Olympiads in Informatics, 2011, Vol. 5, 131-139 131
© 2011 Vilnius University

Belgian Olympiads in Informatics: The Story of
Launching a National Contest

Sébastien COMBEFIS, Damien LEROY

Department of Computer Science Engineering, Université catholique de Louvain
Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
e-mail: {sebastien.combefis, damien.leroy}@uclouvain.be

Abstract. This paper describes the story of a new national contest through the experience of Bel-
gium where the first olympiads in informatics were launched in 2010. Belgian Olympiads in In-
formatics is a multi-stage algorithmic, programming and logic contest composed of both pen-and-
paper and on-computer tasks. The great focus on pen-and-paper tasks is a peculiarity of this contest.
The context in Belgium is not the most favourable: programming courses at schools are quite rare,
there are several official languages but none spoken by the entire population and the government
does not give much means for helping organizing such a contest. This paper states how the contest
was launched, explains the motivations behind the structure of the contest, the kind of tasks, the
national delegation selection process and the training of the contestants.

Key words: olympiad, programming contest, be-Ol.

1. Introduction

In 2009, there was almost twenty years without any participation of Belgium at the IOI.
It was time to have a Belgian delegation again. So, in 2010, a small team lead by the
two authors launched a national contest: the Belgian Olympiads in Informatics (be-OI).
From the beginning, we focused on a double opportunity: having Belgium participating
in the IOI and promoting informatics in secondary schools. In order to get more people
involved, and especially higher education people, and to make the event bigger, we chose
to organize two contests in parallel: the first one for secondary schools and the second
one for first year higher education schools. That also gave an opportunity for secondary
school contestants and teachers to meet students which chose to study informatics. In this
paper, we will only focus on the contest for secondary schools.

Belgium is probably not the easiest place to organize such a contest. First, there are no,
or very few, algorithmic and programming courses at secondary schools. So, we cannot
only focus on good programmers but we should also detect talented people, which is
done through logic and simple tricky algorithm problem sets. The idea was so to have
a selection based on pen-an-paper tasks, in opposition to what is done in many other
countries. Secondly, official and financial supports are really missing. Although most
people from education institutions and from authorities agree to support the initiative,
many of them do not bring more than moral support. Finally, the Belgian political context



132 S. Combéfis and D. Leroy

is not easy to deal with. The country has three official languages, each of those being
associated with a community having its own government with education as a competence.
Unlike the Mathematical Olympiad, we preferred to organize a single contest for the
whole country. That requires more complicated synchronization and translation tasks. It
also makes searching for public funding more difficult as the educational authorities are
different for each community.

This paper explains how we dealt with those difficulties to organize a national contest
in 2010 and 2011 to pick out the best candidates for the IOI. The remainder of the paper
is organized as follows: Section 2 describes the structure of the contest and the tasks that
are given to the contestants. Section 3 presents some statistics about the two editions of
the be-OlI. Finally, Section 4 states perspectives about the future of the contest.

2. The Contest

The Belgian Olympiads in Informatics (be-OI) was initiated in 2009 by the two authors
of this paper. The contest was actually first organized as a new activity of the UCLouvain
ACM Student Chapter. The initiative has quickly been supported by some universities
and higher education institutions which helped in advertising the event and organizing
the semifinal in the French part of the country. The Dutch part of the country joined us
this year through the Antwerp ACM Student Chapter, and several universities offer some
human resources to write and review questions for the national contest. In the few next
months, a specific targeted association will be created to organize the be-OlI.

The remaining of the section describes the steps within the yearly contest, the kind of
tasks that are given and how they are graded, and finally the training that is given.

2.1. Stages of the Contest

The Belgian Olympiads in Informatics is a multi-stages competition (Fig. 1). The first
step consists of semifinals, organized the same day in several regional centres through-
out Belgium. This year, it took place in mid-February in eleven centres. That first stage

consists in a 3-hour pen-and-paper exam during which the contestants have to solve logic

Semi-final

H/_/
at most at least best
60 contestants 2 x 3 finalists 2+ 2

Fig. 1. Structure of the be-OI contest.



