]. In this talk, we will show how to expand the
theory of tangent categories into a new direction: the theory of operads (cf. [7]). The main result we
provide is that both the category of algebras of an operad and its opposite category are tangent categories.
The tangent bundle for the category of algebras is given by the semi-direct product, while the tangent
bundle for the opposite category of algebras is constructed using the module of Kähler differentials, and
these tangent bundles are in fact adjoints of one another. To prove these results, we first show that
the category of algebras of a coCartesian differential monad [4] is a tangent category. We then show
that the monad associated to any operad is a coCartesian differential monad. This also implies that
we can construct Cartesian differential categories (cf. [6]) from operads. Therefore, operads provide
a bountiful source of examples of tangent categories and Cartesian differential categories, which both
recapture previously known examples (e.g., affine schemes) and also yields new interesting examples (e.g.,
Lie algebras, Poisson algebras, Zinbiel algebras, etc.). We also discuss how certain basic tangent category
notions recapture well-known concepts in the theory of operads. In this regard, we will show that vector
fields correspond to derivations of operadic algebras and differential objects to modules over the initial
algebra.

The paper is available at https://arxiv.org/abs/2303.05434.
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Magnitude homology*

Tom Leinster

University of Edinburgh

Magnitude is a numerical invariant of enriched categories. Magnitude homology is a categorification
of magnitude, first introduced by Hepworth and Willerton for graphs (seen as categories enriched in
(N,≥,+)) and extended to enriched categories by Shulman and myself [5, 9].

Magnitude homology generalizes the ordinary homology of categories (which in turn includes group ho-
mology), and is most novel in the case of metric spaces. There, it provides an R+-graded homology theory
of metric spaces. Work of many authors [1, 2, 3, 4, 6, 7, 10, 11] (and see [8] for more) has shown how
magnitude homology conveys information about convexity and curvature in metric spaces. For example,
while topological homology detects the existence of holes, magnitude homology detects the size of holes.

I will give a survey, including some results from ongoing joint work with Adrián Doña Mateo.
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Torsion theories in simplicial groups and homology*

Guillermo Lopez Cafaggi

Université Catholique de Louvain

Torsion theories, who had been firstly used in abelian categories, had been studied in recent years in the
context of semi-abelian categories (for instance in [1], [2]). The aim of this talk is to present examples
of torsion theories in the semi-abelian category Simp(Grp) of simplicial groups. These torsion theories
constitute a linearly ordered lattice µ(Grp) and we can find relations of torsion theories with the homolog-
ical aspects of simplicial groups (see [3], [4]). First, since each torsion theory (T ,F) consists in a torsion
category T and a torsion-free F , we can notice that each torsion-free category of the lattice µ(Grp) is
a category of homotopy n-types of simplicial groups. Moreover, a lattice of torsion theories induces for
each simplicial group X a lattice of “torsion subjects”:

0 ≤ . . . ≤ µn≥(X) ≤ µ≥n(X) ≤ · · · ≤ µ≥2(X) ≤ µ1≥(X) ≤ µ≥1(X) ≤ µ0≥(X) ≤ X .

Then, we can described the n+ 1th homotopy groups of X as the quotient of the torsion subobjects:

µ≥n+1(X)/µ≤n+1(X) ∼= K(πn+1(X), n+ 1) ,

whereK(πn+1(X), n+1) is the n+1th Eilenberg-Mac Lane simplicial group of the abelian group πn+1(X).

The torsion theories of µ(Grp) generalise the well-known torsion theories for Whitehead’s crossed mod-
ules/internal groupoids; and allow to introduce examples of torsion theories in the categories of Conduché’s
2-crossed modules and Ashley’s crossed complexes in groups.
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Spanning the tale of “Monades et descente”

Fernando Lucatelli Nunes

Utrecht University and CMUC, Portugal

In the classical context of [4, 5]: assuming that C has pullbacks, if A : Cop → Cat is an indexed category,
the descent category DescA(p) is the category of actions of the internal groupoid/equivalence induced by
the kernel pair of p.

The celebrated Bénabou-Roubaud Theorem [1] shows that DescA(p) is equivalent to the category of
algebras induced by A(p)! ⊣ A(p) in the classical context of [4], under the so-called Beck-Chevalley
condition.

In [2], we started investigating whether commuting properties of 2-dimensional limits are useful in proving
classical and new theorems of Grothendieck descent theory. Exploiting this perspective, we were able to
give a generalization of the Bénabou-Roubaud Theorem in terms of commuting properties of bilimits in
[2, Theorem 7.4 and Theorem 8.5].

Further investigation of commuting properties yields, in particular, to the main result of [3] which can be
seen as a counterpart to the Bénabou-Roubaud Theorem, giving a characterization of monadic functors.

In this talk, we present some aspects of this work, especially emphasizing ongoing work.
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Norms on Categories*

Daniel Luckhardt

University of Sheffield

When working in some area of mathematics with a categorical approach, one often has to limit the
class of morphisms under consideration to guarantee nice categorical properties. A good example of
this phenomenon is the category Met of metric spaces, which is usually endowed with contractions as
morphisms to get limits and colimits to behave like they should. This is in contrast to the standard theory
of metric spaces which uses all kinds of maps, including non-continuous ones like ε-isometries.

The solution we propose is to endow the category C under investigation with an additional structure, a
seminorm, defined as a map ∥ . ∥ from the set of morphisms C1 to the interval [0,∞] such that

∥idX∥ = 0 and ∥f ; g∥ ≤ ∥f∥+ ∥g∥

for any X ∈ C0 and f, g ∈ C1, where f ; g = g ◦ f denotes composition of morphisms. Alternatively,
this can be phrased by saying that ∥ . ∥ is a lax functor to the one-object 2-category (∗, [0,∞],+,≥). A
seminorm is further called a norm if the following Cantor-Schröder-Bernstein style property

∥f∥ = ∥g∥ = 0 =⇒ X isomorphic to Y witnessed by some f ′ with ∥f ′∥ = 0,

whenever f : X → Y and g : Y → X, and the approximation property

(∀ε > 0: ∃(f : X → Y ) : ∥f∥ ≤ ε) =⇒ (∃(f : X → Y ) : ∥f∥ = 0)

hold. We will provide numerous examples of norms and seminorms spanning a multitude of disparate
areas of mathematics; these include set theory, functional analysis, measure theory, topology, and metric
space theory—putting special emphasis on the latter. In the examples it will turn out that a seminorm is
a norm when restricting to a full subcategory of objects that are “compact” in the sense of the respective
mathematical theory.

The easiest example of this phenomenon is given by the assignment

∥f∥inj := sup
x∈X

log(#{ y | f(x) = f(y) })

for a morphism f : X → Y in Set. This norm measures the deviation from being injective and the
Cantor-Schröder-Bernstein style property is exactly the Cantor-Schröder-Bernstein theorem.

Another motivation for our approach is to provide a framework for systematic and convenient metriza-
tion of families of equivalence classes of spaces, like the Gromov-Hausdorff space, moduli spaces, and
representation spaces. The problems with doing metrizations in practice are often that they become very
technical, involve arbitrary choices, and basic properties like the triangle inequality or completeness be-
come hard to check. A category theoretical approach is natural considering the example of moduli spaces
or representation spaces: representatives of the point (i.e. equivalence classes of spaces) are objects of a
category and morphisms are comparison maps.

*Joint work with Matt Insall. Abstract submitted to CT2023.
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In the final step we use the ind-completion to get a norm for “non-compact” objects. This is achieved
by fixing a directed set I = (I,≤) and an order preserving function F : I → [0, 1], thought of as the
distribution of a probability measure, and defining a norm using a Choquet style integral

∫
f(i) dḞ :=

∫
1− F (sup{ i | f(i) ≤ t }) dt where

f(i) := inf{ ∥g∥ | ιij(g) = pri f, g ∈ C[Xi, Yj ] }

for inductive systems (Xi)i∈I , (Yj)j∈I and a map f ∈ ind -C = lim
i∈I

colim
j∈I

C[Xi, Yj ], where ιij is the universal

map C[Xi, Yj ] → colimj∈I C[Xi, Yj ]. In the example (Met, ∥ . ∥dil) of metric spaces this corresponds to
the pointed Gromov-Hausdorff distance.

Large parts of this work are laid out in [2] and—in an extended and improved fashion—in [1], wherein
references to related approaches are found.
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Structure–semantics and an axiomatics

of enriched algebra for a subcategory of arities*

Rory Lucyshyn-Wright

Brandon University

We develop a general axiomatic framework for enriched structure–semantics adjunctions and monad–
theory equivalences for a subcategory of arities J in a V-category C, i.e., for a full and dense sub-V-
category J ↪→ C. Not only do we establish a simultaneous generalization of the monad–theory equivalences
previously developed in the settings of Lawvere [1], Linton [2], Dubuc [3], Borceux-Day [4], Power [5],
Nishizawa-Power [6], Lack-Rosický [7], Lucyshyn-Wright [8], and Bourke-Garner [9], but also we establish
a structure–semantics theorem that generalizes those in [1, 2, 3, 4] while applying also to the settings
[5, 6, 7, 8, 9] for which such a result has not previously been developed. Furthermore, we employ
our axiomatic framework to establish broad new classes of examples of monad–theory equivalences and
structure–semantics adjunctions for subcategories of arities enriched in locally bounded closed categories
V [10].

Our axiomatics for enriched algebra begins with an arbitrary symmetric monoidal closed category V with
equalizers, a V-category C, and a subcategory of arities J ↪→ C, which is not assumed to be small. In
this setting, we consider J -theories and, more generally, J -pretheories, in the terminology of Bourke and
Garner [9]. We axiomatically demand that free algebras for all J -theories (resp. J -pretheories) exist,
calling the subcategory of arities J ↪→ C amenable (resp. strongly amenable) in this case. We show that
these axioms entail the existence of a structure–semantics adjunction for J -theories (resp. J -pretheories)
that restricts to a dual equivalence between J -theories and strictly J -algebraic V-categories over C, and
we establish an intrinsic characterization theorem for such V-categories over C. Consequently, we also
obtain generalizations of certain results that Bourke and Garner [9] had proved in the special case of small
subcategories of arities in the locally presentable setting, namely (1) an equivalence between J -theories
and J -nervous V-monads, and (2) an adjunction between J -pretheories and V-monads on C.
Among amenable subcategories of arities one finds the identity functor C ↪→ C on an arbitrary V-category
C (for an arbitrary base V), so that we recover Dubuc’s structure–semantics for arbitrary V-monads
[3, 11]. More generally, we show that every eleutheric subcategory of arities [8, 12, 13] is amenable, so
that the settings of [1, 2, 3, 4, 5, 6, 7, 8] are thus accommodated in full generality. On the other hand, it
follows from the work of Bourke and Garner [9] that if V and C are locally presentable then every small
subcategory of arities in C is strongly amenable. Generalizing this, we prove that if V is locally bounded
and C is the V-category of models for a Φ-limit theory [10], then every small subcategory of arities in
C is strongly amenable. In particular, every small subcategory of arities in a locally bounded closed
category V is strongly amenable. Thus we obtain wide classes of new examples of strongly amenable
subcategories of arities in various convenient closed categories in topology and analysis, which need not
be locally presentable, so that all of the above results are applicable in such settings.

*Joint work with Jason Parker. Abstract submitted to CT2023. We acknowledge the support of the Natural Sciences
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Coinductive equivalences in algebraic weak ω-categories*

Yuki Maehara

Kyushu University

There are many different approaches to weak higher-dimensional categories. One proposed by Leinster
[1], based on an idea of Batanin’s [2], defines weak ω-categories as the algebras for a particular monad on
the category of globular sets. Intuitively, this monad encodes only the existence part of a pasting theorem
for globular pasting diagrams. In this talk, I will make precise (and sketch a proof of) the uniqueness
part, and discuss some of its applications.
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The representing localic groupoid of a geometric theory*

Graham Manuell

University of Coimbra

In [1] Joyal and Tierney famously proved that every Grothendieck topos can be represented as a topos of
equivariant sheaves on a localic groupoid. This provides a way to understand toposes in terms of ‘locales
plus automorphisms’. However, for non-experts it is not always obvious from the original proof exactly
how to find such a localic groupoid for concrete examples. Given a geometric theory T, we give an explicit
presentation of a representing localic groupoid GT for the classifying topos of T. This can be compared
to the topological groupoids of Forssell in [3].

Explicitly, if T is a geometric theory (with any functions expressed as functional relations), then the locale
of objects GT

0 of the classifying groupoid is the classifying locale the propositional geometric theory P [T]
defined as follows.

� For each sort X of T, there is a basic proposition [n ∼X m] for each n,m ∈ N together with axioms
making ∼X act like a partial equivalence relation on N.

� For each relation symbol R ⊆ X1× · · · ×Xk of T, and for each n1, . . . , nk ∈ N and m1, . . . ,mk ∈ N,
we have a basic proposition [(n1, . . . , nk) ∈ R] and axioms ensuring that R respects the equivalence
relations ∼Xi

.

� For each axiom φ ⊢x1,...,xk ψ of T, we add an axiom

k∧

i=1

[ni ∼X
i
ni] ∧ φn1,...,nk

⊢ ψn1,...,nk

for each n1, . . . , nk ∈ N, where φn1,...,nk
and ψn1,...,nk

are obtained from φ and ψ by replacing each
free variable xi by a (fixed) natural number ni, each quantified formula ∃x : X. χ(x, . . . ) by a join∨
nx∈N χ(nx, . . . ), each subformula of the form (y1, . . . , yℓ) ∈ R with [(y1, . . . , yℓ) ∈ R], and each

subformula of the form x =X y with [x ∼X y].

