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Logistics

Lots of hyper-links in the Slide PDF to papers, meetings
etc.

We will have a half an hour coffee break at 10:30pm.
— Three parts each of approximately an hour

— Solvers, Pattern Mining (Tias)

— Pattern Mining, Decision trees (Siegfried)

— Clustering (lan)

List of references in the slides after each part.

We are here for most of the conference
— Feel free to ask general clarifying question.



Why We Are Here

A growing interest in using Constraint Solvers (CP/SAT/MIP) in ML

and DM
Meetings

 Dagstuhl 11201 (2011): Constraint Programming meets Machine Learning
and Data Mining

 Dagstuhl 14411 (2014): Constraints, Optimization and Data
Workshops

e CoCoMile 2012 ECAI, CoCoMile 2013 AAAI

Journal Special Issue

e Al - Combining Constraint Solving, Mining & Learning 2017
CP 2017, 2018, 2019

e Special track on ML/DM + CP

1JCAI 2017

e Tutorial

Two dozen+ papers in the last five years on the topic at:
 NIPS, IJCAI, AAAI, KDD, ICDM, ICML, SDM etc.

e Best paper award at CP this year on ML

« Too many to cover in this tutorial — apologies if we did not cover your work.




Purpose of This Tutorial

* Give the audience an overview of the variety of
work being completed at the one-way
intersection of CP/SAT/MIP used for ML and DM

* Three Broad Categories of Work
— Pattern Mining
— Clustering
— Emerging domains

* But why do we need constraint based
formulations?



Lots of Innovative ML/DM
Formulations and Settings

Setting

1970s/80s

— Single label, single set of
features, learn a single
model

1990s

— Multi-view, multi-class,
multi-label, multiple
models

2000s

— Transfer, semi-supervised
active, structured
learning, side-information

2010s
— Big and Complex Data

Solver

1970s/80s

— Algorithms written in
procedural languages

* j.e. Decision trees, rule
inducers

1990s

— More complex algorithms
but still procedural

e j.e. Ensemble methods

2000s

— Mathematical programming
formulations

e SVMs, Spectral Clustering

2010s
— Deep Learning



Why SAT/CP/ILP for Optimization
Formulated ML and DM?

* Despite the great work in ML and DM several core
compromises and limitations exist

— Modeling compromise
1. Simple (typically linear) constraints
2. Single mathematically convenient objective

— Solving compromise
1. Finds single local minima

2. Relaxation to a continuous optimization problem (many
problems are naturally discrete optimization)

 SAT/CP/MIP can alleviate these limitations and more

— Easy to model and explore variations of problems

— Constraints as a basis for a dialog b/w humans and
machines.



Example - 1

Kotthoff, Lars, et al. "Complex Clustering Using Constraint Programming:
Modelling Electoral Map." (2015).

Modeling compromise
1. Simple (typically linear)
constraints
2. Single mathematically
convenient objective
Solving compromise
1. Finds single local minima
2. Relaxationto a
continuous optimization
problem




How Are SAT/MIP/CP Solvers Being Used
in ML/DM Settings?

Completely
New

Settings

Extending
Classic Settings

Classic Setting

Setting

Of the Shelf
(Pure) SAT/ Extensions To Hybrid
MIP/CP SAT/MIP/CP Formulations

Formulation

Formulation



Background on
SAT/MIP/CP



How Are SAT/MIP/CP Solvers
Being Used in ML/DM Settings?

Pure Extensions To Kferc

Formulations

SAT/MIP/CP SAT/MIP/CP
Formulation Solvers

|

Pure SAT/MIP/CP Formulation:
declarative programming



Declarative programming

Imperative:
—  Describe solution method: the how

— ex: click once on the right-pointing arrow

Declarative:
—  Describe problem: the what

— ex: go to the next slide



Constraint solving: methods

“Combinatorial problem = Model + Solve”

Model = specification of constraints over variables
Solve = search for satisfying/optimal solutions

Many generic and efficient solvers available!



Modeling

Variables Boolean Boolean (0/1) Boolean
(True/False) Finite Inte er Finite Integer
Contlnuous Continuous
Set
String, ...
Constraints Logical (And/Or) Linear _ Logical,
(ext: quadratic) Linear,
Quadratic,
Arbitrary...
Objective / Linear _ Linear,
(ext: MaxSAT) (ext: quadratic) Quadratic,
Arbitrary...

A 4

More expressive



Modeling example: graph coloring

* Given: a graph G=(V,E) with vertices V and edges E

* Find: a coloring of vertices V with minimal nr. of colors
such that all (v,,v,) in E: color(v,) != color(v,)



Graph coloring: CP

Variables: X, .. X,
nr_colors

Domains: D(X) =1..n

D(nr_colors) = 1..n
Minimize: nr_colors

Constraints:
— foralli,j in Edges: X; != X

— forall I X, < nr_colors
—  optional: symmetry breaking

one for each vertex
the number of colors

colors numbered from 1 to n

neighbors
color count



Graph Coloring: MIP

* Variables: X, X;: vertex | has color h
Y, Y,: color h is used

* Minimize: sum, Y,

* such that:
- Xih |n {0,1}

— Y,in{0,1)

—  forall i: sum, X;, = 1 each vertex one color

— forall i,j in Edges: X, + X;,<=Y,  color use and neighbors
— optional: symmetry breaking



Graph coloring: SAT

Satisfaction: does a k-coloring exist?

Variables: X, X vertex i has color h

such that:
—  foralli: OR(hin 1..n) X, each vertex a color

— forall i, forall h,g: NOT(X;, AND X,,)
each vertex no two colors

— forall i,j in Edges: NOT(X,, AND X)) neighbors
— optional: symmetry breaking



Modeling differences

* CP: high level, problem structure more explicit

* MIP: low level, relaxable and as linear constraints

(some modeling support in commercial solvers)

* SAT: low level, often need to write your own clause generators



Modeling: practical considerations

Model size: MIP/SAT formulations can grow very large
(millions of constraints)

Modeling alternatives:
* often different ways of modeling same (sub)problem

* modeling choices matter, needs to be chosen
experimentally

Symmetric solutions and symmetry breaking



How Are SAT/MIP/CP Solvers Being Used
in ML/DM Settings?

Pure

Extensions To Hybrid

SAT/MIP/CP Formulations
Solvers

1

Improving solving by exploiting problem structure:

* CP: global constraints

* MIP: cutting planes
* SAT: SAT Module theories (not covered here)

SAT/MIP/CP
Formulation

— use specialized algorithms to solve a specific subproblem



Extending CP: global constraints

Examples:
* alldifferent(X,Y,Z)
* AX]=Y with X,Y variables, A an array
* cumulative(...) used in scheduling

model: succinctly express a substructure
solve, with specialised algorithms:
* optimized data structures = more efficient
* (sometimes) more pruning = more effective



MIP: cutting planes and lazy cons
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How Are SAT/MIP/CP Solvers Being Used
in ML/DM Settings?

Pure Extensions To

Hybrid
SAT/MIP/CP SAT/MIP/CP yor

Formulation Solvers

Formulations

|

Chaining of specialized algorithms with SAT/MIP/CP solvers
e.g. mine all patterns, then find a cover of those

Use SAT/MIP/CP solver as subproblem solver (e.g. as oracle)
e.g. generate candidate cluster, query feasability



How to choose between SAT/MIP/CP?

No free lunch!