Belgian Olympiads in Informatics 133

and algorithmic problems. At most 60 of these contestants are selected for the final. That
exam is an exclusively pen-an-paper test as we think that it is the best way to precisely
identify talented contestants.

A few weeks before the final, a training is organized in Dutch and in French. The
training is mainly organized for the finalists, but it is in fact open to any contestant, even
those who have not been selected for the final. That training aims at introducing some
algorithmic and programming concepts.

The final lasts an afternoon and is composed of two parts: a pen-and-paper and a
programming (i.e., on computer) one. The former is similar to the semifinal but is shorter.
The later consists in typical programming tasks as the ones given at IOI. The first task
is a very simple one and the second one is much more difficult with a smooth grading
between zero and the maximum score. A few days later, a public ceremony is organized
to award prizes.

The contestants with the higher potential, i.e., with the highest scores or younger
promising ones, are selected to enter into the /0! pool. In fact, they join one of the two
pools according to their mother tongue. Members of these pools are invited to train on
IOI-style questions. After one last week of training, the best four (two from each pool)
are selected based on their competence and motivation to attend the TOI.

2.2. Tasks

As explained earlier, there are two kinds of task in our competition. The first ones are pen-
and-paper tasks and the second ones are tasks to be solved by directly programming on a
computer. The tasks are found via a call among the members of the national committee
or from existing problems. The writing and reviewing of these tasks is aimed to be spread
among the committee. A particular attention is paid to the balance between the different
categories of questions.

There are three main categories of pen-and-paper tasks: multiple-choice questions,
algorithms to fill in, and short algorithms to write down. The contestants may answer
using pseudo-code, diagrams, natural language or any of the authorized languages (Java,
C, C++, Pascal, Python and PHP).

Two pen-and-paper tasks are shown on Figs. 2 and 3. In the task Numeric anagrams
(Fig. 2), the contestants were asked to find an algorithm to check whether two positive
integers, given as arrays of digits, are anagrams or not. To help them, they were provided
with a sorting algorithm (selection sort) which they may use. The naive solution is quite
trivial but rather inefficient (O(n?)). To obtain an extra score, we asked them to give an
efficient algorithm in O(n). In this task, they had to write to whole algorithm. So, it is a
rather long task in comparison with other ones.

The task Subarray of maximal sum (Fig. 3) consists of, given an array tab, computing
the sum of the elements of a subarray, the latter being chosen so that the sum is maximal.
Contestants were provided with a naive O(n?) algorithm and were asked to fill the partial
algorithm given in order to get an O(n) algorithm. This is a typical task, where contes-
tants have to first understand the partial solution given before adding the few instructions
requested.



134 S. Combéfis and D. Leroy

Numeric anagrams

In this problem, we consider that two numbers are anagrams if they are composed exactly of
the same digits, in the same order or in a different one. For example, 121, 211, 112 and 121 are
anagrams but 411, 144 and 511 are not.

You have to write an algorithm which establishes whether two positive integers, a and b, represented
as arrays of digits, are anagrams. You can define new functions as long as you only write out inside the
dedicated area. You can also declare new integer arrays, whose elements are initialized to 0, using the
notation newtab < new_array (size).

Input: - a,b, two arrays with the same length n, such that each cell
contains one digit
Output: - true if a and b are anagrams and false otherwise

- arrays a and b may have been modified
Bonus
You can get a bonus if your algorithm is efficient. For that, you have to propose an algorithm for which
the number of times it accesses to the elements of the array (i.e., the number of tab[index]) is smaller
than 10n for n strictly greater to 10. If you use the given sort function, array accesses of this function
have to be taken into account.

Fig. 2. Pen-and-paper task from the be-OI semifinal 2011 (translated from French).

Even though those two examples include complexity through some efficiency require-
ments, few tasks require the contestants to know something about complexity. No more
than 25% of the tasks involve complexity notions and no knowledge of complexity theory
is required to find the best answer.