The locale of morphisms GT
1 is similarly the classifying locale of a propositional geometric theory P [T∼=],

where T∼= is a naturally-defined geometric theory of isomorphisms between two T-models.

Objects of the classifying topos Set[T] then correspond to equivariant étale bundles over this groupoid. In
particular, the generic T-model in the classifying topos gives a certain family of equivariant étale bundles
over GT (one bundle for each sort).

In fact, this family of étale bundles on GT is universal, not only in the bicategory of étale-complete
localic groupoids (those coming from toposes), but in a much larger bicategory of localic groupoids and
internal anafunctors. (See also [2] which describes how geometric morphisms between toposes correspond
to anafunctors between their representing groupoids, but restricts to open localic groupoids and does not
discuss the 2-morphisms.)

This presentation recovers the construction of [3] under countability restrictions on T. We can also

*Joint work with Joshua Wrigley. Abstract submitted to CT2023.



derive a presentation for the localic reflection of Set[T] from the fact that this is the locale of connected
components of GT (given by the coequaliser of the domain and codomain morphisms).

Our approach suggests the possibility of analogous ‘classifying groupoids’ that are not directly related
topos theory. For example, suppose T is a dual geometric theory, where the language has finite joins,
arbitrary meets, existential quantification and equality. Then there is localic groupoid which classifies
families of proper separated bundles modelling the theory T.
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Intuitionistic compact ordered spaces*

Jérémie Marquès

Université Nice Côte d’Azur

A compact ordered space is a compact space X equipped with an order ≤ which is closed as a subset
of X2. A Priestley space is a compact ordered space which embeds in a power of {0, 1} (the Priestley
separation axiom). The Priestley dual of a Priestley space X is the set of continuous order-preserving
maps X → {0, 1} and each order-preserving map {0, 1}n → {0, 1} gives rise to an n-ary operation on this
dual. It turns out that the maps {0, 1}n → {0, 1} correspond to the n-ary operations in the theory of
distributive lattices (i.e., the category of order-preserving maps between powers of {0, 1} is the Lawvere
theory of distributive lattices), and this yields Priestley duality : a contravariant equivalence between the
category of Priestley spaces and the category of distributive lattices.

It was shown in [1, 2] that {0, 1} can be replaced with the interval [0, 1] to yield a variety of algebras dual
to the category KH≤ of compact ordered spaces. This variety is ℵ1-ary instead of finitary.

The goal of this talk is to explain how several properties of Priestley duality generalize to this [0, 1]-
based duality for KH≤. The Katětov-Tong theorem [4, 5] plays an important role similar to the Priestley
separation axiom. In particular, it will be explained how propositional and first-order intuitionistic logic fit
in this context by giving several equivalent definitions of intuitionistic compact ordered spaces generalizing
Esakia spaces. They are the compact ordered spaces such that for all open subset U , the least downward
closed subset U containing U is open, and we denote their category by IKH≤. We will conclude by
giving a generalization of the open mapping theorem of [3], which translates topologically Pitts’ uniform
interpolation, to compact ordered spaces: the right adjoint of the forgetful functor IKH≤ → KH≤ sends
projection maps to open maps.
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Normality for monoid monomorphisms*

Nelson Martins-Ferreira

Politécnico de Leiria, Portugal

In the category of monoids we characterize monomorphisms that are normal, in an appropriate sense, to
internal reflexive relations, preorders or equivalence relations. The zero-classes of such internal relations
are first described in terms of convenient syntactic relations associated to them and then through the ad-
junctions associated with the corresponding normalization functors. The largest categorical equivalences
induced by these adjunctions provides equivalences between the categories of relations generated by their
zero-classes and the ones of monomorphisms that we suggest to call normal with respect to the internal
relations considered. This idea, although being transverse to the literature in the field, has not in our
opinion been presented and explored in full generality. The existence of adjoints to the normalization
functors permits developing a theory of normal monomorphisms, thus extending many results from groups
and protomodular categories to monoids and unital categories. .
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A ‘Basis Theorem’ for 2-rigs and Rig Geometry*

Mat́ıas Menni

Conicet and Universidad Nacional de La Plata, Argentina

To approach some of the semi-combinatorial examples of Rig Geometry [1] in a way analogous to
Grothendieck’s algebraic geometry, preliminary algebraic work is needed to understand the relevant sites
of definition. Let Rig be the category of rigs and let 2 be the distributive lattice with two elements,
so that 2/Rig is the category of rigs with idempotent addition. We prove, for 2/Rig, an analogue of
Hilbert’s Basis Theorem, and apply it to different coextensive categories of rigs (not necessarily with
idempotent addition) to prove that finitely presentable objects have finite direct product decompositions.
As corollaries we deduce moleculartity of the associated Gaeta and Zariski toposes. (Most details may be
found in [2].)
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Nerves of enriched categories via necklaces*

Arne Mertens

University of Antwerp

In [4], Dugger and Spivak gave a very elegant description of the left adjoint C to the homotopy coherent
nerve functor Nhc : S Cat → SSet [3] by means of necklaces. A necklace is a finite sequence of simplices
which are glued at their endpoints. The main goal of this talk is to present a general construction of
nerves of enriched categories using necklaces. Apart from the homotopy coherent nerve, this construction
will encompass various other interesting examples like the dg-nerve [2][10], the Duskin nerve [5] (for strict
2-categories) and the nerve for cubical categories [11][7]. Consider a suitable monoidal category W and a
strong monoidal functor from the category of necklaces to W:

D : N ec→W

I will explain how D generates a nerve functor

ND :W Cat→ SSet (∗)

from W-categories to simplicial sets, and describe its left-adjoint. This approach allows to simplify some
arguments, like showing that the nerve ND(C) of some W-category C is a quasi-category, or showing that
two nerves are homotopically equivalent. As an application, I will give a simple explicit description of the
left-adjoint of the dg-nerve Ndg : dgCat → SSet, in analogy to Dugger and Spivak’s description of the
categorification functor C.

The above procedure presents itself more naturally in the context of templicial objects S⊗V. These were
introduced in joint work withWendy Lowen [9] for a suitable (possibly non-cartesian) monoidal category V.
Inspired by Leinster’s homotopy monoids [8], templicial objects are certain colax monoidal functors. They
may be viewed as simplicial objects internalized to V, and have an associated notion of quasi-categories
in V. When V = Set, this recovers the usual simplicial sets and quasi-categories. If W is appropriately
enriched over V, every nerve ND as in (∗) can be lifted to an enriched version ND

V : W Cat → S⊗V. I
will explain how this works and hone in on the special case where W = SV is the category of simplicial
objects in V, which yields an enriched version of the homotopy coherent nerve: Nhc

V : SV- Cat → S⊗V.
In work in progress, we wish to show that this functor is a Quillen equivalence, generalizing the classical
equivalence between the model categories for simplicial categories [1] and quasi-categories [6].
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2-classifiers via dense generators and the case of stacks*

Luca Mesiti

University of Leeds

In order to generalize the fundamental notion of subobject classifier to dimension 2, we need to upgrade
the concept of monomorphism to the one of discrete opfibration. Indeed, in dimension 1, we want to
classify morphisms with fibres of dimension 0, i.e. essentially with fibres that are empty or singletons.
Whereas in dimension 2, we want to classify morphisms with fibres of dimension 1, i.e. essentially with
fibres that are general sets. Wishing to keep as classifier the inclusion of the verum inside generalized truth
values, this passage corresponds to upgrading the classification process from one regulated by pullbacks
to one regulated by comma objects. Exactly as Set is the archetypal example of elementary topos, the 2-
category CAT becomes the archetypal example of elementary 2-topos, classifying the discrete opfibrations
with small fibres via the construction of the category of elements.

Our main result is that, for nice enough 2-categories, the study of the 2-classifiers can be reduced to dense
generators. In particular, a morphism is classified precisely when, expressing its codomain as relatively
absolute 2-colimit of the dense generators, every change of base of it along the components of the universal
cocylinder is classified. This brings many advantages; for example, the 2-classifier in CAT and hence the
study of the construction of the category of elements is reduced to the classification of functors over the
terminal category 1, which is trivial. Indeed a functor C → 1 is classified by the map 1 → CAT that
picks C .

To prove the reduction to dense generators, we have the idea to use a preservation of 2-colimits result
for the 2-functor of pullback along a discrete opfibration. But in order to apply such idea, we first need
to generalize the calculus of colimits in 1-dimensional slices to dimension 2. In dimension 1, a colimit
in a slice is the same thing as the map from the colimit of the domains that is induced by the universal
property of the colimit. In dimension 2, we can achieve an analogue of this by reducing weighted 2-colimits
to oplax normal conical ones. The price to pay is that we need to work with lax slices and use F -category
theory. And as a consequence, we need to consider 2-functors of pullback along a discrete opfibration
between lax slices.

We apply the reduction of the study of 2-classifiers to dense generators to obtain a 2-classifier in 2-
presheaves. This involves a 2-dimensional analogue of sieves. Considering then a suitable 2-dimensional
analogue of closed sieves, we restrict the 2-classifier in 2-presheaves to a 2-classifier in stacks.

*Abstract submitted to CT2023.



Galois structures in preordered groups∗

Aline Michel
Institut de Recherche en Mathématique et Physique

UCLouvain

A preordered group (𝐺,≤) is a (not necessarily abelian) group 𝐺 = (𝐺,+, 0) endowed with a preorder relation≤ which is compatible with the addition + of the group 𝐺: for any 𝑎, 𝑏, 𝑐, 𝑑 in 𝐺, 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑 implies that
𝑎 + 𝑏 ≤ 𝑐 + 𝑑. Given two preordered groups (𝐺,≤𝐺) and (𝐻,≤𝐻 ), a morphism 𝑓 from (𝐺,≤𝐺) to (𝐻,≤𝐻 ) is
a morphism of preordered groups when 𝑓∶𝐺 → 𝐻 is a preorder preserving group morphism. The fundamental
properties of the category 𝖯𝗋𝖾𝖮𝗋𝖽𝖦𝗋𝗉 of preordered groups were studied in [3] by Clementino, Martins-Ferreira and
Montoli. Among other things, they recall that the category 𝖯𝗋𝖾𝖮𝗋𝖽𝖦𝗋𝗉 of preordered groups is isomorphic to the
category whose objects are pairs (𝐺,𝑀), where 𝐺 is a group and 𝑀 a submonoid of 𝐺 closed under conjugation in
𝐺 (that is, 𝑔+𝑚−𝑔 ∈ 𝑀 for any 𝑔 ∈ 𝐺 and 𝑚 ∈ 𝑀), and whose arrows 𝑓∶ (𝐺,𝑀) → (𝐻,𝑁) are group morphisms
𝑓∶𝐺 → 𝐻 satisfying the condition 𝑓 (𝑀) ⊆ 𝑁 . The submonoid 𝑀 in a given preordered group (𝐺,𝑀) is called
the positive cone of 𝐺 and is written 𝑃𝐺. Two important results of the article [3] are the fact that 𝖯𝗋𝖾𝖮𝗋𝖽𝖦𝗋𝗉 is a
normal category [9] and that the effective descent morphisms [7] in this context exactly coincide with the normal
epimorphisms.
In this talk, we present two different Galois structures [6] in 𝖯𝗋𝖾𝖮𝗋𝖽𝖦𝗋𝗉. We first of all consider the reflec-
tor 𝐼∶ 𝖯𝗋𝖾𝖮𝗋𝖽𝖦𝗋𝗉 → 𝖯𝖺𝗋𝖮𝗋𝖽𝖦𝗋𝗉 to the full subcategory 𝖯𝖺𝗋𝖮𝗋𝖽𝖦𝗋𝗉 of partially ordered groups. The objects of
𝖯𝖺𝗋𝖮𝗋𝖽𝖦𝗋𝗉 are given by the preordered groups whose preorder is antisymmetric or, equivalently, by the pairs (𝐺, 𝑃𝐺)
for which the positive cone𝑃𝐺 is a reduced monoid (in the sense that the only element of𝑃𝐺 having its inverse in𝑃𝐺 is
the neutral element 0). The functor 𝐼 is defined, for any preordered group (𝐺, 𝑃𝐺), by 𝐼(𝐺, 𝑃𝐺) = (𝐺∕𝑁𝐺, 𝑃𝐺∕𝑁𝐺)
where 𝑁𝐺 is the normal subgroup 𝑁𝐺 = {𝑥 ∈ 𝐺 ∣ 𝑥 ∈ 𝑃𝐺 and − 𝑥 ∈ 𝑃𝐺}. It is semi-left-exact [2], which means
that the absolute Galois structure induced by 𝐼 is admissible. In this context it is then possible to give an explicit
description of both trivial and central extensions. A morphism 𝑓∶ (𝐺, 𝑃𝐺) → (𝐻,𝑃𝐻 ) in 𝖯𝗋𝖾𝖮𝗋𝖽𝖦𝗋𝗉 is a trivial
extension if and only if the restriction 𝜙∶𝑁𝐺 → 𝑁𝐻 of 𝑓∶𝐺 → 𝐻 to 𝑁𝐺 is a group isomorphism, and it is a central
extension if and only if its kernel 𝖪𝖾𝗋(𝑓 ) lies in 𝖯𝖺𝗋𝖮𝗋𝖽𝖦𝗋𝗉. Remark that the class ℳ∗ of central extensions with
respect to this absolute Galois structure is also part of a monotone-light factorization system (ℰ ′,ℳ∗) in the sense
of [1]. The article [4] proves (among other things) these statements, which can be extended to the more general
setting of 𝑉 -groups (for 𝑉 a commutative, unital and integral quantale) [10].
We next present a generalization (to preordered groups) of a well-known Galois theory existing in the category 𝖦𝗋𝗉
of groups. If we consider the abelianization functor 𝑎𝑏∶𝖦𝗋𝗉 → 𝖠𝖻 to the category 𝖠𝖻 of abelian groups, as well as
the two classes 𝑎𝑏 and 𝑎𝑏 of surjective group homomorphisms in 𝖦𝗋𝗉 and 𝖠𝖻, respectively, we indeed obtain an
admissible Galois structure Γ𝑎𝑏 = (𝖦𝗋𝗉,𝖠𝖻, 𝑎𝑏, 𝑢, 𝑎𝑏,𝑎𝑏), where 𝑢 denotes the inclusion functor 𝖠𝖻 ↪ 𝖦𝗋𝗉. In
this situation, it then turns out that the Γ𝑎𝑏-central and Γ𝑎𝑏-normal extensions both coincide with the algebraically
central extensions, i.e. with the surjective group homomorphisms 𝑓∶𝐺 ↠ 𝐻 whose kernel 𝖪𝖾𝗋(𝑓 ) is in the center
𝑍(𝐺) = {𝑥 ∈ 𝐺 ∣ 𝑥 + 𝑦 = 𝑦 + 𝑥 ∀𝑦 ∈ 𝐺} of 𝐺.
It turns out that the subcategory 𝖠𝖻(𝖯𝗋𝖾𝖮𝗋𝖽𝖦𝗋𝗉) of abelian objects in 𝖯𝗋𝖾𝖮𝗋𝖽𝖦𝗋𝗉 is the full subcategory whose
objects are preordered groups (𝐺,≤) for which 𝐺 is an abelian group and ≤ an equivalence relation on 𝐺 or, alter-
natively, pairs (𝐺, 𝑃𝐺) such that 𝐺 ∈ 𝖠𝖻 and 𝑃𝐺 ∈ 𝖠𝖻. Accordingly, the appropriate generalization to preordered