General guidelines:
* if decision problem: try SAT first
* if inherently Boolean: try (max)SAT first
* If few constraints or natural to relax: try MIP first
* if highly complex constraints: try CP first



Pattern (Set) Mining

In Tabular Data



Overview

ltemset mining: Background, In CP, In SAT

Pattern set mining: Background, In CP, In MIP

Decision trees: Background, In SAT, MIP, CP



Overview

ltemset mining: Background, In CP, In SAT

Pattern set mining: Background, In CP, In MIP

Decision trees: Background, In SAT, MIP, CP



Frequent ltemset Mining

1993: The task of frequent itemset mining was defined by Agrawal,
Imielinski, and Srikant for Boolean supermarket data

-Transaction

CEDs (R

CEDe  EEEes




Frequent ltemset Mining

Frequent itemset: itemset that occurs in more than minsup

transactions, where minsup is a user-defined threshold




Frequent ltemset Mining

Can be applied on any tabular dataset after binarization

A
0.5

0.3
0.9

A=[0-0.5]
1
1

0

B C
0.6 10 o
0.7 12 J
0.4 9
A=]0.5-1] B=[0-0.5] B=]0.5-1] C=[0-10] C=]10-20]
0 0 1 1 0
0 0 1 0 1
1 1 0 1 0



Frequent ltemset Mining

Examples of data analyzed using FIM in the
literature:

— Supermarket products per visitor

— Web pages accessed per visitor

— Binarized gene expression for patients

— Transcription factor binding sites of genes

— Single-nucleotide polymorphisms of patients



Frequent ltemset Mining

Frequent itemset mining: the problem of finding all frequent itemsets

0

{A} {B} hed; {D} {E}

/ ~/ \

{A, B} {A,C} {A, D} {A, E} {B,C} {B,D} {B, E} {C, D} {C, E} {D,E}

{A,B,c} | {A, B, D} [[ {A, B, B} || {A,c, D}y || {A,Cc,E}Y | {A, D, E}Y || {B,C, D} || {B, C, E} {B,D,E}|{C,D,E}

\ /

{A} B’ C’ D} {A? B, C? E} {A7 B? D'} E} {A‘ C? D? E} {B? C, D'} E}

/ﬁ | =

{A,B,C,D, E}

Diagram with all itemsets for a database with items {A,B,C,D,E}



Frequent ltemset Mining

Frequent itemset mining: the problem of finding all frequent itemsets

0
{A} {B} {c} {D} {E}
{A, B} {A,C} — {A, D} {A, E} {B,C} {B,D} {B, E} {C, D} {C, E} {D,E}
/|
—_
{A,B,c} || {A,B,DY || {A, B, E} || {A, 0, DY || {4, c,E} || {A, D, . i {B}
2 {E}
\ = itemset 3 {AC}
frequentin 4 AE
{A, B, C, D} {A, B, C, E} {A,B,D,E} . . ,
this database: 5  (B,C)
\ 6 {D, E}
= 7  {C,D,E}
{A,B,C,D, E}
8 {A B, C}
9 {A B, E}
10 {A,B,C, E}




Frequent ltemset Mining

Challenge 1: how to find all frequent itemsets
efficiently?




Frequent ltemset Mining

1994-2004: Development of efficient frequent itemset
mining algorithms

* Many FIM implementations available at http://fimi.ua.ac.be

* Also implementation choices are important for
performance

* Small improvements not accepted at data mining
conferences any more


http://fimi.ua.ac.be/

ltemset Mining

Challenge 1: how to find all frequent itemsets
efficiently?

Challenge 2: how to determine small sets of
useful patterns?
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— Pattern set mining
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ltemset Mining

Challenge 1: how to find all frequent itemsets
efficiently?

Challenge 2: how to determine small sets of
useful patterns?

— Constraint-based data mining

— Constraints based on data
Minimum support in unsupervised data

— Constraints based on relationships between patterns

— Constraints based on syntax

— Pattern set mining



ltemset Mining

Challenge 1: how to find all frequent itemsets
efficiently?

Challenge 2: how to determine small sets of
useful patterns?

— Constraint-based data mining

— Constraints based on data
Minimum support in unsupervised data
Supervised data

— Constraints based on relationships between patterns

— Constraints based on syntax

— Pattern set mining



Pattern Constraints on Data:
Supervised Data

Has_loans Good_customer

TR XK




Constraints in Supervised Data:

Best itemset




Constraints in Supervised Data:
Min & Max Support

Contingency Table E’,

Max support

Min support

(Reverse Min/
Max support
for the other
corner)




Constraints in Supervised Data:
Threshold on Scoring Function

Scoring function

Threshold



How do we call such Patterns?

; Subgroup/
Discriminative Correlated Pattern

‘Correlated
Caller " Pattern

Emerging
Pattern/
Contrast set
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ltemset Mining

Challenge 1: how to find all frequent itemsets
efficiently?

Challenge 2: how to determine small sets of
useful patterns?

— Constraint-based data mining

— Constraints based on data

— Constraints based on relationships between patterns
Closed patterns
Maximally frequent patterns

— Constraints based on syntax

— Pattern set mining



ltemset Mining

Challenge 1: how to find all frequent itemsets
efficiently?

Challenge 2: how to determine small sets of
useful patterns?

— Constraint-based data mining

— Constraints based on data

— Constraints based on relationships between patterns
Closed patterns
Maximally frequent patterns

— Constraints based on syntax

— Pattern set mining



Maximal Frequent ltemsets

ltemset is frequent for 0 = 2

{A} {B} hed; {D} {E}
/
{A, B} {A,C} {A, D} {A, E} {B,C} {B, D} {B, E} {c, D} {c, B} {D,E}
{A,B,Cc}B{A,B,D| {A,B,E} B{A.Cc,D}||{A,C,E}||{A,D,E}|| {B,C,D} || {B,C, E} {B,D,E}|{C,D,E}
/
{A, B,C, D} {A,B,C, E} {A, B, D, E} {A,C,D,E} {B,C, D, E}

Ny

/

{A,B,C,D, E}

Maximal = One cannot add an item and still have a frequent itemset




ltemset Mining

Challenge 1: how to find all frequent itemsets
efficiently?

Challenge 2: how to determine small sets of
useful patterns?

— Constraint-based data mining

— Constraints based on data
— Constraints based on relationships between patterns

— Constraints based on syntax

— Pattern set mining



C) Constraints based on Syntax

On example: suppose every item has a cost c(i)

Find itemsets under such constraints:

—Max cost: ) (i) <6

el
— Min cost:  » (i) > 6
el
— Max average cost: » c(i)/|I| <6

el

— Min average cost: > @)/ >0

el



In the L|terature Classic Setting

Algorithms for many settings:

— Closed itemset mining
LCM, modifications of ECLAT, FP-Growth, ...

— Maximal frequent itemset mining
MaxMiner, Mafia, modifications of ECLAT, FP-
Growth, ...

— Supervised itemset mining
DDPMine, Cortana, Opus, ...

— Cost-constrained itemset mining
FP-Bonsai, Exante, DualMiner, ...



Combinations of
ConStra| ntS Classic Settings

Extending




Overview

Itemset mining: Background, In CP, In SAT

Pattern set mining: Background, In CP, In MIP

Decision trees: Background, In SAT, MIP, CP



ltemset Mining
using Pure CP Formulations

Completely
New.
Settings

Extensions To
SAT/MIP/CP
Solvers

Pure SAT/MIP/
CP Formulation

Can we use CP systems for solving constraint-based
itemset mining problems?