In addition to these questions, we have added in 2011 small logical games which aim
at encouraging algorithmic thinking and opening the contest to a wider public just as
proposed in the Australian Informatics Competition (Burton, 2010).

There are two tasks to be solved on a machine for the final. For these, the contestants
have the choice between six programming languages: Java, C, C++, Pascal, Python and
PHP. The reason why we accept more languages than at IOl is that we want to make the
contest accessible to the larger number of people. We also think that a good Python or
Java programmer can quickly switch to C++ if he is selected.

The description for programming tasks follows the classical structure: context, task
description, constraints, inputs, outputs and scoring information. The Fence problem
(Fig. 4), the task given at be-OI 2010, is actually an instance of the convex-hull prob-
lem. In addition to what is given on Fig. 4, the contestant received an example of input
and output files together with information about the grading. The score depended on the
length of the produced fence, with 80% of the score given for datasets with less than
1.000 trees and 20% for datasets with more than 1.000 trees. The maximum execution
time was 10 seconds.

The constraints that are to be taken into account for the computer tasks is that there
must always be a trivial not so bad solution that every contestant should be able to solve.
In the “Fence problem”, the trivial solution is a rectangular fence around the trees. The
contestants should then be able to improve their solution gradually. There are two ways of
improving one’s solution: providing a better result, i.e., lowering the length f the fence in
our example, or improving performances, i.e., compute the fence faster. However, small
steps in the performance should not influence the score as we do not want one program-



Belgian Olympiads in Informatics 135

Subarray of maximal sum

The following algorithm takes as input a non-empty integers array fab and computes the maximal sum
that it is possible to get while taking a non-empty subarray of fab and summing its elements. For exam-
ple, let tab = [1, —2, 4]. There are six possible subarrays which are [1], [—2], [4], [1, —2], [-2, 4] and
[1, —2, 4]. The one with the maximal sum is the third one ([4]) whose sum is 4.

Input: - tab, a non-empty integer array whose length is n
Output: - the sum of the elements of the non-empty subarray with maximal sum

max «— tabli]
for (i<— 0 ton—1 step + 1)
{
sum «— 0
for (j« i to n—1 step +1 )
{
sum «— sum + tab[j]
if (sum > max)
{
max <— sum
}
}
1

return mazx

The proposed algorithm is not efficient. For an array of length n, the execution time is indeed propor-
tional to n2. The tab array is traversed too many times. It is possible to write an algorithm much more
efficient so that the execution time is proportional to 7 rather than to n2. You are asked to fill up the
following algorithm which read the array only once.
71
s « tab[0]
max < tab[0]
while (i! =n)
{
[...]
}

return max

Fig. 3. Pen-and-paper task from the be-OlI final 2011 (translated from French).

ming language to be better than other ones. The grading steps are estimated so as to
differentiate the main classes of solutions, e.g., O(n) versus O(n?) versus O(2"). An
improvement of the solution is anyway preferred to better performances.

2.3. Evaluation

It is quite a difficult task to select which contestants should be part of the Belgian 101
delegation. The goal of the semifinal is to identify candidates who have the capacity to
reason on algorithms and to solve problems. They do not need to know a programming
language or to be able to program. The target is thus typically people that are good at
mathematics and sciences at school.

The final is used to identify the best of these candidates. The contestants must have the
ability to understand and write algorithms as well as to program them on computer. The



136 S. Combéfis and D. Leroy

Fence problem

You have recently inherited a large orchard with a certain number of trees. To prevent
malicious people from entering into your property, you want to put a fence around
the orchard. Nevertheless, this kind of equipment is quite expensive and you should
absolutely minimize the length of fence you will buy.

The fence consists of posts along which the fence will be tightened. Your friend can give you for
free as many posts as you like. You just have to choose how to place your fence so as to minimize its
length and to ensure that all the trees are inside. Another constraint is that, to ease the moving inside
the orchard, the fence must be convex. That means that you must also be able to travel between any two

points inside the orchard without leaving and having to climb the fence.
As illustrated by the following figure showing an orchard of six trees, there are several possible
solutions.