∗Joint work with Marino Gran. Abstract submitted to CT2023.
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groups of the abelianization functor 𝑎𝑏∶𝖦𝗋𝗉 → 𝖠𝖻 is a functor 𝐹∶ 𝖯𝗋𝖾𝖮𝗋𝖽𝖦𝗋𝗉 → 𝖠𝖻(𝖯𝗋𝖾𝖮𝗋𝖽𝖦𝗋𝗉) whose definition
will be explained in the talk. We will see that this functor 𝐹 gives rise to an admissible Galois structure Γ, and
that the Γ-central and Γ-normal extensions both coincide with the regular epimorphisms 𝑓∶ (𝐺, 𝑃𝐺) ↠ (𝐻,𝑃𝐻 ) in
𝖯𝗋𝖾𝖮𝗋𝖽𝖦𝗋𝗉 such that

• 𝖪𝖾𝗋(𝑓 ) ⊆ 𝑍(𝐺);
• 𝑦 − 𝑥 ∈ 𝑃𝐺 and −𝑥 + 𝑦 ∈ 𝑃𝐺, for any pair (𝑥, 𝑦) ∈ 𝖤𝗊(𝑓 ) ∩ (𝑃𝐺 × 𝑃𝐺),

where 𝖤𝗊(𝑓 ) is the kernel pair of 𝑓 . The proofs of these assertions make extensive use of the results in [11], as
well as of the relative modularity of the category 𝖯𝗋𝖾𝖮𝗋𝖽𝖦𝗋𝗉. Note that these results are interesting also because
𝖯𝗋𝖾𝖮𝗋𝖽𝖦𝗋𝗉 is not even a subtractive category in the sense of [8]. This part of the presentation is based on the preprint
[5] written in collaboration with Marino Gran.
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Graph models for En-operads
*

Ieke Moerdijk

Utrecht University

The ”complete graph operad” was introduced by Clemens Berger quite a while ago, and was soon followed
by the introduction of a variant by Brun, Fiedorowicz and Vogt. However, the relation of these operads
to each other and to other well-known operads left something to be clarified, and the literature contains
several gaps. In this talk, I will show that these operads are equivalent to each other and to the little
n-cubes operad.
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Non-pointed abelian categories*

Andrea Montoli

Università degli Studi di Milano

Abelian categories have proved to be an extremely useful notion in many fields of mathematics. They
can be defined by the so-called “Tierney Equation”

Abelian = Additive + (Barr-)Exact,

which makes it clear how exactness in the sense of Barr plays a fundamental role in the context of additive
categories.

Various notions have been introduced as weakenings of abelianness, often by weakening one or both parts
of Tierney’s equation. In [6], starting from a characterization of the categories of affine spaces as certain
slices of categories of modules, Carboni introduced modular categories as a non-pointed version of additive
categories. In fact, a pointed category C is modular if and only if it is additive.

After Carboni’s result, Bourn studied the categories PtB(C) = 1\(C/B), where B is any object of C. In
fact these categories may be seen as the fibers of the codomain functor Pt(C) → C, which is also known
as the fibration of points when C has pullbacks. There has been extensive interest in properties relating
to this functor. An example of such a property is protomodularity [3], where the change-of-base functors
between the fibers are required to be conservative. By contrast with modularity, protomodularity, in
the pointed context, is weaker than additivity, since it includes categories such as (non-abelian) groups.
Other properties can be considered as non-pointed versions of additivity; for example, a category is:

� naturally Mal’tsev [9] if and only if all fibers PtB(C) are additive;

� penessentially affine [5] if all change-of-base functors of the fibration of points are fully faithful and
create subobjects;

� essentially affine [3] if and only if all change-of-base functors of the fibration of points are equiva-
lences.

All these notions coincide with additivity for pointed categories, and any of these is strictly stronger than
the previous one in the list.

Protomodularity plays a key role in the definition of semi-abelian [8] and homological categories [1]. In
fact, homological categories are defined by weakening both summands of Tierney’s Equation, since they
are only regular, instead of exact, and pointed protomodular, instead of additive. Therefore, additive
regular categories, as for instance the category of torsion free abelian groups, are examples of homological
categories. In this context, many of the homological lemmas (such as the Five Lemma, the Snake Lemma,
the Nine Lemma), as well as the Noether Isomorphisms Theorems, are still valid.

In this talk, we are going to consider a new point of view on a possible notion of non-pointed abelian
category. We rely on a more classical description of an abelian category; namely, an abelian category is a
pointed category with finite limits and colimits where all monomorphisms and epimorphisms are normal.

*Joint work with Arnaud Duvieusart and Sandra Mantovani. Abstract submitted to CT2023.



We will study, in a regular category, the following simple property, which may be seen as a generalization
of the fact that every monomorphism is the kernel of its cokernel:

(P) For every span Z X Y
p m where p is a regular epimorphism and m is a monomorphism, their

pushout exists and is also a pullback.

We investigate the consequences of (P), also in conjunction with protomodularity, and prove that cate-
gories satisfying these requirements share with abelian categories the property that every monomorphism
is Bourn-normal [4]. This observation shows that such categories are, in particular, naturally Mal’tsev.
We then prove that, for a quasi-pointed, regular protomodular category, (P) also implies (Barr-)exactness.
As a consequence, we get that this property characterizes abelian categories among the homological ones.

We then show that exact protomodular categories satisfying (P) may be seen as a new non-pointed
version of abelian categories, which turns out to be weaker than another possible one, namely that of
exact essentially affine categories. In fact, for exact categories, property (P) characterizes penessentially
affine categories among the protomodular ones. Furthermore, we show that a category which is regular
protomodular, satisfies (P), and whose dual is also protomodular, is essentially affine.

An interesting example of a category with property (P) is the category of abelian extensions of an object
in a semi-abelian category. By exploiting an observation from this example in the particular case of
groups, we can provide two different characterizations of strongly semi-abelian categories. The second
one is given by means of a variant of the axiom of normality of unions, which was introduced in [2] in
relation to the representability of internal actions, and is also related to the existence of normalizers in a
semi-abelian category [7].
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New methods for contructing model categories*

Lyne Moser

University of Regensburg

Model categories provide a good environment to do homotopy theory. A model category consists of
a bicomplete category together with three classes of morphisms (weak equivalences, cofibrations, and
fibrations) satisfying a list of axioms. While weak equivalences are the main players in a model category
and encode how two objects should be thought of as being “the same”, the additional data of cofibrations
and fibrations typically facilitates computations of homotopy limits and colimits, and of derived functors.

However, because of their robust structure, model categories are usually hard to construct. To address this
question, several methods have been developed in the literature [1, 2, 3, 4, 8, 10, 11]. In recent work [7],
we develop yet new techniques for constructing model structures from given classes of cofibrations, fibrant
objects, and weak equivalences between them. The requirement that one only needs to provide a class
of weak equivalences between fibrant objects both simplifies the conditions to check and seems more
natural in practice: often, the fibrant objects are the “well-behaved” objects in a model category and so
the weak equivalences should only be expected to exhibit a good behavior between these objects. As a
straightforward consequence of our result, we obtain a more general version of the usual right-induction
theorem along an adjunction, where fibrations and weak equivalences are now only right-induced between
fibrant objects; we refer to such an induced model structure as fibrantly-induced.

As applications of these new methods, we construct several model structures on the category DblCat
of double categories. One of the applications shows that, while a certain right-induced model structure
on DblCat does not exist [5], the fibrantly-induced one does. Another application of interest provides a
model structure on DblCat which is Quillen equivalent to Lack’s model structure on the category 2Cat
of 2-categories through the square (also called quintet) functor Sq: 2Cat → DblCat. In particular, this
proves the strict analogue of a conjecture by Gaitsgory-Rozenblyum [6] formulated in the ∞-setting.
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The Para Construction as a Distributive Law*

David Jaz Myers

Center for Topological and Quantum Systems at NYU Abu Dhabi

The Para construction takes a monoidal categoryM and gives a category Para(M) where a morphism
A→ B is a pair (P, f : P ⊗ A→ B) of a ”parameter space” P and a parameterized map f inM. This
construction formalizes the idea of separating inputs into special ”control variables” or ”parameters”
which will be set separately from the other inputs to a process. The Para construction has played an
important role in categorical accounts of deep learning — where it was first described by Fong, Spivak,
and Tuyeras — open games, and cybernetics.

The Para construction has been generalized in a number of ways. First, it can take an action of a monoidal
categoryM on a category C (an ”actegory”). And second, the resulting category can be seen as the shadow
of a bicategory where 2-cells are reparameterizations. In this talk, we will see a further generalization of
the scope of the Para construction — we will take an actegory ⊙ : M× C → C and produce a double
category Para(⊙) whose vertical morphisms are parameterized by objects of M and whose horizontal
morphisms are those of C. We will, indeed, go even further and show that for any “dependent actegory”
— a pseudomonad in spans of categories whose left leg is a (cloven) cartesian fibration — we can perform
the Para construction to get a double category. As an example of this added generality, we see that the
double category of spans in a category C with pullbacks arises as the Para construction applied to the

dependent actegory of “dependent sums” in C: the pseudomonad with underlying span C ∂1← C↓ ∂0→ C
whose left leg is a cartesian fibration precisely when C has pullbacks.

We will show that in this guise, the Para construction arises as a (pseudo)distributive law between the
action double category of the actegory and the double category of arrows of C, each seen as (pseudo)monads
in a 2-double category of spans. Our construction is abstract and applies in any suitably complete 2-
category K, in particular in the 2-category of double categories with vertical transformations. This lets us
construct a triple category Para(Arena) whose morphisms are lenses, charts, and parameterized lenses
respectively. The cubes in this triple category give representable behaviors of Capucci-Gavranovic-Hedges-
Rischel cybernetic systems [1], and one of the resulting face double categories is a variant of Shapiro and
Spivak’s double category Org [4].

Our proof is abstract and follows from Gambino and Lobbia’s formal theory of pseudomonads in Gray cat-
egories [3]. Let fSpan(K) be the (Gray-categorical strictification of) the tricategory of spans in K whose
left legs are cloven cartesian fibrations. We show that there is a fully faithful Gray-functor fSpan(K)→
Psm(fSpan(K)) sending C ∈ K to the “double category of squares” C ∂0← C↓ ∂1→ C considered as a pseu-
domonad in fSpan(K). In other words, a monad morphism in the Gray category of pseudomonads of spans
in K between “double categories of squares” is precisely a span whose left leg is a cloven cartesian fibra-
tion. Applying the functor Psm again gives us a Gray functor Psm(fSpan(K))→ PsmPsm(fSpan(K)),
which sends any dependent actegory in K to a distributive law over the “double category of squares” of
its object of objects.

*Joint work with Matteo Capucci. Abstract submitted to CT2023.
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Cartesian Closed Double Categories*
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In this talk, we present two approaches to cartesian closed double categories generalizing equivalent 1-
categorical definitions, and give examples to show that the two differ in the double category case. Recall
that one can define a cartesian closed 1-category via a pointwise or a 2-variable adjunction, and arrive
at equivalent definitions. The pointwise approach for double categories, previously considered in [1],
requires the lax functor (−) × Y on D to have a right adjoint (−)Y , for every object Y , while the other
supposes that the exponentials are given by a bifunctor Dop × D → D also involving vertical (i.e., loose)
morphisms of D. Examples include the double categories Cat,Pos,Top,Loc and Quant, whose objects
are small categories, posets, topological spaces, locales, and commutative quantales, respectively; as well
as, the double categories Span(D) and Q-Rel, whose vertical morphisms are spans in a category D with
pullback and relations valued in a locale Q, respectively. We are restricting to lax functors, since the right
adjoints in many of our examples are not pseudo even when (−)× Y is.
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Codescent and bicolimits of pseudo-algebras *

Axel Osmond
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This work provides a categorification of two classical results of monad theory. For a monad on a cocom-
plete category, it is well known that existence of colimits in the category of algebras reduces to existence of
coequalizers, since the latter can be used in a first step to construct coproducts of algebras, and secondly,
arbitrary colimits as quotients of such coproducts. In the case of a finitary monad (or more generally a
monad with rank) on a complete and cocomplete category, such coequalizers can always be forced to ex-
ist thanks to a transfinite process, ensuring the cocompletness of categories of algebras of finitary monads.