L. De Raedt, T. Guns, S. Nijssen. Constraint program
ming for itemset mining. KDD 2008:

— YES!


https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A186609/datastream/PDF_01/view
https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A186609/datastream/PDF_01/view

Initial Models

Frequent itemset mining,

closed itemset mining, Classic
Setting

maximal frequent itemset mining,
cost-based constraints

Solved using the generic CP
system Gecode to enumerate all Pure CP
solutions Formulation




Modeling Frequent ltemset Mining

One Boolean variable per item

One Boolean variable per transaction

1 13 14 5 €4{0,1}

n | B
T2 é
T4 é
T5 é




Modeling Frequent ltemset Mining

Two constraints:
1) A coverage constraint: (Tj = 1) iff (Itemset in Tj)

1=0  12=1  13=1  14=1 60




Modeling Frequent ltemset Mining

Two constraints:

2) A support constraint: ZTj > minsup
1=0  12=1  113=1 14=1 15=0

T




Modeling Frequent ltemset Mining:
Implementation Tweaks

Gecode solver with existing constraints,
not changing the solver

Pure CP
The resulting model is not easy to Formulation
read.:
i =1— ZTtIz’ > 0 (Support)
teT
Tt — ] & Z(l _ Dti)li — 0 (Coverage)
1€

Two “reified summation constraints”



Other Iltemset Mining Tasks

Similar results for:

Pure CP
— Closed itemset mining — LCM Formulation

Itzl%ZTtlz‘ZH

teT
T,=1&>» (1-Dy)l; =0

€T
I;=1& % (1-Dy)T; =0

teT

— Maximal frequent itemset mining — MAFIA
— Cost-based itemset mining — Exante



Combinations of
ConStra| ntS Classic Settings

Extending

Easy in CP!



Constraints in Supervised Data

Siegfried Nijssen, Tias Guns, Luc De Raedt. Correlated itemset mining in ROC space. KDD 2009.

For supervised patterns we added a

constraint to Gecode PRSI
To CP

Name corrmine cimcp ddpmine lem

anneal 0.02 0.22 22.46 7.92 _ _ _
australian-credit 001 030 3.40 1.22 cimcp = our implementation
breast-wisconsin 0.03 0.28 96.75 27.49 in Gecode
diabetes 0.36 2.45 — 697.12

german-credit 0.07 2.39 — 30,84 . _ .
heart-cleveland 0.03 0.19 9.49 2.87 ddpmme B algothhIm from
hypothyroid 0.02  0.71 — > the literature
ionosphere 0.24 1.44 — >

kr-vs-kp 0.02 0.92 125.60 25.62 lcm = post-processing

letter 0.65  52.66 - > frequent itemsets
mushroom 0.03 14.11 0.08 0.03

pendigits 0.18 3.08 — = . . .
primary-tumoaor 0.01 0.03 (.26 0.08 corrmine |mplementat!on )
segment 0.06 1.45 — > of all DFOD?gE-:ltIOn In
soybean 0.01 0.05 0.05 0.02 more speC|aI|zed
splice-1 0.05 30.41 1.86 0.02 algorithm

vehicle 0.07 0.85 — >

FEAs 5.67 — 59 .

yeast - _ {?'?E’ A 3118 D 28 - = algorithm crashes

avg. when found: .15 a5 25. 58+ L4+ > = time-out



https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A186616/datastream/PDF_01/view

Some Results

Two Datasets from the FIMI challenge

Frequent itemset mining using Gecode

Runtime (s

(Frequent) Mushroom (Frequent)

500

5 5

0.5 0.5

—

0.05
50% 10% 5% 1% 0.5% 0.1%

Minimum support

0.05

05% 0.01% 35% 30% 20 15% 10% 5% 1%

Minimum support

Frequent itemset mining using algorithms from the FIMI challenge



ltemset Mining
using Extended CP Systems

Completely
New.
Settings

Is it possible to build or modify CP systems that
execute itemset mining tasks more efficiently?



A New CP System for
More Efficient Itemset Mining

Siegfried Nijssen, Tias Guns. Integrating constraint programming and itemset mining. ECML PKDD 2010.

Is it possible to build a new CP system that
executes itemset mining tasks more efficiently?

DMCP: a CP system that only supports
— Boolean vector variables

— Binary constraints between these Boolean
vectors


https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A186626/datastream/PDF_01/view

DMCP: Some Results

Frequent itemset mining o

= CM2
< MAFIA
. o e . +¢B ECLAT

Frequent itemset mining using DMCP % B_FPGROWTH
B APRIORI
- PATTERNIST
¥V B_ECLAT_NOR
== FIMCP
==DMCP

T1014D100K (Frequent)

500 /’

50 7/

. /
0.5

—
0.05 0.05 F
' 35% 30% 25% 20% 15% 10% 5% 1%

50% 10% 5% 1% 0.5% 0.1% 0.05% 0.01%

Minimum support

Minimum support



Adding Global Constraints to CP
Systems for Itemset Mining

Can we add new global constraints to
existing CP systems, such that their Extensions
performance on itemset mining To CP
tasks improves?

* ClosedPattern global constraint, integrated in the Gecode solver

M. Maamar, N. Lazaar, S. Loudni, Y. Lebbah. A global constraint for closed itemset mi

ning. CP 2016.

* CoverSize and a CoverClosure global constraint, integrated in
the Oscar solver

P. Schaus, J. Aoga, T. Guns. CoverSize: A global constraint for frequence-based
itemset mining. CP 2017.

* FrequentSubs and InfrequentSupers global constraints,
integrated in the Oscar solver

M. Belaid, C. Bessiere, N. Lazaar. Constraint Programming for Mining Borders of
Frequent ltemsets. IJCAI 2019.



http://www.lirmm.fr/~bessiere/stock/cp16.pdf
http://www.lirmm.fr/~bessiere/stock/cp16.pdf

Theoretical Comparison

FIMCP DMCP Closed CoverSizel Infrequent
Pattern Cover Supers
Closure

Variables for X X X X X
items

Variables for X X - - -
transactions

Variable for X - - X X
support

Closed X X X X -
patterns

Maximal X X - - X
patterns

Variables need to be present to allow for the addition of constraints
Exposing variables may degrade performance



Practical Comparison

One illustrative example for closed itemset mining

Runtime (Mushroom)

20

18

16

14

12 —=— FIMCP
9 == ClosedPattern
§ 10 CoverSize
3 ==te= DMCP

=P | CM

o N M O ©




Overview

ltemset mining: Background, In CP, In SAT

Pattern set mining: Background, In CP, In MIP

Decision trees: Background, In SAT, MIP, CP



ltemset Mining
using SAT Solvers

Completely
New.
Settings

Pure SAT/MIP/
CP Formulation

o
SAT/MIP/CP
Solvers

Given progress in SAT solvers, can SAT solvers
solve itemset mining problems (more)
efficiently?



Modeling ltemset Mining in CNF

R. Henriques, |. Lynce, V. Manquinho. On When and How to use SAT to Mine Frequent ltemsets.
ArXiv:1207.6253. 2012.

S. Jabbour, L. Sais, Y. Salhi. The top-k frequent closed itemset mining using top-k sat problem. ECML
PKDD 2013.

Coverage can be modeled in a similar fashion as in CP systems

Example: coverage for transaction T with item C in database
with items A,B and C is encoded as:

(=T) = (LA V i) AN((=1a) = -T) AN (=) = —T)

Support is more complex; it requires the use of an encoding using
sorting networks, cardinality networks, sequential counters...

However, these encodings are well-studied in the literature


https://arxiv.org/abs/1207.6253
http://www.ecmlpkdd2013.org/wp-content/uploads/2013/07/135.pdf

Modeling ltemset Mining in CNF

Closed itemset mining & maximal frequent itemset
mining can de moedeled similarly

Main challenge: we need to enumerate all
solutions (AIISAT)

Compared to CP-based approaches, performance
not competitive



ltemset Mining using
Answer Set Programming

M. Jarvisolo. Itemset Set Mining as a Challenge for Anser Set Enumeration. LPNMR 2011.

ASP provides better support for solution enumeration

item(I) :- db( ,I).
transaction(T) :- db(T, ).