(@) (b) © @

Solutions (a), (b) and (c) are all three acceptable and are from the least to the most optimal. The
third one being better than the first one, it will give you more points. The last solution (d) is not correct
because the formed polygon is not convex. For example, when you want to travel from A to B in a
straight line, you will have to quit the orchard.

Task

Write a program that, given Cartesian coordinates (positive integers), of the N trees, computes the
coordinates of the posts to be placed to get a fence which contains all the trees and forms a convex
polygon. To get the maximum score, you should minimize the length of the fence.

Limits and constraints

Your program only needs to manage problems within the following constraints. All the tests will remain

in these limits.
e 3 <= N <= 100.000.

e 0 <= X, Y <= 20.000, the coordinates of the trees and posts.
In the datasets used by the judges:
e Trees will not be colinear, i.e., they are not all on the same line.
o There are no two trees on the same coordinate.
In the result produced by your program:
o Posts can be placed at the same coordinate as a tree, but you cannot place several posts at
the same place.
e The produced fence must be convex.
e Cartesian coordinates of posts must be given in the order we have to link them so that the

fence so formed is to be covered in counterclockwise order.
Input

The input file is built as follow:
o The first line contains a single positive integer /N: the number of trees.
e The IV next lines contains the cartesian coordinates of the trees, given as two positive

integers separated with a single space.
The file ends with a new line.

Output

The output file to produce defines the coordinates of the posts to be placed. Each coordinate is defined
on a single line in the file, as two positive integers separated with a single space. Coordinates must be
given in counterclockwise way. The file must end with a new line.

Fig. 4. Computer task from the be-OlI final 2010 (translated from French).




Belgian Olympiads in Informatics 137

two-day training is an opportunity for them to learn some important algorithm concept
and a programming language if they have never programmed before.

The most critical part is the choice of the four contestants for the IOI delegation. For
the first edition, in 2010, the best four contestants at the final were chosen to be part of the
delegation. After observing other countries at IOI 2010, we understood that we have to
create a pool of candidates among which we select the best and more motivated ones. So,
from 2011 on, we created a specific pool for IOI. After one week of intensive training, an
IOI-like test is organized and the delegation team is created.

2.4. Training

As previously mentioned, several trainings are organized throughout the course of the
contest. The first training mainly aims at making the contestants discover algorithmic
notions and a programming language. In practice, over two days, we introduce them to
time complexity, decomposition into sub-problems and recursion and make small pen-
and-paper and on-computer exercises. Some of the finalists just do not know any pro-
gramming languages. That is just a consequence of the way we choose to organize the
semifinals. During that first training, we thus teach them a programming language and
the basis of programming. We choose Python as it is easy for them to learn it quickly
and to be able to use it directly (Georgatos, 2002). The main goal of this training is thus
educational and aims at promoting computer science.

The second training is organized for the IOI pool. The goal of this one-week training
is to train the finalists who are in the pool, teaching them classic algorithms (Skiena,
2008). A side goal of the training is also to help us identify the contestants that will be
chosen to form the Belgian IOI delegation.

3. Some Statistics

This section gives some statistics about the first edition and about the first stages of the
second edition as the 2011 final is not yet completed while this paper is being written.
There is a total of about 500,000 young between 14 and 18 years old in Belgium. Among
that huge amount, only about one hundred took part to the contest. Attracting people is
a very difficult task. Table 1 summarizes the number of semifinalists and finalists to the
be-OL

Table 1

Contestants registered at the be-OI

Year Semifinalists ~ Finalists

2010 83 43
2011 105 49




138 S. Combéfis and D. Leroy

The exact number of finalist was chosen by the committee according to the score they
had. Figure 5 shows the scores of each semifinalist for be-OI 2011, ordered by decreasing
values. The vertical line separates the selected from the non-selected contestants and the
horizontal line is the mean value.