In 2-category theory, 2-dimensional analogs of monads and their algebras decline in several flavours
of strictness, and one may ask what are their corresponding cocompleteness results. It is known from
[BKP89] that, in the case of a finitary 2-monad on a 2-complete and 2-cocomplete 2-category, both the
2-categories of strict algebras with either strict morphisms or pseudomorphisms are known to have all
bicolimits: this result first construct 2-colimits for strict morphisms, then uses strictification techniques to
extract those bicolimits from existing stricter 2-colimits of strict algebras and strict morphisms. However,
this cannot be used for pseudo-algebras, since not all pseudoalgebras of a 2-monad can be strictified into
strict algebras, even for well-behaved, finitary 2-monads. As a consequence, a bicocompleteness result for
pseudoalgebras was still lacking to our knowledge. This work, which sits in the more general context of
pseudomonads, proposes a direct proof of the bicocompleteness of the 2-category of pseudo-algebras of
bifinitary pseudomonads. Our strategy, inspired by the classics of 1-dimensional monad theory as [BW00],
reduces existence of arbitrary bicolimits to existence of bicolimits of more specific shape, which can be
more directly proven to exist for pseudo-algebras.

In 1-dimension, it is known that cocompleteness of categories of algebras depends on the sole existence
of coequalizers, and that those latter exist in the case of a finitary monad thanks to a famous, yet arcane
strategy relying on a transfinite induction. In 2-dimension, though several shapes of bicolimits could pro-
vide generalizations of coequalizers of parallel pairs, we claim that in our context their correct analogs are
bicoequalizers of codescent objects in the sense of [LCMV02] (also known as codescent objects of coherence
data). Those latter encode coherence data akin to those of internal categories and 2-congruences. The
role of codescent objects in the theory of 2-monads has been established for some time: many results of
monad theory involving instances of reflexives and split coequalizers categorify into pseudocoequalizing
statements relative to some codescent objects in the 2-dimensional context. In this talk, we prove that
codescent objects are, more generally, useful to generate arbitrary bicolimits. As well as colimits can
be constructed from coproducts and coequalizer in 1-category theory, we prove that one can construct
weighted bicolimits from oplax bicolimits and bicoequalizers of codescent objects. Our argument relies
on the more recent notion of marked bicolimits (aka, σ-bicolimits), intermediate between bicolimits and
oplax bicolimits, which allows to turn weighted bicolimits into conical ones. Then, for a given functor over
a marked 2-category, we construct a certain codescent object from its oplax bicolimit, whose higher data
encode the maps we are going to invert in the marked bicolimit, which is exhibited as the bicoequalizer
of this codescent diagram.

*Abstract submitted to CT2023.



Then we apply this result in the context of pseudo-algebras of pseudomonads. We prove that, for a
pseudomonad on a bicocomplete 2-category, one can construct the oplax bicolimit of a diagram of pseu-
doalgebras as the bicoequalizer of a certain codescent diagram whose data consist of oplax bicolimits of
the underlying objects, categorifying a famous result from [Lin69]. As a consequence, the sole existence
of bicoequalizers of codescent objects in the 2-category of pseudo-algebras becomes sufficient to ensure
existence of oplax bicolimits, and hence, following our previous observation, of all bicolimits.

Finally, we establish existence of bicoequalizers of codescent diagrams in the 2-category of pseudo-
algebras for a bifinitary pseudomonad on a bicomplete and bicocomplete category. In a construction
close in spirit to [Bor94][Theorem 4.3.6], we construct, for a codescent diagram of pseudo-algebras, a
transfinite sequence of codescent diagrams in the underlying category, each step measuring how much
the diagram at this step fails to coincide with the bar construction corresponding to a would-be pseudo-
algebra structure. However a filteredness argument ensures that this construction stabilises at ω, and the
pseudo-algebra thus obtained provides a single-object 2-dimensional solution set for the 2-functor sending
a pseudo-algebra to the category of weighted pseudococones over the codescent diagram of pseudoalge-
bras. A useful 2-dimensional birepresentability theorem from [BG88] then ensures representability of this
2-functor, and hence the existence of a bicoequalizer for the given codescent diagram of pseudo-algebras.
This ensures from what precedes that the 2-category of pseudo-algebras of a bifinitary pseudomonad on
a bicomplete and bicocomplete 2-category is always bicocomplete.

Our main theorem happens to apply to a wide class of examples. First, to the 2-category Lex of small
lex categories. We then come to the the powerful paradigm of [GL12]’s lex colimits, which formalizes
various exactness properties as pseudo-algebras structure for pseudo-monads on Lex corresponding to
free cocompletion under suited classes of finite weights. Those pseudomonads being proven in [DLO22]
to be finitary, they fall under our theorem, proving bicocompleteness of several examples as Reg, the 2-
category of small regular categories, Coh the 2-category of small coherent categories, Ext the 2-category
of small extensive categories, or Pretopω, the 2-category of small finitary pretopoi.
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Weak units in double categories
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Weak units are an important notion in higher category theory and it was conjectured by Simpson that
they should be enough to obtain models of higher categories (which are otherwise strict) satisfying the
homotopy hypothesis. Although this conjecture is still open for general dimension n, we prove a novel link
between weak units and the notion of weak globularity. The latter was introduced by Paoli and Pronk for
n = 2 [4] and by Paoli for n > 3 [2] as a new paradigm to weaken higher categorical structures, leading to
a model of higher categories, the weakly globular n-fold categories, satisfying the homotopy hypothesis.

We show [3] in the case n = 2 how spaces of weak units are precisely encoded by the weak globularity
condition in weakly globular double categories. We prove this by establishing a direct comparison between
weakly globular double categories and Fair 2-categories. The latter, introduced by J. Kock [1], model
weak 2-categories with strictly associative compositions and weak unit laws. This model has some features
in common with the simplicial models, but with the simplicial delta replaced by the category ‘fat delta’.
The proof of this direct comparison is highly non-trivial and involves new results in the combinatorics of
the fat delta, which are of independent interest. Further, the techniques used are very general and do not
involve the well-known equivalence between bicategories and several models of weak 2-categories. These
techniques have good potential for higher dimensional generalizations to tackle Simpson’s conjecture for
general n.
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Diagrammatic presentations of enriched monads and

the axiomatics of enriched algebra*

Jason Parker

Brandon University

A theme of recent interest in enriched category theory has been the study of enriched monads, theories,
and pretheories defined relative to a subcategory of arities J in a V -category C [1, 2, 3], and in particular
presentations of these enriched structures by generalized operations and equations. Work of Kelly, Power,
and Lack [4, 5] provides a framework for presentations of enriched α-ary monads on a locally α-presentable
V -category C over a locally α-presentable closed category V for a regular cardinal α, where the arities
of the operations are the α-presentable objects of C . Bourke and Garner [2] employ arbitrary small
subcategories of arities in locally presentable V -categories in the case where V is locally presentable, but
in this case the arities are still α-presentable for some α. The Kelly-Power-Lack approach to presentations
has recently been generalized by the authors [3] to apply to small eleutheric subcategories of arities in
locally bounded V -categories [6] over a locally bounded closed category V [7], thus removing the assumption
of local presentability. Neither of the frameworks in [2] and [3] subsumes the other, and one may argue
that none of the above frameworks entirely achieves the practical objective of presenting enriched monads
directly in terms of individual operations, instead requiring the user to construct a signature internal to
C or a pretheory enriched in V .

In this talk, generalizing previous work of the authors [3, 8], we establish a common extension of the above
frameworks for presentations of enriched monads, and on this basis we introduce a flexible formalism for
directly describing enriched algebraic structure borne by an object of a V -category C in terms of what we
call parametrized J -ary operations and diagrammatic equations, for a suitable subcategory of arities J in
C . We introduce the notion of diagrammatic J -presentation, and we show that every such presentation
presents a J -nervous V -monad on C whose algebras may be equivalently described as objects of C
equipped with specified parametrized operations, satisfying specified diagrammatic equations. We also
show that every J -nervous V -monad admits such a presentation, by showing that the category of such V -
monads is monadic over a certain category of J -signatures. We work in an axiomatic setting, developed
by the authors in [9], which is based primarily on the assumption that free algebras for J -pretheories
exist; we say that a subcategory of arities J that satisfies this assumption is strongly amenable. We show
that the strong amenability of a subcategory of arities J is in fact equivalent to the requirement that
J supports presentations in an axiomatic sense. We show that our results on presentations of enriched
monads are applicable in a wide variety of new contexts in which V need not be locally presentable, such
as in locally bounded closed categories V and various categories C enriched over such V . In particular,
among locally bounded closed categories V one finds various convenient categories in topology, analysis,
and geometry, and in this context every small full sub-V -category J ↪→ V that contains the unit object
is a strongly amenable subcategory of arities. We also discuss examples of diagrammatic J -presentations
in these settings to illustrate their wide applicability and ease of construction.

*Joint work with Rory Lucyshyn-Wright. Abstract submitted to CT2023. We acknowledge the support of the Natural
Sciences and Engineering Research Council of Canada (NSERC). Nous remercions le Conseil de recherches en sciences
naturelles et en génie du Canada (CRSNG) de son soutien.
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Janelidze-Galois theory [BJ01] and Grothendieck descent theory [JT97] rely on the study of e�ective
descent morphisms, requiring some knowledge of such morphisms in the category of interest, and are the
main motivation to undertake the study of �nding su�cient conditions for, or even characterising, e�ective
descent morphisms; see [JST03, JT94] for introductions to the subject.

Let C be a category with pullbacks. For all morphisms p : x→ y, we consider the change-of-base functors
along p:

p∗ : C/y → C/x
Thanks to the Bénabou-Roubaud theorem [BR70], the descent category for p with respect to the basic
bi�bration, denoted Desc(p), is equivalent to the Eilenberg-Moore category for the monad induced by the
adjunction p! ⊣ p∗. In this setting, this allows us to say that the morphism p is e�ective for descent if the
comparison functor Kp in the Eilenberg-Moore factorisation, given below, is an equivalence.

C/y Desc(p)

C/x
p∗

Kp

Up

Despite this simpli�cation, the characterisation of e�ective descent morphisms in a given category C is a
notoriously di�cult problem in general; for instance, see the characterisation in [RT94] and a subsequent
reformulation [CH02] for the case C = Top.

From the perspective of internal structures, we have the work of Le Creurer [Cre99], in which he studies
e�ective descent morphisms for essentially algebraic structures internal to a category B with �nite limits.
In particular, the author provides su�cient conditions for a morphism to be e�ective for descent in C =
Cat(B).
Based on Le Creurer's results, Lucatelli Nunes, via his study on e�ective descent for bilimits of categories,
provides su�cient conditions for e�ective descent morphisms in C = V-Cat via a suitable pseudo-pullback
relating enriched and internal V-categories for suitable categories V (see [Luc18, Lemma 9.10, Theorem
9.11]).

The aim of this talk is to present the central contribution of [Pre23]; namely, we show how we can extend
Lucatelli Nunes's result to all categories V with �nite limits. We highlight the use of the following three
tools, which are the skeleton of the argument: (1) the properties of familial 2-functors studied in [Web07],
in particular, of the endo-2-functor Fam : CAT→ CAT which takes every category to its free cocompletion

*
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under coproducts, (2) results given in [Luc18, Theorem 9.2 and Corollary 9.5] regarding e�ective descent
morphisms for bilimits, and (3) preservation of pseudo-pullbacks via enrichment.
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Double Fibrations*

Dorette Pronk
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In this talk I will present the work published in [2]. We introduce a notion of double fibration that
forms a common generalization for recent work on monoidal fibrations by Moeller and Vasilakopoulou
[4] and Shulman [6], discrete double fibrations by Lambert [3], and various notions of fibrations between
2-categories and bicategories, as in [1] for instance.

Moeller and Vasilakopoulou’s monoidal fibrations are pseudo monoids in a 2-category of fibrations and
Lambert’s discrete double fibrations are category objects in a 2-category of discrete fibrations. Hence, we
were led to introduce a double fibration as a particular kind of pseudo category structure in a suitable
category of fibrations. We show that we can equivalently view double fibration as a double functors
between (pseudo) double categories with certain properties; namely, the ones that make it an internal
fibration (as defined in [8]) in a suitable 2-category of double categories.

The papers just mentioned also define the indexed version of monoidal fibrations and discrete double
fibrations reespectively. We also generalize this aspect by introducing a generalization of the double
category of elements construction (double Grothendieck construction) given by Paré in [7] to obtain a
representation theorem establishing a correspondence between double fibrations and Span(Cat)-valued
double pseudo-functors as indexing functors, or ”indexed double categories” (for a suitable double 2-
category Span(Cat)). This directly generalizes the result for discrete double fibrations given by Lambert
in [3]. When considering monoidal categories as a special kind of double categories, our representation
theorem also induces the equivalence between monoidal fibrations and monoidal indexed categories given
in [4, 6]. Finally, the “double Grothendieck constructions” introduced by David Jaz Myers in [5] can be
seen as instances of our construction.