{ in itemset(I) } :- item(I).
in support(T) :- { conflict at(T,I) : item(I) } 0, transaction(T).
conflict at(T,I) :- not db(T,I), in itemset(I), transaction(T).
:— { in support(T) } N-1, threshold(N).

mushroom standard mushroom maximal
1000 &) ~ 7 ASP(1) - 1000 %, _ ASP(1) —
ASP(1) choice 1 Yo, ASP(1) choice
RN ASP(2) = ] N ASP(2) =
100 + » FIMCP = 1 100 ¢ FIMCP = 1
(]EJ 10 | mé. % \\x\x e GEJ 10 _E;'-Xx ) "‘1 — xe .
i: a *x* 7 —+——+7+_;<_);_;_;_£¥ i |: O™y IEUAN : | —~— 7.#4}? L:+ o -
1l N 7. .l
01 L L 1 I ? N et O O SO SR S | 01 L | L . B B @ B peepeq 0
0 01 02030405060.70809 1 0 010203040506 070809 1

Threshold (%) Threshold (%)


https://pdfs.semanticscholar.org/8e05/6c5accb796d9c9b78996f64406f2eafa2265.pdf
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Pattern Set Mining

Problem of constraint-based pattern mining:
patterns often are still similar to each other
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Pattern Set Mining

Problem of constraint-based pattern mining:
patterns often are still similar to each other
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Pattern Set Mining

Pattern Set Mining aims to take into account the aim of
the data miner when selecting subsets of patterns

A B C D E F G H If her aim is to obtain a
good summary of the data
this set of closed itemsets may be
much more better:

- R
e
BCDEFG
HEl :
This set is a tiling that
0 1 1 0 0 1 0 0 covers most 1s with only
a )
HEN °

two patterns




Pattern Set Mining

In supervised settings = rule learning/concept learning
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Pattern Set Mining

Conceptual/predictive clustering: rules predict clusters
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Constraint Programming
in Pattern Set Mining

Two approaches

CPIspecialized

Hybrid algorithm CP
Formulation

Step-wise Pattern
selection

Pure CP

Formulation DatternS

et Mining

One step



K-Pattern Set Mining:
One Step - CP

L. De Raedt, S. Nijssen, T. Guns. k-Pattern Set Mining under Constraints.
IEEE TKDE, 2013.

k sets of pattern variables (pattern.,...,pattern,)

* Constraints on each of the k patterns
closed(pattern,)
freq(pattern)>minsup, freq(pattern)<maxsup
Size(pattern,)<maxsize, size(pattern,)>minsize

* Constraints on pattern sets, for instance

min distance(pattern ,paﬁernj) < maxd
1<i<j<k

* Optimization criteria on pattern set, for instance, accuracy

All mapped into “small” (not global) constraints in CP


https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A186694/datastream/PDF_01/view

K-Pattern Set Mining:
One Step - CP

L. De Raedt, S. Nijssen, T. Guns. k-Pattern Set Mining under Constraints.
IEEE TKDE, 2013.

Problems that can be modeled using these
primitives:

— k-Tiling

— k-Concept learning

— k-Conceptual clustering (with no overlap between
clusters)

— Redescription mining
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https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A186694/datastream/PDF_01/view

K-Pattern Set Mining:
Two Step - MIP

A. Ouali, A. Zimmermann, S. Loudni, Y. Lebbah , B. Cremilleux, P. Boizumault, L. Loukil.
Integer Linear Programming for Pattern Set Mining; with an Application to Tiling. PAKDD
2017.

A 2-phase approach, in which LCM is used to solve the
first phase and MIP is used to solve the second phase

In principle could support a number of pattern set mining
settings; only evaluated on tiling

Dlltems|Trans. |k Recall Time (s)

O[O O @[O0 _ @] 0 _@[ )] jharhesesendard
0.48(0.38]0.38|0.48 ().46 8.99| 587 157 2,418 (2), (3) variations
0.57|0.4710.48| TO|0.56|| 14.38| 4.53| 3.67 TO (4) Gecode 1-Phase

; 0.63[0.54[0.52| To|0.62|| 25.11| 4.49| 299 TO (5) Specialized
(34 |01 0.68/0.550.55| To|0.67|| 34.96| 1082| 298| To algorithm

0.7310.57{0.58| TO|0.71|| 22.85| 5.81| 3.49 TO
0.7810.68]0.61| TO|0.75|| 25.56| 6.96| 3.16 TO
0.8210.6910.64| TO|0.79|| 35.07| 8.04] 3.59 TO

0({0.85(0.6910.66| TO|0.82|| 26.21| 691 3.23 TO| 0.99
NA2I0 A0 251 TOIOA211200 Q11 SOQY11580 SA T

R|= O 0 1 Oy LW




K-Pattern Set Mining:
One Step — MIP / Greedy

J. Aoga, S. Nijssen, P. Schaus. Modeling Pattern Set Mining using Boolean Circuits. CP 2019.
Inspired by neural networks, a modeling language is used based on
parameter learning in boolean circuits
Allows for modeling:
* Tiling
* Conceptual clustering (with overlap)
* Rule learning (ordered/unordered)
Solvers currently supported:
* MIP solvers
* Greedy solvers
* More to come



K-Pattern Set Mining:
One Step — MIP / Greedy

J. Aoga, S. Nijssen, P. Schaus. Modeling Pattern Set Mining using Boolean Circuits. CP 2019.

11 12 13 T4 15

11111011
21T 11T 101111
3110 1|1
41110 170
Database

IF {11, 19, i3}
ELSEIF  (»i
ELSE IF {ig,i5}
ELSE (default case) THEN predict

Rule list

THEN predict
THEN predict
THEN predict

0
V.
AN A VAN
A N A
NN
: .
\
\ -

i1 2 i3 i4 is

Representation of Boolean circuit



K-Pattern Set Mining:
One Step — MIP / Greedy

J. Aoga, S. Nijssen, P. Schaus. Modeling Pattern Set Mining using Boolean Circuits. CP 2019.

0 0]
V V _ We have to decideu'"
" /\ /\ A / A A A which edgﬁe* *to
e choose to minimize
_ e ~ classification error
| | | T | | - -
A A A | A A n
il 12 13 14 15 11 12 13 14 15

Equivalent model Boolean Circuit Boolean Circuit Model



K-Pattern Set Mining:
One Step — MIP / Greedy

J. Aoga, S. Nijssen, P. Schaus. Modeling Pattern Set Mining using Boolean Circuits. CP 2019.

methods Audi. Aust. HeCl. Hepa. KrKp. Lymp. Mush. PrTu. Soyb. Spli. TTT. Vote Zoo

b) Accuracies over training sets

MIPACL-o« 1.0 092 0.89 098 0.87 097 055 0.89 0.97 - 090 098 1.0

MIP4CL+ao 1.0 0.91 1.0 1.0 093 1.0 1.0 091 1.0 0385 0.77 1.0 1.0

G4CL 073 045 046 0.19 047 046 049 0.76 086 048 0.35 0.37 0.59

KPATT 1.0 - - - - - - 0.89 0.97 - 082 - 1.0
d) Running time (in second) - TO= Timeout

MIP4CL-a 26.09 TO TO TO TO TO TO TO TO - TO TO 1.65

MIPACL+a 581 TO 268290 199 TO 250 251 TO 915.09 TO TO 17.32 0.66
KPATT 20 - - - - - - TO 173030 - TO - 3.29
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Decision Tree = Pattern Set

ltemset
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Prediction: Why Constraints?
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Prediction: Why Optimal Solving?
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C4.5 cannot compute trees that
optimize a desirable criterion, such
as simplicity of the model