It is interesting to observe that the distribution of scores is uniform when the distri-
bution for such tests is usually a Gaussian. That observation was also observed for the
be-OI 2010 edition. Another interesting observation is that among the contestants, the
older ones are not necessarily better than the younger ones since there are few program-
ming and algorithmic courses at secondary school. For the be-OI 2010, we only targeted
5th and 6th years students (16-18 years) but we opened the contest to any secondary
school student for the be-OI 2011 while keeping a single task set. As shown on Fig. 6
(right), we can see that the percentage of selected contestants is good even for fourth year
contestants (15-16 years old). That observation reinforced our intuition that having an
IOI pool with younger students may be a good idea.

A final interesting observation we can do is about the programming language that
the contestants used for the machine-task during the be-OI 2010 final. There were 11
contestants using Python, 10 using PHP, 5 using C++, 3 using Java, 3 using C, 2 using
Pascal and 1 using Ruby (which was allowed in 2010 but not anymore in 2011). We
notice clearly that the majority used Python which was the language they learned during
the training and the second most used language was PHP which is quite popular among
young people creating websites.

Results for the secondary category in decreasing order (be-Ol 2010)

> ...
o “ |

Finalists [l Non-finalists

Fig. 5. Histogram with the scores of the semifinalists (be-OI 2011).

Distribution of contestants by study year (be-Ol 2010) Distribution of contestants by study year (be-O1 2011)

3rd (14-15) 3rd (14-15) ]

am(1s-16) | anas16 [l TN

s 16.17) [l 1 sinre-17) [

ain (17-1¢) [ B oo I

7th (18-19) 7th (18-19) .
0 10 20 30 40 50 0 10 20 30 40 50
| TOP 10 Finalists [l Non-finalists W ToP 10 Finalists [l Non-finalists

Fig. 6. Scores of the semifinalists grouped by study year. Between parenthesis are the corresponding ages.



Belgian Olympiads in Informatics 139
4. Development of the Contest

The be-OI has only existed for two years and so needs to be improved on many points.
The first change that is currently developed and will be deployed for the be-OI 2011
final is an online submission and testing system. That system will allow the contes-
tants to directly submit their code for the on-computer task and to get their score im-
mediately. The system is based on uevalrun (http://code.google.com/p/pts-
mini-gpl/wiki/uevalrun). The advantage of such a system is that it could be used
by the coaches to provide the Belgian IOI delegation with exercises that they can do to
train themselves for the IOI.

Some additional work should also be done for advertising the contest and to make
secondary students and teachers more informed and implied. An idea to do better adver-
tising is to identify more small games and distribute flyers with these games to secondary
school students. Those games should be appealing and give rise to some interest for the
contest.

Finally, the last important thing that we still need to work hard to get more financial
and more human resource for the be-OI project. The new association that will be created
soon should help us in completing this goal.

References

Burton, B. (2010). Encouraging algorithmic thinking without a computer. Olympiads in Informatics, 4, 3—14.

Georgatos, F. (2002). How applicable is Python as first computer language for teaching programming in a
pre-university educational environment, from a teacher’s point of view? Master Thesis, AMSTEL Institute,
Faculty of Science, Universiteit of Amsterdam.

Skiena, S. (2008). The Algorithm Design Manual, 2nd edn, Springer.

S. Combéfis is a PhD student at the Université catholique de Louvain
in Belgium and works as a teaching assistant for the computer sci-
ence Engineering Department. He is also following an advanced mas-
ter in pedagogy in higher education. In 2010, he founded, with Damien
§\ ’/// i Leroy, the Belgian Olympiads in Informatics (be-OI). He is now part

9 of the coordinating committee that is in charge of managing everything

which is related to the national contest. He is also trainer for the Belgian delegation to the
IOl

D. Leroy is currently a postdoctoral research assistant at Université
# catholique de Louvain (B). He obtained his PhD in computer science
engineering in 2011 for his researches on computer and network se-
curity. He is one of the main initiators of the Belgian Olympiads of
Informatics and was the Belgian delegation leader in 2010. In 2011, he
is still coordinating both the national and international competition for
Belgium.