Aside from introducing these concepts and the ways they generalize existing concepts, I will also give
various examples of double fibrations.
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Variable binding and substitution are ubiquitous in mathematics and computer science. For instance, in
symbolic formalisms for calculus, logic, and computation they respectively occur in the Leibniz product
rule, universal instantiation, and reduction of lambda calculus as follows:

∂x
(
f [x] · g[x]

)∣∣
t
= ∂x

(
f [x]

)∣∣
t
· g[t] + f [t] · ∂x

(
g[x]

)∣∣
t

∀x. P [x] =⇒ P [t]

(
λx.M [x]

)
t

β−→ M [t]

In these cases, as it occurs generally, one observes an operator (∂, ∀, λ) binding a variable (x) in its argu-
ment

(
f [x] · g[x], f [x], g[x], P [x], M [x]

)
and a term

(
g[t], f [t], P [t], M [t]

)
resulting from the substitution

of a term (t) for a free variable (x) in a term
(
g[x], f [x], P [x], M [x]

)
. Such operators are referred to as

variable binding and such substitutions as capture avoiding; the latter to emphasise that the mechanism
needs to prevent the inadvertent binding of free variables. Both require particular care when defined
formally.

An algebraic categorical theory of variable-binding operators and capture-avoiding substitution was es-
tablished by Fiore et al [1, 2]. They introduce binding signatures extending the signatures of universal
algebra, characterised their syntactic models as free algebras of binding-signature endofunctors over vari-
ables, defined capture-avoiding substitution by parameterised structural recursion proving its equational
laws, and universally characterised the resulting structures as initial algebraic models with substitution.
The aim of this work is to revisit the part of this theory concerned with partial (or single-variable)
substitution providing a streamlined perspective on it.

We start by generalising the notion of structural recursion with parameters for free algebras to be defined
over an arbitrary adjunction, rather than simply the tensor-hom adjunction. We then use it to construct a
partial substitution operation on free algebras of binding-signature endofunctors over variables and prove
its equational laws. The upshot of the work is a new direct proof of the aforementioned initiality result
of Fiore et al [1] for partial substitution structure. This entirely relies on the universal property of free
algebras and is thereby suitable for formalisation with computation in proof assistants.

In the talk, we will develop the categorical theory necessary for the above. In particular, we study
the properties of the canonical symmetric monad on the category of finite cardinals and functions

(
see

Grandis [3]
)
and the induced strong symmetric monad over the associated covariant presheaf category.

Furthermore, we consider distributive laws between such monads and binding-signature endofunctors.
A central observation in this context is a generalisation of parameterised initiality stating that for end-
ofunctors Σ, Σ′, F on the same category, where F is a left adjoint, and for a natural transformation
ψ : FΣ→ Σ′F , if α : Σ(A)→ A is an initial Σ-algebra then for all Σ′-algebras β : Σ′(B)→ B there exists

*Joint work with Marcelo Fiore. Abstract submitted to CT2023.



a unique u(β) : F (A)→ B making the following diagram commute:

Σ′F (A) Σ′(B)

FΣ(A)

F (A) B

Σ′(u(β))

β

u(β)

F (α)

ψA

As work in progress, we are considering the analogous development for the linear case, as needed for
instance in the theory of symmetric operads and linear lambda calculus, for which only the theory of
simultaneous (or multi) substitution has been developed so far (see Tanaka [4]).
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Limits in (∞, n)-Categories*
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(∞, n)-categories naturally generalize both (∞, 1)-categories and n-categories and have found a variety
of applications in mathematical physics, representation theory and derived algebraic geometry. In order
to be able to use (∞, n)-categories as an effective framework for such mathematical objects we need a
working category theory and in particular a definition of limits and colimits.

If an (∞, n)-category is given as a strictly enriched category, then we could employ the theory of enriched
limits to resolve this issue, however, many (∞, n)-categories of interest do not naturally permit such strict
description. Fortunately, for the case n = 1, a good notion of limits was obtained via the theory of right
fibrations. Concretely, for a given functor of (∞, 1)-categories we can construct a right fibration of cones
and a limit is given by a terminal object in that (∞, 1)-category of cones [4]. This notion is both easy
to use with non-strict models, but for strict models coincides with the enriched notion of limits. This
suggests a similar fibrational approach to limits for non-strict models of (∞, n)-categories.
It was observed, however, by clingman and Moser that the situation is far more complicated than one
might expect. Indeed, in the very concrete case of 2-categories, they observed that any standard notion
of 2-category of cones one would like to use is not able to capture the data of a limit [1]. In a follow up
work they proposed a solution via double categories, which generalize 2-categories by allowing two kinds
of 1-morphisms, horizontal and vertical 1-morphisms, which interact well with each other. Using this idea
they define the double category of cones for a given functor of 2-categories and prove it can in fact be used
to define limits of 2-categories via a terminal object in the double category [2]. Moreover, Grandis used
a double categorical Grothendieck construction and double categorical fibrations in order to generalize
their construction to weighted limits of 2-categories [3].

Independently, but also motivated by this insight, I developed a theory of fibrations of (∞, n)-categories
[7] with the following key features:

1. It applies to a variety of non-strict models, such as n-fold complete Segal spaces.

2. There is a Grothendieck construction giving us a correspondence between fibrations over a given
(∞, n)-category and functors valued in the (∞, n)-category of (∞, n− 1)-categories.

3. For a given functor of (∞, n)-categories, the domain of the corresponding fibration will be a double
(∞, n− 1)-category.

4. In the case n = 1 the Grothendieck construction coincides with the one established in the literature,
such as the unstraightening construction [4].

In particular, in the case n = 2, the domain of a fibration will be a double (∞, 1)-categorical fibration,
hence appropriately generalizing the double categorical Grothendieck construction.

In this talk I want to discuss ongoing work with Moser and Rovelli that combines the results by clingman
and Moser for the case of 2-categories and my construction of fibrations of (∞, n)-categories to study
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limits in (∞, n)-categories. Given the previous explanations we now define the limit of a given functor of
(∞, n)-categories as a terminal object in the corresponding double (∞, n−1)-category of cones. This new
notion satisfies the following conditions, hence making it a suitable theory of limits (∞, n)-categories:

1. In the case n = 1 our cone coincides with the (∞, 1)-categorical cone that exists in the literature,
such as the one studied by Lurie [4]. Hence our notion of limit for (∞, 1)-categories coincides with
the already established notion.

2. The embedding from double categories to double (∞, 1)-categories defined by Moser [5] respects
cones. Hence, our notion of limits for (∞, 2)-categories recovers the work already done by clingman
and Moser in the case where the (∞, 2)-category is the nerve of a 2-category.

3. As part of our work we have constructed a homotopy coherent nerve of (∞, n)-categories [6]. This
nerve takes (and reflects) enriched limits of strict (∞, n)-categories to fibrational limits of non-strict
(∞, n)-categories. This means the existence and computation of a limit of a functor of strict (∞, n)-
categories via enriched category theory coincides with the existence and computation of the limits
of the non-strict functor given via the nerve using the double (∞, n− 1)-category of cones.
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Jónsson categories*

Diana Rodelo

Universidade do Algarve and CMUC

In this work we generalise Jónsson’s theorem, which characterises congruence distributive varieties of
universal algebras [6], to the context of regular categories. The linear Mal’tsev condition extracted from
the ternary Jónsson terms give rise to matrix conditions [5], denoted by Jn, n ⩾ 1. We call a regular
category which satisfies the matrix condition Jn, for some n ⩾ 1, a Jónsson category. We characterise
Jónsson categories C through properties involving equivalence and reflexive relations on a same object in
C. These properties on relations then allow us to show that, when C is an n-permutable category [1],
C satisfies Jm, for some m ⩾ 1, if and only if C is equivalence distributive. It turns out that Jónsson
categories C are such that the Trapezoid Lemma [2] holds in C; consequently, every such C is factor
permutable (see [4] and [3]).
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An (∞, 2)-categorical pasting theorem*

Martina Rovelli

University of Massachusetts Amherst

Power’s 2-categorical pasting theorem [1], asserting that any pasting diagram in a 2-category has a unique
composite, is at the basis of the 2-categorical graphical calculus, which is used extensively to develop the
theory of 2-categories. In this talk we discuss an (∞, 2)-categorical analog of the pasting theorem, asserting
that the space of composites of any pasting diagram in an (∞, 2)-category is contractible. This result [2],
which is joint with Hackney-Ozornova-Riehl, rediscovers independent work by Columbus [3].
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Composing Dinatural Transformations: Towards a Calculus of

Substitution*

Alessio Santamaria

Department of Informatics, University of Sussex, UK

Dinatural transformations, which generalise the ubiquitous natural transformations to the case where the
domain and codomain functors are of mixed variance, fail to compose in general; this has been known since
they were discovered by Dubuc and Street in 1970 [1]. Many ad hoc solutions to this remarkable short-
coming have been found, but a general theory of compositionality was missing until Petrić, in 2003 [7],
introduced the concept of g-dinatural transformations, that is, dinatural transformations together with
an appropriate graph: he showed how acyclicity of the composite graph of two arbitrary dinatural trans-
formations is a sufficient and essentially necessary condition for the composite transformation to be in
turn dinatural. In this talk I would like to present the results of [6]: first I will give a brief overview of
an alternative, semantic rather than syntactic, proof of Petrić’s theorem, which we independently redis-
covered with no knowledge of its prior existence; I will then show how to use it to define a generalised
functor category, whose objects are functors of mixed variance in many variables, and whose morphisms
are transformations that happen to be dinatural only in some of their variables.

I shall also define a notion of horizontal composition for dinatural transformations, extending the well-
known version for natural transformations, and prove it is associative and unitary. Horizontal composition
embodies substitution of functors into transformations and vice-versa, and is intuitively reflected from
the string-diagram point of view by substitution of graphs into graphs.

This work represents the first, fundamental steps towards a substitution calculus for dinatural transfor-
mations as sought originally by Kelly, with the intention then to apply it to describe coherence problems
abstractly; see more details below. There are still fundamental difficulties that are yet to be overcome in
order to achieve such a calculus, which I will explain in the talk and will be the subject of future work.

In his seminal articles [4] and [5], Kelly argued that coherence problems are concerned with categories
carrying an extra structure: a collection of functors and natural transformations subject to various equa-
tional axioms. For example, in a monoidal category A we have ⊗ : A2→ A, I : A0 → A; if A is also closed
then we would have a functor of mixed variance (−) =⇒ (−) : Aop×A→ A. The natural transformations
that are part of the data, like associativity in the monoidal case:

αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C),

connect not the basic functors directly, but rather functors obtained from them by iterated substitution.
By “substitution” we mean the process where, given functors

K : A× Bop × C→ D, F : E×G→ A, G : H× Lop → B, H : Mop → C

we obtain the new functor

K(F,Gop, H) : E×G×Hop × L×Mop → D
*Joint work with Guy McCusker. Abstract submitted to CT2023.



sending (A,B,C,D,E) to K(F (A,B), Gop(C,D), H(E)). Hence substitution generalises composition of
functors, to which it reduces if we only consider one-variable functors. In the same way, the equational ax-
ioms for the structure, like the pentagonal axiom for monoidal categories, involve natural transformations
obtained from the basic ones by “substituting functors into them and them into functors”, like αA⊗B,C,D
and αA,B,C ⊗D.

By substitution of functors into transformations and transformations into functors we mean therefore a
generalised whiskering operation or, more broadly, a generalised horizontal composition of transforma-
tions. For these reasons Kelly argued in [4] that an abstract theory of coherence requires “a tidy calculus
of substitution” for functors of many variables and appropriately general kinds of natural transforma-
tions, generalising the usual Godement calculus [3, Appendice] for ordinary functors in one variable and
ordinary natural transformations. (The “five rules of the functorial calculus” set down by Godement are
in fact equivalent to saying that sequential composition of functors and vertical and horizontal compo-
sition of natural transformations are associative, unitary and satisfy the usual interchange law; see [8,
Introduction] for more details.)

With the notion of “graph of a natural transformation”, adapting his earlier work with Eilenberg on
extranatural transformations [2], Kelly constructed a full Godement calculus for covariant functors only.
When trying to deal with the mixed-variance case, however, he ran into problems. He considered the
every-variable-twice extranatural transformations of [2] and, although he got “tantalizingly close”, to use
his words, to a sensible calculus, he could not find a way to define a category of graphs that can handle
cycles in a proper way. This is the reason for the “I” in the title Many-Variable Functorial Calculus, I
of [4]: he hoped to solve these issues in a future paper, which sadly has never seen the light of day.

What we do in this work is, in fact, consider transformations between mixed-variance functors whose type
is even more general than Eilenberg and Kelly’s, corresponding to G∗ in [4], recognising that they are a
straightforward generalisation of dinatural transformations in many variables. Our results on vertical and
horizontal compositionality, mentioned in the beginning of this abstract, provide the basic ingredients for
Kelly’s substitution calculus extended to the mixed variance case.
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Posetal closed Grothendieck construction*

Luigi Santocanale

Aix-Marseille Université (AMU) - Laboratoire d’Informatique et Systèmes (LIS)

Let C be an arbitrary category and let Pos be the category of posets and order preserving functions. We
study functors Q : C −−→ Pos and their total/Grothendieck categories

∫
Q. The aim is to understand

when and how structure from C lifts to
∫
Q. For a functor F : (Cop)n × Cm −−→ C, a lifting of F to

∫
Q

is a functor F : (
∫
Qop)n ×

∫
Qm −−→

∫
Q such that the following diagram commutes strictly:

(
∫
Qop)n ×

∫
Qm

∫
Q

(Cop)n × Cm C

F

(πop)n×πm π

F

Our staring point is the following observation:

Proposition 1. Liftings of F from C to
∫
Q bijectively correspond to lax extranatural transformations

ψ :
∏ ◦Qn+m −−→ Q ◦ F .