Computing optimal trees under
constraints is NP complete




Overview

Completely
New.
Settings

Extending
Classic Settings

Classic Setting

Extensions To :
Pure SAT/MIP/ ;( AT /I\/IIIP P Hybrid

CP Formulation Formulations
Solvers

Starting with classic settings
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SAT-based Approaches

C. Bessiere, E. Hebrard, B. O’Sullivan. Minimising Decision Tree Size as Combinatorial
Optimisation. CP, 2009.

N. Narodytska, A. Ignatiey, F. Pereira, J. Marques-Silva. Learning Optimal Decision Trees with
SAT. 1JCAI, 2018.

Solve the following problem:
Given a parameter K, a dataset D

Find a tree of size K, such that the error of this
tree on D is zero

... as SAT solvers solve satisfaction and not
optimization problems
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MIP-based Approaches

*Impose depth constraint

*Use variables for

* Decisions in the internal 4 B N

nodes of the tree Vo V3

e | abels in the leafs of the Y NN

tree L1 L2 L3 L4
* Examples in the training

data covered by each
leaf

* Encode cover of paths, loss function using linear
constraints



OCT

D. Bertsimas, J. Dunn. Optimal classification trees. Mlj, 2017.

Finds the most accurate classification tree

A vector a of variables for each node to choose the
feature used in that node, summing up to 1

“Big-M” approach used to determine the leaf for each
training example: constraints for every training
example



BinOCT

S. Verwer, Y. Zhang. Learning optimal classification trees using a binary linear program
formulation. AAAI, 2019.

Finds the most accurate classification tree

Formulation in which we don’t have a set of
constraints for every training example

— Model with a smaller number of constraints

— Can find better solutions within a given amount
of run time



Overview

Completely
New
Settings

Extending
Classic Settings

Classic Setting

Extensions To :
Pure SAT/MIP/ SX AT /I\/IIIP P Hybrid

CP Formulation Formulations
Solvers

New Setting: Fairness



MIP for Fair Decision Trees

S. Aghaei, M.J. Azizi, P. Vayanos. Learning Optimal and Fair Decision Trees for
Non-Discriminative Decision-Making. AAAI, 2019.

Finds trees that optimize a sum of:
* Accuracy

* Disparate impact
— knowing a sensitive attribute should not change the
distribution of predictions

* Disparate treatment
— similar examples over all features should receive a

similar classification

Basic formulation similar to OCT + additional variables /
constraints for the additional terms in the loss function
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DL38: Lattice of ltemsets

S. Nijssen, E. Fromont. Mining optimal decision trees from itemset lattices. KDD, 2017.
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Decision Trees are hidden in the lattice of
itemsets



CP-based Approach

H. Verhaeghe, S. Nijssen, G. Pesant, C.G. Quimper, P. Schaus. Learning Optimal Decision
Trees using Constraint Programming. CP, 2019.

* Builds on ideas present in DL8
* Imposes depth constraint
* Similar variables as in MIP

* However,

 Use CoverSize constraint
for itemset mining to
calculate cover

* Use AND/OR search
* Cache partial results for itemsets
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Pattern (Set) Conclusions

Pattern mining, rule learning and decision tree
learning problems have successfully been
modeled using MIP, CP and SAT

CP solvers often obtain better computational
performance, provided specialized global
constraints are used

Significant potential for the addition of constraints
related to fairness, explainability, privacy
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OUTLINE

Previously
* itemsets
* pattern sets and decision trees

Up next: structured pattern mining!

* Sequence mining

* Multi-relational patterns

* Interestingness as objective function
* Wrap up of pattern mining




Sequential data

Example:
<Home, Work, Restaurant, Work, Home>

<Home, Work, Shops, Restaurant, Home>

Many applications:

User mobility mining

Web usage mining
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ELROTHUMAN
RLAO_MOUSE

RLAD_RAT
ELRO_CHICK
RLAO_RANSY

Q7ZUG3_BRARE
ELRO_ICTPU
BLRO DROME
RLAO_DICDT

Q54LP0”DICDT

Event monitoring

Biological sequence minin
DNA, Amino acids

RLAO_ARCFU
RLAO METKA
RLAO METTH
RLAO_METTL
RLAO MET VA
BLAO METIA
ELRO_PYRAH
RLAO_PYRHO
RLAO_PYRFU
ELRO_PYRKG
RLRO HALMA
RLAO_HALVO
RLAO_HALSA
ELRO
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Sequence mining

Cover Pattern: <H, G, ?, ?, ?>
= subsequence relation P
= ordered matching T1: <S,B,H,R,G,H,M>

[

T2: <S,G,H,W,L,W,M}

T3: <R,I?,W,H,D,CT5,H>

multiple embeddings possible:
T3: <R,H,W,I?,D,CT5|,H>



Constraints

Many constraints, we identify four categories:
* Constraints on syntax:

size, regular expression, ...
* Constraints on data covered:
min_support, max_support, discriminative, ...
* Constraints on the relationship to other patterns

closed, maximal, relevant, multi-objective, ...
 new Constraints on cover relation:

max_gap, min_gap, max_span

Hard-coded in specialised algorithms...



Constraints on cover relation

Pattern: <I}I, cTa I\T/I ?, 7>

T1: <R,H,W,H,G,D,H,W,R,W,M>
[P o ]
gap gap

' '
span

* min/max gap constraint (ex. max gap = 20 base pairs)

* min/max span constraint  (ex. max span = 2 hours)

When distance indicative of relatedness
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Sequence mining in GP

p=1 p=2 p=3 p=4

S:|A|[B | €| ¢

Ty:1| i3 A|C | B

TgZO XQZB A A C

Cover:

Y T,: T,=1< exist—embedding (S,

Frequency:

Z I' .= Freq




Pure

SAT/MIP/CP
Formulation

CP1: pure modeling

p=1 p=2 p=3 p=4

S:|]A| B | €| €

Tll 1 Xl A C B

Cover:

thlﬁa(el,,en):el<...<en/\‘v’j5[j]ej]

Frequency:

Z I' = Freq

needs O(nm) integer variables e (for each transaction and position)
and 2™ order logic (backjumping search, not pure...)

[B. Negrevergne, T. Guns, CPAIOR 15]




Extensions To

CP2: fine-grained global constraints | ¥

p=1 p=2 p=3 p=4

S:|]A| B | €| €

Tli 1 Xl A C B

TQZO XQZB A A C

Cover:

Y T,:T,=1< exist—embedding ( SE

Frequency:

Z I' = Freq

needs O(n) exists-embedding global constraints

[B. Negrevergne, T. Guns, CPAIOR 15]



What specialized algorithms do

P:<H,G,?, 7 7>

T1: <TR,IT-I,W,H,D,G,H>
!
T2: <S,B,I{I,R,(TE,H,M>

PrefixSpan:

* Linear scan of each transaction, keep only pointer to
first match of /ast symbol (above: 1)

* When symbol added to P, continue from pointer (incremental)

* O(1) space, single scan algorithm

[J. Han, J. Pei, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. C. Hsu. ICDE 2001]



Extensions To

CP3: coarse-grained global | A

p=1 p=2 p=3 p=4

S:|]A| B | €| €

Tll 1 Xl A C B

Tglo XQZB A A C

Cover:

Frequency:

frequent — sequence | S,EFreq)

one joint global constraint (note: no transaction variables)

[A. Kemmar, S. Loudni, Y. Lebbah, P. Boizumault, and T. Charnois, CP 2015]



Constraint compatibility

Constraints on: CP1 (pure) CP2 (fine-grained) CP3 (coarse-grained)
- syntax yes yes yes

- data yes yes no

- relations to other patterns  yes yes no

- cover relation yes no no

more efficient

(by a lot, yet not on par with specialised)



Extensions To

SAT/MIP/CP
Solvers

Improving CP3 (coarse-grained)

One global constraint for all sequences:

* while CP is a declarative system,
the propagator of a constraint is a stateful imperative algorithm

— within the global constraint, you can use any advanced technique
(caching, subproblem solving, custom data structures, ...)