Here, for a lax extranatural transformation ψ :
∏ ◦Qn+m −−→ Q ◦ F , we mean a collection of order-

preserving maps

ψX,Y :
∏

i

Q(Xi)
op ×

∏

j

Q(Yj) −−→ Q(F (X,Y ))

indexed by objects (X,Y ) of Cn×Cm such that, for each pair of maps f : X −−→ X ′ in Cn and g : Y −−→ Y ′

in Cm, the following diagram half-commutes:

∏
iQ(Xi)

op ×∏
j Q(Yj)

∏
iQ(X ′

i)
op ×∏

j Q(Yj)
∏
iQ(Xi)

op ×∏
j Q(Y ′

j )

Q(F (X ′, Y )) Q(F (X,Y ′))

id×∏
iQ(gj)

∏
iQ(fi)

op×id

ψX′,Y ψX,Y ′

Q(F (f,g))

≤

(1)
It turns out that a lax extranatural transformation as above is natural (that is, the diagram (1) fully
commutes) if and only if the lifting it gives rise preserves op-cartesian arrows.

When lifting a functor, we might also wish to lift some arrows. Lifting an arrows amounts to enforcing
an inclusions, and lifting an isomorphism amounts to enforcing an identity. For example, in order to lift
an associative tensor, we need to have a lax natural transformation µX,Y : Q(X)×Q(Y ) −−→ Q(X ⊗ Y )

*Joint work with Cédric de Lacroix. Abstract submitted to CT2023.



such that the associator α lifts to
∫
Q. The latter requirement amounts to the inclusion

Q(αX,Y,Z)(µX⊗Y (µX,Y (x, y), z)) ≤ µX,Y⊗Z(x, µY,Z(y, z)) .

Considering that αX,Y,Z needs to be invertible in
∫
Q, the above inclusion is further required to be an

identity. We end up reconstructing one of the coherence conditions for Q to be monoidal, see e.g. [1].

These remarks are used to study when
∫
Q, more than merely lifting the symmetric monoidal structure

by means µX,Y , also lifts the closed structure by means of some lax extranatural transformation ιX,Y :
Q(X)op ×Q(X) −−→ Q(X ⊸ Y ). We prove the following statement:

Theorem 2. If
∫
Q lifts the symmetric monoidal closed structure of C, then, for each pair of objects X,Y

if C and each α ∈ Q(X), the map

Q(evX,Y )(µX,X⊸Y (α,−)) : Q(X ⊸ Y ) −−→ Q(X ⊗X ⊸ Y ) −−→ Q(Y )

has a right adjoint. If the tensor in
∫
Q preserves opcartesian arrows, then the converse holds.

Consequently we have:

Theorem 3. If a monoidal functor Q factors (as a monoidal functor) through the forgetful functor
U : SLatt −−→ Pos (where SLatt is the category of complete lattices ad sup-preserving maps), then the
monoidal structure of

∫
Q is closed and lifts the one of C.

We use the above theorems to study concrete categories arising as
∫
Q for some Q. These comprise

the categories QF -Set =
∫
QF (X), see [2], arising from a quantale Q, a monoidal functors Rel −−→ SLatt

sending X to QX , and a monoidal F : Rel −−→ Rel, and Nuts =
∫
UP , see [3], arising from the monoidal

functor sending X to the set of upsets of the powerset of X.

The same methodology easily allows to abstractly characterise nuclear and dualizing objects of
∫
Q, and

then to completely describe them in QF -Set and Nuts.

Using this approach, we shall further study liftings of other kind of structures, such as (co)monoids,
(initial) algebras and (final) coalgebras of lifted functors.
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A category of elements for enriched functors*

Maru Sarazola

Johns Hopkins University

The discrete Grothendieck construction ∫

C
: [Cop,Set]→ Cat ↓ C,

most often called the category of elements, gives an equivalence between the categories of functors from Cop
to Set and of discrete fibrations over C. It is intimately linked with the study of representable functors,
as a well-known result shows that a functor F is representable if and only if its category of elements∫
C F has a terminal object. Hence, the category of elements gives us a way to characterize representable
functors, and through them, universal properties, which are then used to understand key constructions
such as adjunctions and (co)limits.

There exist several efforts to extend the (non-discrete) Grothendieck construction to other settings (e.g.
[6, 8, 10, 11, 12, 13]), and in particular, to the setting of enriched categories. For V = Cat, [1, 3, 9] give
an enriched Grothendieck construction and a correspondence with the appropriate notion of fibrations.
For the general case of V-categories, [2] defines a Grothendieck construction∫

C
: [Cop,V-Cat]→ V-Cat ↓ CV

that takes a pseudofunctor F : Cop → V-Cat, and produces a V-category
∫
C F with a projection to CV , the

free V-category on C. A similar construction in [14] deals with lax functors.

Unfortunately, neither of these enriched Grothendieck constructions have enriched functors as their input,
since the category V-Cat is generally not V-enriched, even when V is cartesian closed. However, in this
situation the category V is V-enriched, and it makes sense to consider V-functors F : Cop → V, which is
the analogue of the discrete Grothendieck construction in the case V = Set.

In this talk, we will describe how the use of categories internal to V allows us to construct an enriched
category of elements ∫

C
: V-Cat(Cop,V)→ Cat(V) ↓ Int(C)

where Int : V-Cat → Cat(V) is the internalization functor of [5]. This gives a characterization of the V-
representable functors as the ones whose category of elements has a terminal object, and provides a way
to “flatten” the computation of weighted limits by instead considering internal limits from the category
of elements of the weights. These applications respectively extend work of clingman–Moser [4] and of
Grandis–Pare [7] for the case V = Cat.
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Bicategorifying actions, strengths, and Freyd categories*

Philip Saville

University of Oxford

Kock’s notion of strength [1], and strong monads in particular, play a central role in modelling program-
ming languages which interact with the world in the form of effects such as printing to screen, exceptions,
or probability (e.g. [2, 3]). Recently, however, several semantic models have been proposed which are not
categories but bicategories (e.g. [4, 5, 6]). Extending the classical theory of computational effects to these
new models therefore requires a bicategorical treatment of strong monads and their associated structures.

The talk will be in two parts. In the first part of the talk I will introduce strong pseudofunctors and strong
pseudomonads, and explain how one can be confident that these notions are “correct”. In the second
part, I will introduce bicategorical versions of closely-related structures arising in theoretical computer
science, namely premonoidal categories and Freyd categories.

Part I: Strong pseudomonads and actions of monoidal bicategories. Working from an ob-
servation of Janelidze & Kelly [7], I will define actions of monoidal bicategories as certain degenerate
tricategories, and show that the well-known 1-categorical correspondence between actions and monoidal
functors lifts to a correspondence between V-actions on a bicategory B and monoidal pseudofunctors
V → Hom(B,B).
I will then use actions to validate our definition of strong pseudomonads. Indeed, the starting point for
our definition was that one should obtain a version of the classical correspondence between strengths on
a monad T on a monoidal category (C,⊗, I) and actions C × CT → CT on the Kleisli category which
extend the canonical action of C on itself (see e.g. [8]). Perhaps remarkably, this starting point allows one
to recover a significant amount of the expected theory; I will sketch some aspects, including connections
to enrichment (à la Kock [1]) and a coherence result.

Part II: Premonoidal structure and Freyd bicategories. Premonoidal categories ([9, 10, 11])
axiomatise the structure of the Kleisli category of a strong monad. One has a tensor and unit similarly
to a monoidal category, except the tensor is only assumed to be functorial in each argument separately.
Every premonoidal category then comes with a centre, namely the wide sub-category of maps for which
the tensor is functorial in two arguments. Central maps represent ‘pure’ programs, which do nothing but
return values. A strict premonoidal category is exactly a monoid in Cat with the funny tensor product
(equivalently, a one-object sesquicategory [12, 9]), but for a general premonoidal category one must ask
for central isomorphisms playing the roles of associator and unitors.

Premonoidal categories are a useful abstraction, but when modelling programs it is often convenient to
be able to specify a chosen category of central maps. This is achieved by a Freyd category ([13, 14]),
which consists of a premonoidal category C (modelling programs that may interact with the world), a
monoidal category V (modelling pure programs) and a functor J : V→ C strictly preserving premonoidal
structure. The canonical example is the left adjoint J : C→ CT for a strong monad T .
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I will give bicategorical treatments of both premonoidal and Freyd structure. We will then see that
the Kleisli bicategory of a strong pseudomonad has a canonical premonoidal structure, and that the
canonical pseudofunctor B → BT (for a strong pseudomonad T ) defines a Freyd bicategory. There are
some unexpected challenges: for instance, we believe that the centre of a premonoidal bicategory is
not in general monoidal. If time permits, we will conjecture relationships to other forms of semi-strict
higher-dimensional structure (e.g. [15, 16, 17]).
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Relative Pseudomonads: Pseudocommutativity and Lax Idempotency

Abstract submitted to CT2023.

Andrew Slattery

University of Leeds

The presheaf pseudofunctor Psh sending a small category to its locally-small category of presheaves cannot
be given the structure of an ordinary pseudomonad, due to size issues (Psh is not an endofunctor). This
is in a particular sense the only obstacle; we can endow Psh instead with the structure of a relative
pseudomonad along the inclusion Cat ↪→ CAT. Since Cat and CAT are particularly nice 2-categories (in
particular, they are monoidal), we would like to extend notions like ‘strong monad’ and ‘commutative
monad’ to this relative setting.

In this talk, I will extend the classical work of [1] Kock (1970) on strength and commutativity to define
parameterised relative pseudomonads and pseudocommutative relative pseudomonads, of which Psh turns
out to be both. To avoid a substantial amount of coherence tracking, I will work in the more general
setting of 2-multicategories instead of monoidal 2-categories. I will prove analogous implications to the
classical work: that a parameterised relative pseudomonad is a multilinear pseudofunctor, and that a
pseudocommutative relative pseudomonad is a multilinear pseudomonad. I will close by extending the
work of [2] López Franco (2011) with a proof that a strongly lax-idempotent relative pseudomonad (such
as Psh itself) is pseudocommutative.
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Lax epimorphisms in CAT, V-Cat and everywhere*

Lurdes Sousa

CMUC, Coimbra, Portugal
Polytechnic of Viseu, Portugal

Lax epimorphisms (also known as co-fully-faithful morphisms) in a 2-category A are the 1-cells emaking
A(e, c) fully faithful for all objects c. In this talk several features of lax epimorphisms will be presented.

We show that Cat (and CAT) has an orthogonal (E ,M)-factorization system where E is the class of lax
epimorphisms, and we give two different descriptions of this factorization, one of them somehow imitates
the construction of the comprehensive factorization system of Street and Walters [1].

Moreover, any 2-category has an orthogonal LaxEpi-factorization system under the existence of appro-
priate colimits.

We also give several characterizations of lax epimorphisms in the 2-category V-Cat.
Part of this work is published in [2].
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A logical analysis of Banach’s fixpoint theorem*

Isar Stubbe

Université du Littoral

Banach’s fixpoint theorem [1] from 1922 says that every contraction on a non-empty complete metric
space admits a unique fixpoint. The gist of the proof is wonderfully simple: take any element x of the
space (X, d) and, iterating the contraction f :X → X, prove that the sequence (fnx)n∈N is Cauchy. In
the complete space (X, d) this sequence converges, and one then shows that it does so to a (necessarily
unique) fixpoint of f . Many generalizations and applications of Banach’s theorem have been, and are
still, studied.

In 1972, Lawvere [6] famously showed that metric spaces are a particular instance of enriched categories.
More impressively still, Lawvere also showed how convergence of Cauchy sequences can adequately be
understood via representability of left adjoint distributors, thus lifting the very concept of Cauchy com-
pleteness to the level of enriched categories. In his words, “specializing the constructions and theorems
of general category theory we can deduce a large part of general metric space theory.”

It is thus natural to investigate whether fixpoint theorems still make sense in the vast context of enriched
categories. This is precisely the subject of this talk (and of our paper [2]).

More precisely, we shall take quantale-enriched categories as generalization of metric spaces. That is to
say, we fix a quantale (= a posetal cocomplete monoidal closed category) Q, and work with categories,
functors and distributors enriched in Q. Our contribution shows that fixpoint theorems for Q-categories
depend on the interplay between three essential parameters. Indeed, a given contraction must be “strong
enough” (we shall measure its strength by means of a control function); the space on which it acts must
be “complete enough” for the Picard iteration to converge to a fixpoint (we shall take this to be Cauchy-
completeness in the sense of Lawvere); but we also need sufficiently strong algebraic properties of the
underlying quantale Q to allow for the formulation of precisely that convergence.

In concreto, we shall prove a fixpoint theorem for Cauchy-complete Q-categories that holds whenever
the quantale Q has an underlying continuous lattice and the contraction is controlled by a sequentially
lower-semicontinuous function on Q. Besides, we make plain when and why such a fixpoint is unique (up
to isomorphism). As examples we find the classical Banach fixpoint theorem for metric spaces, and Boyd
and Wong’s [3] generalization thereof (taking the underlying quantale to be the positive real numbers);
but we also formulate new results for fuzzy ordered sets (when working over a left-continuous t-norm [5])
and for probabilistic metric spaces (now the quantale is the tensor product of the positive reals with a
left-continuous t-norm [4]).
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Factorization systems as double categories*

Miloslav Štěpán

Masaryk University

We show that factorization systems, both strict and orthogonal, can equivalently be described as double
categories satisfying certain properties. Specifically, every orthogonal factorization system (E ,M) gives
rise to a certain double category DE,M of commutative squares, every double category X with certain
properties gives rise to an orthogonal factorization system (EX ,MX), and these processes are mutually
inverse. This gives conceptual reasons for why categories like Par(C) (of objects and partial maps in C)
or Cof(E) (of categories and cofunctors internal to E) admit orthogonal factorization systems.

We also demonstrate that a similar equivalence holds between strict factorization systems and certain
double categories. As a consequence of the theory, we give explicit descriptions of a lax functor and a lax
monoidal functor classifiers and explain why they admit strict factorization systems.

All of the above is done utilizing the category of corners construction associated to a crossed double
category, concepts introduced by Mark Weber in [1] for the study of internal algebra classifiers.
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A novel fixed point theorem, towards a replacement for replacement

Paul Taylor

University of Birmingham (honorary)

Sadly often, we see “successor” and “limit” constructions recited as the construction of a fixed point,
as if this were a proof. Missing are citations to John von Neumann (1928) for deriving recursion from
induction and to Friedrich Hartogs (1917) for providing a suitable ordinal. Even then, we merely have
two ordinals with the same value, so some other argument is needed to deduce a fixed point.

Casimir (Kasimierz) Kuratowski (1922) explained how many theorems in set theory, topology and
measure theory that had been proved using transfinite recursion could be replaced with closure conditions.

Bourbaki (1949) and Ernst Witt (1951) showed how the problem provides its own ordinal, although
Ernst Zermelo (1908) already had their proof and it was re-discovered repeatedly during the 20th century.
It should have been fundamental to the curriculum, but only as an afterthought in Serge Lang’s Algebra
(1965) does it appear in a textbook. Wikipedia wrongly states that it is proved by transfinite recursion.

The huge clunking transfinite machine depends on excluded middle at every step. In the 1990s two
intuitionistic approaches were developed, by André Joyal and Ieke Moerdijk (Algebraic Set Theory, 1994)
and by me (1996). The key messages were that there are many kinds of ordinals, with distinct universal
properties (forms of transfinite recursion) and the relations ∈ and ⊂ should be treated independently.

However, Hartogs’ Lemma cannot be recovered, so there was no proof of the fixed point.
Then along came Dito Pataraia (1996), who threw off all of this set-theoretic baggage and used

functions instead, to give an intuitionistic proof. It is breathtakingly simple and, unlike Bourbaki–Witt,
could easily be reconstructed by a student in an exam. The key observation, to which domain theorists
like me were somehow blind, is that composition makes the poset of inflationary monotone endofunctions
directed, whilst also being directed complete.

In 2019, I returned to my 1990s work on well founded coalgebras, in order to meet the challenge of
functors that preserve monos and not inverse images. I knew that I had to use Pataraia’s theorem, but
I tied myself in knots trying to deduce the result that I needed as a corollary of Pataraia: it was much
more natural to do it the other way round.

So my version is this: Let s : X → X be an endofunction of a poset such that

� X has a least element ⊥;

� X has joins (
∨
�) of directed subsets;

� s is monotone: ∀xy. x ≤ y ⇒ sx ≤ sy;

� s is inflationary: ∀x. x ≤ sx;

� ∀xy. x = sx ≤ y = sy ⇒ x = y (the Special Condition).

Then

� X has a greatest element ⊤;

� ⊤ is the unique fixed point of s;
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� if ⊥ satisfies some predicate and it is preserved by s and directed joins then it holds for ⊤.

When I asked on MathOverflow whether anyone had seen my Special Condition, I was told that it
was unnatural and given lectures on ordinal recursion.

How is the Special Condition to be achieved, just given s : Y → Y satisfying the other conditions?
The Zermelo–Bourbaki–Witt theorem uses the subset X ⊂ Y generated by ⊥, s and

∨
�. But this already

invokes second order logic or recursion as a preliminary to what should be the key tool for recursion.
Much more simply, if we take X to be

{x : Y | x ≤ sx ∧ ∀a : Y. sa ≤ a⇒ x ≤ a}

or, if Y also has meets,
{x : Y | x ≤ sx ∧ ∀u : Y. su ∧ x ≤ u⇒ x ≤ u},

then the Special Condition holds. These subsets are defined using the poset versions of the categorical
notions of recursive and well founded coalgebras, so if x satisfies the second we call it a well founded
element of Y with respect to the operation s.

As categorists we know that we have a small toolbox of very powerful tools: whenever we apply a
general tool (unpack its definition) in some mathematical setting, this often turns out to be an important
concept there.

The same seems to be true of well founded elements: in the natural structures, both well founded
relations and well founded coalgebras are examples. Then most of the work of von Neumann’s recursion
theorem has been done in these settings.

In pure category theory, constructing coequalisers of algebras is perceived to be difficult and require
transfinite recursion, but this is a simple direct application of the special condition itself.

This was meant to be a Lemma in a much larger programme. It warrants its own publicity because
it is simple tool that any mathematician can take away and apply to their own subject, but also because
of the regressive propaganda for transfinite methods that has been going on for over a century.

The larger programme, which I will not have time to discuss, generalises recursion and the “Mostowski”
extensional quotient for well founded coalgebras well beyond their 1990s setting by replacing monos with
factorisation systems. Applying this to posets and lower subsets instead of sets and subsets will give a
much clearer explanation of the plump ordinals.

Based on that, we have a characterisation of transfinite iteration of functors that is another example
of the generalised notion of extensionality.

It is a characterisation and not a construction because it cannot be done within the logic of an
elementary topos. The set theorists will come in and tell us that we must use the Axiom-Scheme of
Replacement in ZF to do it.

However, I am not prepared to allow them to dictate to us how to do our subject. I acknowledge that
there are mathematical constructions that require transfinite iteration of functors, but this can be stated
within the native language of category theory.

As Bill Lawvere taught us, it uses Adjointness in Foundations.

The numerous bibliographical details above, my past and present papers on this subject and slides for
some recent seminars may be found on my website at

www.paultaylor.eu/ordinals/
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Flatness, weakly-lex colimits, and free exact completions*

Giacomo Tendas

Masarykova Univerzita

Free regular and Barr-exact completions of lex categories (that is, categories with finite limits) have always
played a key role in the theory of regularity and exactness. Given a lex category C, its free Barr-exact
completion is the data of a Barr-exact category Cex together with an embedding K : C ↪→ Cex for which
precomposition with K induces an equivalence

Reg(Cex, E) ≃ Lex(C, E)
for any Barr-exact category E . It was soon realized that such free completions could exist even when the
category C is not finitely complete. Indeed, they where considered for any weakly lex category C (that is,
a category with weak finite limits) separately by Carboni–Vitale and Hu.

In this context, lex functors in the universal property are replaced by left covering functors. When C is
actually lex, F : C → E is left covering if and only if it is lex; while, if C is just weakly lex but E = Set,
then F is left covering if and only if it is flat (equivalently, if its category of elements is filtered). For
general C and E the explicit definition relies on some comparison map in E being a regular epimorphism,
making left covering functors the suitable choice only for free regular and Barr-exact completions. It is
in fact unclear what concept should be used instead when considering, for instance, free lextensive or
pretopos completions of non-lex categories.

The main aim of the talk is to address this problem with the introduction of a notion of flatness for functors
F : C → E , from any category C into any lex category E , which will specialize to left covering functors in
the case where C is weakly lex. We do this in the framework of lex-colimits introduced by Garner and
Lack; thus capturing not only regular and Barr-exact categories, but also (infinitary) lextensive, coherent,
and adhesive categories as well as pretopoi. In particular, during the talk we shall also give necessary
and sufficient conditions for the existence of free lextensive and free pretopos completions in the non-lex
world, and in both cases describe flat functors in elementary terms.

*Abstract submitted to CT2023.



Sheafification as a geometric tripos-to-topos adjunction *

Davide Trotta

University of Pisa

The notion of tripos, acronym for “topos-representing indexed pre-orders sets”, was originally introduced
in [3] in order to explain from an abstract perspective in which sense the description of localic sheaf
toposes in terms of A-valued sets provided by Higgs [1] and Hyland’s realizability toposes [2] are instances
of the same construction. The key insight is that Higgs’s presentation of the category of sheaves Sh(A)
via A-valued sets (for a given locale A) can be generalized to suitable Lawvere doctrines. This leads
to a new construction called tripos-to-topos that produces a topos TP of “P -valued sets” from a given
tripos P : Setop −→ Hey. Localic and realizability toposes can both be shown to be instances of the
tripos-to-topos construction, for suitable triposes.

Therefore, the “external” (or “explicit”) perspective of the category of localic sheaves proposed by Higgs
can be seen as the cornerstone for understanding the original motivations behind the tripos-to-topos
construction. However, it is important to recall that sheaves on a locale A are typically described as
presheaves on A satisfying a glueing condition. In particular, the category of sheaves Sh(A) and that of
presheaves PSh(A) happen to be connected via the so-called sheafification functor, i.e. the left adjoint s
to the inclusion i:

PSh(A) Sh(A)

s

i

⊣

Therefore, the category of sheaves Sh(A) can be described as the sub-category of j-sheaves (in the “internal
sense” according to [4]) of the category PSh(A), for the Lawvere-Tierny topology j corresponding to the
sheafification.

The main purpose of this work is to show that the sheafification between a localic topos and its presheaf
topos can be abstracted to a canonical adjunction between a tripos P and its full existential completion
P ∃ (as defined in [5]) so that any tripos-to-topos construction TP of a Set-based tripos can be seen as the
category of internal sheaves Shj(pTP ) for the Lawvere-Tierney topology j induced by such an adjunction
of triposes on the tripos-to-topos construction, called pTP , of the full existential completion P ∃ of P .

This result shows that the notion of tripos and the tripos-to-topos construction allows us to provide an
abstract understanding of the notion of sheaf as presented traditionally.

In detail, we start by generalizing the construction of the category of localic presheaves to the level of
triposes:

Definition. Let P : Cop −→ Hey be a tripos. We define the category of P -presheaves as the category
pTP := (GP )ex/lex given by the exact completion of the Grothendieck category of P .

The ordinary definition of the category of (localic) presheaves can be obtained as particular case of
the previous one since, when we consider the category of A(−)-presheaves given by the localic tripos
A(−) : Setop −→ Hey we obtain the category pTA := (A+)ex/lex, that is known to be equivalent to the
category PSh(A) of presheaves on A. In the following theorem we summarize our main results:

*Joint work with Maria Emilia Maietti. Abstract submitted to CT2023.

1



Theorem. Let P : Cop −→ Hey be a tripos. Then the following conditions are equivalent:

1. pTP is a topos;

2. the full existential completion P ∃ of P is a tripos;

3. GP has weak dependent products and a generic proof.

Furthermore, when one of the previous conditions holds then pTP
∼= TP∃ and there exists an adjuction of

triposes

P ∃ P⊣

whose counit is an iso and which induces a geometric embedding of toposes

pTP TP .

⊣
Corollary. Let P : Cop −→ Hey be a tripos. If pTP is a topos then the previous adjunction of triposes
induces a Lawvere-Tierny topology j on pTP such TP ≡ Shj(TP ).

We conclude by presenting some sufficient conditions for triposes such that pTP is guaranteed to be topos,
which allow us to recognize a wide variety of examples, including all Set-based triposes:

Theorem. Let P : Cop −→ Hey be a tripos such that

1. C has weak dependent products;

2. the predicate classifier Ω of P has a power object PΩ in C;
3. C admits a proper, stable factorization system ⟨E ,M⟩, and every epi of E splits.

Then we have that pTP is a topos.

Corollary. For every Set-based tripos P , the category pTP is a topos and TP ≡ Shj(pTP ).

Finally, we will show that our approach combining the tripos-to-topos with the full existential completion
allows us to abstract –as triposes adjunctions – other known sheafification-like adjunctions, including the
adjunction between (C)ex/reg and (C)ex/lex presented in [6], and that between Set and a realizability topos.
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Radon-Nikodym derivatives and martingales

Ruben Van Belle

University of Edinburgh

The Radon-Nikodym theorem is a result in measure theory that describes a correspondence between
random variables and measures, using Radon-Nikodym derivatives. The result has many applications in
probability theory and stochastic calculus. In particular, the result implies the existence of conditional
expectation, an important concept in martingale theory.

In this talk we will give a categorical proof of the Radon-Nikodym theorem. We will do this by
describing the trivial version of the result on finite probability spaces as a natural isomorphism. We then
proceed to Kan extend this isomorphism to obtain the result for general probability spaces. Moreover, we
observe that conditional expectation naturally appears in the construction of the right Kan extensions.
Using this we can represent martingales, a special type of stochastic processes, categorically.

We then repeat the same construction for the case where everything is enriched over CMet1, the category
of complete metric spaces and 1-Lipschitz maps. In the enriched context, we can give a categorical proof
of a martingale convergence theorem, by showing that a certain functor preserves certain cofiltered
limits.



The dependent Gödel fibration*

Jonathan Weinberger

Johns Hopkins University

Summary We present ongoing joint work towards providing an internal characterization of when a
given Grothendieck fibration is a generalized dependent Dialectica construction, i.e., a completion of some
fibration by sums and then products, along a given class of display maps. This complements the work
of Hofstra [1] by an internal viewpoint, and generalizes both this and the work by Trotta–Spadetto–de
Paiva [3] to the dependent case, replacing the class of cartesian projections in a fixed category by arbitrary
display maps. We discuss how, besides being of intrinsic interest, this recovers a range of relevant examples
in categorical logic.

1. From the Dialectica interpretation to Dialectica categories. In the 1950s, Gödel published
the Dialectica interpretation, a proof interpretation used to prove relative consistency of intuitionistic
arithmetic. In the late 80s, Valeria de Paiva introduced [2] as a categorification of this syntactic process,
by assigning to a finitely complete category C its Dialectica category Dial(C). By invoking additional
structure these Dialectica categories give rise to models of linear logic.