As with global constraints for itemsets:

key benefit of using one global constraint =
no need to expose the (up to millions) of transaction variables
to the solver!



Extensions To

SAT/MIP/CP
Solvers

Improving CP3 (coarse-grained)

One global constraint for all sequences:

* algorithmic improvements: last position map, last position list
— precomputed and cached, speedups

* use backtracking-aware datastructure
— stores cover and prefix point in reversible vector

sid; {(ABCBC)

sidy (BABC) sidy (BCBC') B sidy (CBC) C

. —— sidy (BC) — —— sidy (C) ~——— -
sids (AB) sids (B) sids ()
sidy (BCD)

F=-=—=======1 F-=—==—=====31 p=========

10 11 12 13 14

L e | el e




Time (s, logscale)

Time (s, logscale)
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Efficiency: outperforms specialised!
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Improving generality

Constraints:

* Constraints on sequence: compatible

* Constraints on cover set: compatible

* Preferences over the solution set: compatible

* (Constraints on inclusion relation: ?7??

=> best known: min/max gap and

gap: 1 gap: 2
Home Restaurant Home
4

can modify the global cover constraint to also enforce gap/span

— improves state-of-the-art (with backtrack-aware datastructure)
[J. Aoga, T. Guns, P. Chaus, CPAIOR 2017]



Other approaches

* Encode cover as a regular expression
* Fixed-width sequences

E *  Formulation in pure ASP
*  Formulation in hybrid ASP

* Episodes (in single sequence)

Applications and novel settings that make use of CP:
* informed gaps and bike-sharing analysis
E * web-log mining
* top-k and relevant sequence mining
* rare sequential patterns with ASP (care pathway mining)



Sequence mining: modeling

Sequence mining: more complex coverage compared to itemsets

Classic Setting Classic

Settings

Support for additional constraints:

* on syntax (inclusion/exclusion, regular expression, distance, ...):
— for free

* on cover set/solution set:
— some reusable from itemset mining

* on cover relation:
— only by changing global constraint algorithm



Seqguence mining: solving

Pure Extensions To

SAT/MIP/CP
Formulation

SAT/MIP/CP
Solvers

Global constraint(s) for coverage:
* hides complexity
* fast algorithms inside (incremental, PrefixSpan-like)
* necessary for scalability
* even more efficient with backtracking-aware datastructures



OUTLINE

Previously
* itemsets
* pattern sets and decision trees

Up next: structured pattern mining!

* Sequence mining

* Multi-relational patterns

* Interestingness as objective function
* Wrap up of pattern mining




Example data and patterns

Itemset data: 2 entity types (items,transactions) and 1 relation

Multi-relational: example with 3 entity types and 2 relations

Type : User Movie Genre

Example pattern from rottentomatoes dataset:

Star Wars
liked Sudden Death of genre .
5 users e Mt Action
10 James Bond Movies




Type: User Movie Genre

Data in the wild is often complex and relational (e.g. in databases)

Single relations only give limited view on interactions

Types of relations: chain (example above: chain of 3), star, triangle, ...

* generic techniques that work with any nr. of entities and relation
between them

* many potential patterns, must define what a valid pattern is



Pattern definition

Type : User Movie Genre

CCS pattern: Completely Connected Subset

* Subset: the subset of entities of each type defines the pattern

* Completely Connected: if U,,M, in subset, must be connected in data

Generalizes closed itemsets to multiple relations



Constraint Programming model

Variables: one Boolean variable for each entity

value={0,1}: undecided
value=1:In
value=0: not In

Type : User Movie Genre

— one solution to the CP = one CCS

Constraints:

1) Completeness & maximal: very similar to itemsets
— can use similar global constraints, one per relation!

2) Connected: there must be a path between all entities



Pure

Relational pattern mining |

Formulation

Writing an algorithm for relational pattern mining is a lot of work.

With CP:
e search and search heuristics for free

* can focus on implementing the individual constraints
— natural decomposition of algorithm



Relational explosion

Pattern explosion even more pronounced:

* if one relation results in many patterns, two result in even more

What are the most interesting patterns?

Hot topic:
subjective interestingness, e.g. through maximum entropy models

1) model prior knowledge of domain/user
(from known popular items to known correlations)

2) find most statistically surprising pattern
3) update model of background knowledge, repeat



_____________

Patterns and interestingness

Type : User Movie Genre

Subjective interestingness:

> —log(p, . ) (self-information of edges)
e,,e,EF €1,€,

a+bx|F (description length of nodes)

A scalable approach is missing: currently generate-and-rank,
but generating all patterns often does not scale

This is an gptimisation problem, CP is made for both enumeration and optimisation

— difficult objective (real-valued, logarithms, fractional),
but can do advanced reasoning in a global objective constraint!



Extensions To
SAT/MIP/CP
Solvers

Bounds on the (non-linear) objec

> .o log(p,,.)
a+b*|F|

During search, each entity is in, out or undecided
Naive upper bound:

! — ’ o .
mUX(Zel,ezeFP el,e)—zehezein p'. . *allremaining edges

but not all remaining possible (unless clique)
— compute maximum nr. edges based on degrees

All denominators upper bound:

min(a+bx|F|):tryall possiblelFIzzt|eofIypet|
all combinations of 'add n edges of type t
Add 'look-ahead' pruning:

— can derive when adding an entity will worsen objective



Experimental results

#Rels #Ent. Dens. #Sols. LCM  RMiner CP-closed || CP-naive  CP-denom

fimi/mushroom 1 8243  19.33% 238 709 4.55 timeout 110.5 10.3 4.89
fimi/chess 1 3271  49.33% 411 000 000+ (| timeout  timeout timeout 16.4 16.2
fimi/T1014D 100K 1 100870 1.16% 359 000+ 10.9  timeout timeout 3915 468
fimi1/T40110D 100K 1 100942 4.20% 1 000 000+ |} timeout  timeout timeout timeout 7643
fimi/connect 1 67686 33.33% 13 000 000+ |f timeout timeout timeout 2754 2097
fimi/retail 1 104632 0.06% 3 000+ I1.5 timeout timeout timeout timeout
foursquare/checkins 1 224947 2.11% 232 747 0.6  timeout 7296 255 35.5
imdb/1year 2 3291 0.97% 583 - 2128 1.05 1.26 0.4
imdb/Syears 2 30131 0.24% 3 887 - timeout 208 242 26.2
imdb/10years 2 51203 0.12% 8 704 - timeout 1764 1618 127.9
imdb/40years 2 111320 0.03% 15 900+ - timeout timeout timeout 990
imdb/100years 2 514323 0.002% 15 900+ - timeout timeout timeout timeout
rottentomatos 2 12263 0.44% 13 000 000+ - timeout timeout timeout 2986
dblp-star 3 8279 0.10% 7 699 - 207 269 305 19
dblp-chain 3 13862 0.09% 30 629 - 76 5423 9141 939

[T. Guns, A. Aknin, J. Lijffijt, T. De Bie, ICDM 2016]




Relational pattern mining

Writing an algorithm for relational pattern mining is a lot of work.

With CP:
* search and search heuristics for free
* can focus on implementing the individual constraints

* can switch to optimisation easily

Here: added novel bounds for information-theoretic (and non-linear)
objective function.

More relational settings possible, e.g.