2. From Dialectica categories to Dialectica fibrations. Work of Hyland, Biering, Hofstra, von
Glehn, and Moss, generalized the Dialectica construction even further, assigning to a Grothendieck fibra-
tion p : E → B (over a finitely complete category B) its Dialectica fibration Dial(p) : Dial(E) → B. The
Dialectica category Dial(C) in the sense outlined above is recovered as the total category of the Dialectica
construction Dial(subC) of the subobject fibration subC : SubC → C of C. In fact, Dial(p) turns out to
be fibered equivalent to the iterated completion of the fibration p by first adding fibered sums and then
fibered products, which suggests a close connection to von Glehn’s polynomials.

3. Intrinsic characterization of simple Dialectica fibrations. Trotta–Spadetto–de Paiva [3] proved
an internal characterization of the Dialectica by introducing the notion of a Gödel fibration. Inspired by
Gödel’s original interpretation and by the notion of existential-free element (presented in the proof-
irrelevant setting of Lawvere doctrines in [4]) they introduced the notion of a quantifier-free element of
a fibration. Intuitively, given a logical formula in a fibration p one says that α is ∃-quantifier-free if and
only if there exists a proof π of a formula ∃iβ(i) assuming α, then there exists a witness t = t(π) together
with a proof of β(t). Furthermore, since quantifier-freeness should be stable under substitution, this must
hold for all reindexings α(f) of α, in the fibrational sense. There exists also a dual notion, called ∀-
quantifier-freeness. A Skolem fibration is a Grothendieck fibration (over a finitely complete base) that has
simple, i.e., non-dependent sums and products, enough ∃-quantifier free elements in a suitable sense, and
in which ∃-quantifier free elements are closed under simple products. One can show that every Skolem

*Joint work with Davide Trotta and Valeria de Paiva. Abstract submitted to CT2023. JW gratefully acknowledges the
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Science Foundation under Grant Number DMS 1641020. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Furthermore, JW is grateful for the support of MPIM Bonn which has also provided great hospitality.



fibration validates the Skolem principle, internally expressed as ∀x∃yα(i, x, y) ∼= ∃f∀xα(i, x, f(x)). A
Skolem fibration is called a Gödel fibration if its full subfibration of ∃-quantifier-free elements has enough
∀-quantifier-free elements. It is shown in [3] that (up to fibered equivalence) a fibration is a Dialectica
fibration if and only if it is a Gödel fibration. Since the latter is a notion completely intrinsic to the
structure of the given fibration this yields an internal characterization of when a fibration arises as the
Dialectica construction. Moreover, it provides a means to construct the latter.

4. Current work: Intrinsic characterization of generalized dependent Dialectica fibrations.
The characterization of [3] considers the case of Dialectica fibrations in the sense of [1], where the Dialectica
objects are given as tuples (I, U,X, α) where I, U,X are objects in the base and α is an element in the
fiber over I × U × X, playing the role of a predicate of the form ∃u∀xα(i, u, x) as justified by invoking
the result of viewing this as a completion. From an internal point of view, the transition to a dependent
version of the Dialectica construction replaces the tuples (I, U,X, α) by tuples

(
I, U,

∑
uXu, α(i, u, x)

)

where α is an object over the fiber of X. Then the object α is to be identified with ∃u∀xα(i, u(i), x(i, u)).
In the simple, non-dependent case the completion process starts by adding sums with respect to the class
of cartesian projections {I ×X → I}I,X∈C. The results of [3] make crucial use of the explicit description
of this class. We abstract the previously introduced notions to dependent Skolem and dependent Gödel
fibrations, replacing cartesian projections by maps of a fixed class of display maps F and, resp., (cartesian)
exponents by F-dependent products. Correspondingly, the (simple) Dialectica fibration of a fibration p
gets replaced by its generalized variant DialF (p), which arises by freely adding fibered products and then
sums, both along maps in F . Foundationally, we are considering (a) the Dialectica construction on the
level of fibrations, and (b) relative to a class of display maps just as Moss and von Glehn [5] do. Our main
quest is, however, different. Namely, we give novel results characterizing intrinsically when a fibration is
an F-dependent Dialectica fibration. This work in progress envisions the following two main results. In
both cases, let (B,F) be a display map category with F-dependent products, and in the first theorem,
for an arrow u in the base

∐
u ⊣ u∗ ⊣

∏
u denotes the adjoints of the cartesian reindexing u∗.

Theorem 1 (Dependent Skolemization). Let p : E → B a dependent Skolem fibration, and g : A ↠ S
and f : B ↠ A be maps in F . Consider the F-dependent product of f along g, as given by the diagram:

B Z X

A S

f

g

h

g′e

⌟

Then there is a natural isomorphism
∏
g

∐
f
∼=

∐
h

∏
g′ e

∗ between functors from EB to ES.

Theorem 2 (Dependent Dialectica is equivalent to dependent Gödel). Up to fibered equivalence over B,
a fibration p : E → B is of the form DialF (q) if and only if it is a dependent Gödel fibration. Moreover,
q is (equivalent to) the sub-fibration of F-quantifier free elements of p.

References

[1] P Hofstra. The Dialectica monad and its cousins. Models, logics, and higher-dimensional categories:
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When are there enough model isomorphisms? Representing groupoids

for classifying toposes.*

Joshua Wrigley

Università degli Studi dell’Insubria

Topological Galois theory. Some models of logical theories have a rich enough automorphism struc-
ture that we would expect the theory to be in some way recoverable from the group of model automor-
phisms. For example, the rationals with the usual ordering is a conservative, homogeneous model for the
theory of dense linear orders TDLO.

This problem of recoverability can be formalised via classifying topos theory since, in addition to a logical
description, toposes can be represented by topological/algebraic data, e.g. as the topos of continuous
actions by a topological group. That TDLO is recoverable from the automorphisms of (Q, <) can be
expressed by the fact that the topos of continuous actions by the automorphism group Aut(Q), equipped
with the Krull topology, classifies the theory TDLO.

This is an application of the ‘topological Galois theory’ of [3], where it is shown that an atomic theory is
represented by the topological group of automorphisms of a (set-based) model if and only if that model is
both conservative and homogeneous (this is in contrast to the ‘localic Galois theory’ theory of [4], where
the localic automorphism group of any model suffices).

Representing groupoids. The same story can be repeated for arbitrary theories by generalising from
topological groups to topological groupoids. While Joyal and Tierney famously showed in [6] that every
topos is the topos of sheaves on some open localic groupoid, Butz and Moerdijk give in [2] a parallel result
that every topos with enough points is represented by an open topological groupoid.

When a topos with enough points is known to classify a theory T, the papers of Awodey and Forssell [1],
[5] give an explicitly logical description of a representing topological groupoid. In essence, the construction
of [1] and [5] expresses that T is recoverable from the groupoid of all κ-indexed models, for a sufficiently
large cardinal κ.

Our Contribution. However, we may wonder what is the minimum information required of a groupoid
of T-models in order to recover a theory T. In this talk we exposit a holistic treatment of which groupoids of
T-models yield representing open topological groupoids. We will observe that, just as with the ‘topological
Galois theory’ of [3], it does not suffice to have only a conservative set of models for the theory, but instead
model-theoretic conditions must be imposed on the groupoid as well. Specifically, we prove the following
result.

Definitions 1. Let X = (X1 ⇒ X0) be a (small) groupoid of (set-based) T-models.

(i) Given a formula in context { x⃗, y⃗ : φ } and a tuple of parameters m⃗ from our models (note that we al-
low our models to share parameters), the corresponding definable subset with parameters J x⃗, m⃗ : φ KX

*Abstract submitted to CT2023.



is the set of pairs ⟨n⃗,M⟩ where M ∈ X0 and M ⊨ φ(n⃗, m⃗), considered as a subset of the disjoint
coproduct of the models. If m⃗ = ∅, the subset J x⃗ : φ KX is said to be definable without parameters.

(ii) We say that groupoid X = (X1 ⇒ X0) of T-models eliminates parameters if the isomorphism closure
of a definable subset with parameters is definable without parameters.1

Theorem 2. Let T be a geometric theory, and let X = (X1 ⇒ X0) be a (small) groupoid of T-models.

(i) If X0 is conservative and X eliminates parameters, then there exist topologies on X0 and X1 making
X an open topological groupoid such that Sh(X) classifies T.

(ii) Conversely, if there exist topologies on X0 and X1 making X an open topological groupoid such that
Sh(X) classifies T, then there is an isomorphism of groupoids X ∼= X′ such that X ′

0 is conservative
and X′ eliminates parameters.

Both the groupoid of κ-indexed models constructed in [5] and the automorphism groups considered in [3]
can be recovered as examples of conservative model-groupoids that eliminate parameters.
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On monadicity of strict ω-categories*

Marek Zawadowski
University of Warsaw

It is well known that the category of strict ω-categories ωCat is monadic over globular sets, i.e.,
over presheaves on globular category. It is also known that the category ωCat is monadic over globular
polygraphs, i.e., the category of those polygraphs whose generators in positive dimensions have always
generators as their domains and codomains. The category of globular polygraphs is again a presheaf
category. In this talk I will show that the category ωCat is monadic over the category of positive-to-one
polygraphs pPoly, with the free ω-category functor being (again) an embedding. Thus the category of
opetopic set, equivalent to pPoly, is yet another category equivalent to a category of presheaves so that
ωCat is monadic over it. As in the previously mentioned cases the monad Tω on category pPoly for
strict ω-categories is strongly cartesian and it decomposes into two strongly cartesian monads related by
a distributive law, the first monad responsible for compositions and the second monad responsible for
identities.

The category Poly of all polygraphs is not a presheaf category and it seem that ωCat might fail to
be monadic over Poly. In [1] Simon Henry characterised the subcategories of the category Poly that are
the so-called good presheaf categories. They are identified by shapes of generators in the polygraphs, or
equivalently by some subobjects of the terminal object in Poly. It seem interesting to characterise those
subcategories of the category Poly that are good presheaf categories over which ωCat is monadic in a
canonical way, i.e., with the free ω-category functor being an embedding.
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Duality in Monoidal Categories*

Tony Zorman

Technische Universität Dresden

There are at least three categorical gadgets that capture various notions of monoidal duality: closed
monoidal; *-autonomous [4], also called Grothendieck–Verdier [2]; as well as rigid monoidal categories.
These concepts are all interlinked: rigid monoidal categories are always Grothendieck–Verdier, and these,
in turn, are necessarily closed monoidal.

While the internal-hom1 functor for closed monoidal categories need only be right adjoint to the tensor
product, it has even more structure in the other two cases. For example, given a Grothendieck–Verdier
category (C,⊗, 1) with contravariant duality functor D : C −→ C, the internal-hom for x, y ∈ C is imple-
mented by [x, y] ..= D(x⊗D−1y). If C is rigid, then D is monoidal—the tensor–hom adjunction simplifies
to −⊗ x ⊣ − ⊗Dx.
This raises the naive question: is a monoidal category with tensor-representable internal-hom automat-
ically rigid? For a closed monoidal category (C,⊗, 1, [−,−]), rigidity boils down to the existence of a
natural isomorphism ϕx : [x, 1]⊗ x −→ [x, x] for every x ∈ C, such that the following diagram commutes,
where εx and ηx are the unit and counit of the tensor–hom adjunction:

x⊗ [x, 1]⊗ x

x⊗ [x, x] x

x⊗ϕx x⊗εx1

ηxx

The (rigid) duality can then be defined as D ..= [−, 1]. Thus, by applying εx and ηx to the monoidal unit,
one obtains natural evaluation and coevaluation maps

coevx ..= ηx1 : 1 −→ [x, x] and evx ..= εx1 : [x, 1]⊗ x −→ 1.

There is no immediate reason why the above diagram should commute. At the bcqt2022 summer school,
C. Heunen suggested that it is not true and asked for counterexamples. We will present one by way of an
explicit construction of a “free” monoidal category in the spirit of [3]. While not rigid, it turns out that
the left and right adjoints to −⊗ x being tensor-representable implies that C is Grothendieck–Verdier.

References

[1] Halbig, S.; Zorman, T. Duality in Monoidal Categories. arXiv e-prints, 2023.

[2] Boyarchenko, M.; Drinfeld, V. A duality formalism in the spirit of Grothendieck and Verdier. Quantum Topol.,
4(4):447–489, 2013.

[3] Kassel, C. Quantum groups. In Algebra and operator theory (Tashkent, 1997), pages 213–236. Kluwer Acad. Publ.,
Dordrecht, 1998.

[4] Barr, M. *-autonomous categories. With an appendix by P.-H. Chu, vol. 752 of Lect. N. Math. Springer, Cham, 1979.

*Joint work with Sebastian Halbig [1].
1By this we shall always mean left internal-hom. Likewise, whenever we use closed we really mean left closed.



———————————————————————————————

List of participants
———————————————————————————————
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Elena Caviglia University of Leicester
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Bryce Clarke Inria Saclay

Maria Manuel Clementino Universidade de Coimbra

Alexander Corner Sheffield Hallam University

Maxime Culot UCLouvain

Jacques Darné UCLouvain
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Mark Sioen VUB (Vrije Universiteit Brussel)
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Miloslav Štěpán Masaryk University

Paul Taylor University of Birmingham (honorary)

Giacomo Tendas Masarykova Univerzita

Walter Tholen York University Toronto

Ivan Tomasic Queen Mary University of London

Davide Trotta University of Pisa

Ruben Van Belle University of Edinburgh

Tim Van der Linden UCLouvain

Jaap van Oosten Utrecht University

Christina Vasilakopoulou National Technical University of Athens

Pedro Vaz UCLouvain

Joost Vercruysse Université Libre de Bruxelles (ULB)
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