Interestingness measures and iterative mining

“Skypattern mining: From pattern condensed representations to
dynamic constraint satisfaction problems”

[W. Ugarte, P. Boizumault, B. Cremilleux, A. Lepailleur, S. Loudni, M. Plantevit, C. Raissi, A. Soulet, AlJ 2017]

Multi-objective optimisation

F

;
« frequency
e area

3 wf’}a
[ ] g rOWth = rate 0 ) z 3 o B i i = g - i oo ? 2:;;::::5"'“!.""!
Growth Rate
(a) Distribution of the skypatterns for M. {b) Distribution of the skypatterns for M.

e aromaticity

Uses CP to incrementally find a solution and add Constralnt
dynamic CSP ;




interestingness measures and iterative mining

“Flexible constrained sampling with guarantees for pattern mining”
[V. Dzyuba, M. van Leeuwen, L. De Raedt, DMKD 2017]

1) sampling to avoid pattern explosion, proportional to qual. measure

2) multiple quality measures and constraints

Sampling with XOR constraints,[S. Chakraborty, D. Fremont, K. Meel, M. Vardi, AAAI 2014

on top of a CP-based itemset miner

Tiling 1 Tiling 2
area = 1314 966
. F- P =
Also for sampling pattern sets
Tiling 3 Tiling 4
941 878
nl -
Tiling 5 Tiling 6

799
|

765

Ar

Tilings B
{mln.)

0.5 F

0.1

ea distribution of all non-overlapping 2-tilings
vote, minfreq (0.1) A closed A minlen (5)

Tiling n




OUTLINE

Previously
* itemsets
* pattern sets and decision trees

Up next: structured pattern mining!

* Sequence mining

* Multi-relational patterns

* Interestingness as objective function
* Wrap up of pattern mining




Structured pattern mining

Beyond sets:

* Multi-relational pattern mining

Tree mining

Graph mining

Trajectory mining (spatio-temporal)

General structured pattern mining?



General structured pattern mining?

Abstraction of all pattern mining problems:

* Pattern type: what is the structure of a pattern (set, seq, graph, ...)

* Generating operator: what are possible patterns (e.g. symbol set)
Includes canonicity operator: only unique patterns (ismorphism)

* Constraining operator: what are valid patterns (e.g. seq is ordered)

Includes matching operator: when is a transaction covered

Different ways to model declaratively or implement, or hybrid...



Pattern Mining: why CP?

For modeling:

* rapid prototyping

* variations of existing problems (reuse constraints)

* as part of bigger combinatorial problem (novel settings)

For solving:

* reuse of existing solvers

* for increased efficiency: reuse or develop global constraints

* hybredize (at its core, CP is just a Depth-First Search engine)



Pattern Mining: when CP?

Efficiency vs generality trade-off

* Does the problem have many constraints?

* Does the problem benefit from a generic approach?
* How important is efficiency?

* Can you reuse existing global constraints?

ltemsets: many constraints, all possible with existing constraints

Sequences: many constraints, some reuse (freq, regex) some
custom

Graphs: no constraints immediately reusable...



Pattern mining in CP

Future challenges:

* Efficiency vs generality trade-off
(ex. global constraints and their granularity)

* DFS framework: branch-and-bound and novel bounds
* Pattern set mining:

- Iterative methods (iterative branch-and-bound)

- (constrained) sampling framework

- hybrid methods
* Novel and complex problem settings
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Clustering Module



What is Clustering

Given a set of instances, S, i.e. images, documents,
DB records, nodes in a graph etc.

Simplest form, find the “best” k block set partition
§={s,US,U... S}
Multitude of algorithms that define “best” differently

— K-Means, K-Medians, K-Centers
— Spectral Graph Clustering, Mixture Models
— Self Organized Maps

Aim is to find the underlying structure/patterns/
groups in the data:

— For Emails -> Clusters = topics
— Pixels in an Image -> Clusters = objects
— Graphs -> Clusters = communities



Illustrative Example - Social Networks

GV, F)

/ .

Nodes v; € V Edges €;; € I




Lots of Real World Problems are
Naturally Clustering - Medical Imaging

[With NMRC, Pennington Institute, UC Davis Medical Imaging Group]

Can We Discover What Cognitive Networks Are
Associated With Tasks?

vs Background

{17

) »
% Network Activity
&




Plan For The Clustering Module

Adding explanation to clustering

— How can we make clustering explainable

Classic formulations of clustering

— New insights into existing problems

Using CP to add constraints to clustering

— Changing solvers to be more efficient for ML
Human in the loop style minimal modification
clustering

— A new setting which allows constraints to be a
mechanism for dialog b/w humans and machines



Adding Explanation to Clustering

Completely
New
Settings

Extending
Classic Settings

Classic Setting

Extensions To .
Pure SAT/MIP/ SAT/MIP/CP Hybrid

CP Formulation Formulations
Solvers




Motivating the Need For Explanation -
Precision Medicine for SZ Treatment

* Current Approach for SZ Treatment
Recommendation

— Your starting to become delusional
— Interview with a doctor
— Recommends (68% effective) a long treatment plan

* Precision Medicine Approach
— Place a person in a MRI machine

— Learnt what brain network activity is associated with
treatment plan successes (i.e. biomarkers in neural
activity) (83% effective)

Joint work with U.C. Davis Imaging Center




Precision Medicine Application for SZ
Treatment Prediction

* Not that easy, simply stating the method is better than
humans is insufficient.

* Need for:

— Explain that the results are fair to the FDA (or equivalent).
* Are we giving expensive treatments disproportionately to some
groups?
— Detailed explanation to our collaborators to determine
neurologically plausible.
* Reduced connectivity between ROl x and y
— High level explanations to build trust by other
practitioners (i.e. best practices committee at HMO).
 Dampening of connectivity in Executive functional network



Explanation Is Not Always Needed:
Sign Recognition for Google Car

My student Aubrey Gress spent a summer
working at Google so the next driverless car
can read signs.

The criteria for success is accuracy
i.e. If recognizing STOP sign by outer white band is
better than recognizing the letters “STOP” so be it.

18



Adding Explanation/Description To
Clustering

* Three ways:

— Before: Find concepts in the data, build the
clustering around the concepts — Universitat
Mainz @ DS 10, U. Caen @ 1JCAI 16

— After: Take an existing clustering, explain what

differentiates each cluster from the others. -
Davis & Lyon @ NIPS 18

— During: Simultaneously find a clustering that is
also explainable — Davis & Orleans @ 1JCAI 18



Closed Itemsets as Concepts

Quali, A., Loudni, S., Lebbah, Y., Boizumault, P., Zimmermann, A., and Loukil, L. Efficiently
finding conceptual clustering models with integer linear programming. IJCAI'16

Ciliaiid it Closed Itemsets

Minimum support= 2

345 Closed and C
maximal
D
E
AC
BC
CE
DE
AB
TID | ltems 5 ¢
2 ABCD # Maximal = 4
F t
3 | BCE temsets
4 ACDE
Closed
5 DE Frequent

Itemsets

Concept = Cl
Multiple concepts per Instance
Can’t use all concepts, choose a subset

Maximal
Frequent
ltemset:



Combining With Existing Algorithms

Ouali, A., Loudni, S., Lebbah, Y., Boizumault, P., Zimmermann, A., and Loukil, L. Efficiently
finding conceptual clustering models with integer linear programming. |JCAI'16

e Step 1: Computes closed item sets using LCM (or
something else).

* Q: Which Cl to use as concepts?

* Bi partite graph view Is Cl ¢ chosen?
Some measure of intWh Clc /

Optimize > cec Ve - Te
Subject to | (1) D .cc@tc-Tc=1, VLtET

(2) ZCEC Le =
z. € {0,1},c€C

~C

Every instance must have one concept 7 ]



Combining With Existing Algorithms

Ouali, A., Loudni, S., Lebbah, Y., Boizumault, P., Zimmermann, A., and Loukil, L. Efficiently
finding conceptual clustering models with integer linear programming. |JCAI'16

* Diversity extension

Some measure of interest associated with Cl c // Is Cl c chosen?

Optimize cec Ve - Te

Subject to | (1) ZCGC at c.rc =1, YVt eT

(2) k= Z L Does transaction t contajn Cl c
ceC

(2,) k'm,z'n S k S 'lcfm,aa:

(3) D cec Wie-Te =1, Vi€l

keN, z.€{0,1},celC

Does item i belongs to the closed itemset c 22




Runtime Analysis Based on CI Size

Ouali, A., Loudni, S., Lebbah, Y., Boizumault, P., Zimmermann, A., and Loukil, L. Efficiently

finding conceptual clustering models with integer linear programming. |JCAI'16

Can scale method by increasing minimum support

CPU Time (s.)

dataset #transactions | #items | density(%) | Number of closed itemsets | (1) (2)
Soybean 630 50 32 31,759 0.74 15.52
Primary-tumor 336 31 48 87,230 1.98 40.62
Lymph 148 68 40 154,220 3.38 25
Vote 435 48 33 227,031 4.42 191.12
tic-tac-toe 958 27 33 42,711 0.07 6.22
Mushroom 8124 119 18 221,524 17.1 154.75
Z.00-1 101 36 44 4,567 0.38 420.75
Hepatitis 137 68 50 3,788,341 236.85 | 1,493.38
Anneal 812 93 45 1,805,193 113.84 | 20,825.8
A

Pre-processing step (LCM)

Table 3: Dataset characteristics.

Solve ILP




Constraints on Clusters Combinations

Mueller, Marianne, and Stefan Kramer. "Integer Linear Programming Models
for Constrained Clustering." Discovery science 2010. Vol. 6332. 2010.

Overlapping formulation

instance i covered by y patterns Upper bound on number of overlaps
maximize \%@ma:ﬂ —w)'x l
subject to (i) Az = y (vi) 170 < n - mazOverlap
(i) 17z =k (vii) x € {0,1}"
(iii) 2 > 1 — (viii) y € N§°
(iv) 172 < (m m - minCompl) (ix) v € Ng°
(Vyv>y—1 (X)TE{O,l}m

Scales quite well if minsupp is high enough
Set to O if instance covered

24



Some Unanswered Questions

 Bounds on k to ensure (1) can be satisfied: that

there exists a feasible solution?

 Other complex constraints involving ontologies

— X VX=>X,.if the concept of pulmonologist or

cardiologist is used need to use physician

Optimize

z:cecqhz'mc

Subject to

(1) Dcec@tye-Te =1,
(2) ZCEC Le — ko
Tce € {031},060

vte T

25




Cluster Using One Set of Features Explain
Using Another?

The Cluster Explanation Problem: Complexity Results, Algorithms and Applications, Davidson et
al. Neurips 18

e Why?
* Features used for clustering are not interpretable

— Deep learning representations (Word2Vec, Bert, AE)
— Graphs i.e. social networks

* Features for clustering are private/sensitive

* Features used to obtain clustering are no longer
available (historical clusters)

— Electoral district maps



Twitter Data from ERIC Lab Univeristy
Lyon - 2

e Election Tweets (French and USA) from
01/01/2016 to 22/08/2016

— Covers the primary season for the USA

e Communities formed based on follower
network

* Explain communities using hashtag usage

@ Donald J. Trump @ o+ Follow

Very great reporting from @foxandfriends on
the FAKE NEWS media today. Enjoy! #MAGA
== facebook.com/97asdq92

HASHTAG 27



Segmenting Graphs

Many classic algorithms
- i.e. Louvain method

v *
L]
bernieSanders
®e
LA J

Finds useful
communities o
But doesn’t explain what 1)
they are talking about.

28



Modeling the Explanation Problem as a
Bipartite Graph

A Simple Example with Just Two Clusters

Red Community Blue Community

aouelsu|

de|

#ImWithHer #Dems2016

#Trump2016 #MAGA #CrookedHillary

Explanation Problem (informally): Pick the smallest subset of yellow nodes/tags
that “cover” all red instances. Chose a different subset of yellow nodes/tags for the

blue tags pYe



Formalizing DTDF Problem

[Disjoint Tag Descriptor Feasibility Problem]

The goal is to find a subset T; € T of tags for each cluster C'; (1 <7 < k) such that all the following
conditions are satisfied.

(a) For each cluster C'; and each item s; € (', T} has at least one of the tags in ¢;; formally,
T; Nt;| > 1, foreachs; € Cjand 1 < j < k.

(b) The sets 17, 15, ..., T} are pairwise disjoint.

Red Community Blue Community

ao3uelsu|

de|

#Trump2016 H#MAGA #CrookedHillary #imWithHer #Dems2016



Formalizing This As An ILP

A triple set to 1 iff instance i is in cluster k and
uses tagj Find a simple

explanation
argmain E X; i
g X t:J Cover each and
7,] every instance

Z Xk’] Sk 2 1 \V/ Z = Ck’ \VI k Upper bound
1 overla
g S.t. Z Xi,j S W \v4 ] p

This is very similar to the set cover problem,
one of Karp’s 21 original intractable problems.



Formalizing This As An ILP

Find a simple

explanation
argmain E X s
g X v Cover each and
1,7 every instance

ZXkJSk 2 1 ViECk’ vk Upper bound

overla
7 st ZXH < w ‘v’/ p

Solution?

2Juelsu|

el

#Trump2016 #MAGA #CrookedHillary #lmWithHer #Dems2016



Formalizing This As An ILP

Find a simple

explanation
argmin E X s
g X 4 Cover each and
1,] every instance

ZXkJSk 2 1 ViECk’ & Upper bound

overlap
st ZX,” < w ‘v’/

Optimal Solution
X_R ={MAGA, CrookedHillary}
X_B = {ImWithHer}

But if E only has the o
MAGA tag, no feasible
Solution exists o

#Trump2016 #MAGA #CrookedHillary #lmWithHer #Dems2016



Formalizing This As An ILP

Find a simple
explanation

argmznx Z 4 Cover each and

1,] every instance

ZXkJSk 2 1 ViECk’ & Upper bound

overla
st ZX"J < w ‘v’/ p

Optimal Solution?

But if E only has the

2
MAGA tag, no feasible : | G
Solution exists ®

—

a

#Trump2016 #MAGA #CrookedHillary #lmWithHer #Dems2016



Variation #1

e Cover or forget (constraint replacement)
st.ozi+ Yy XpjSH;>1VieCy, Vi
J

S. ZZ-i S I}; V1 = Ck: YV k

Optimal Solution
X_R ={MAGA, CrookedHillary}
X_B = {ImWithHer}
Z5=1

2Juelsu|

If E only has the
MAGA tag

el

#Trump2016 #MAGA #CrookedHillary #lmWithHer #Dems2016



Variation #2

* Composition constraints

sit. Xp;+ Xp; <1 V{ij} €Apart, Vk
st. Xp;i=1—> X ;=1 V{i,j} € Together, V k (#VAGA, #Trump)

Lemma 1

Any disjunction of literals v . .. vy, can be represented by a
linear inequality (i.e. viV Vo...V Vm =) Vi > —m+2).

Any conjunction of literals vy . . . v, can be represented by a TrumpTrain V MAGA =>
linear equality (i.e. vi A Vo... AV =>,Vj = m). Not(ImWithHer V Clinton)

Theorem 3

Given a set of literals vy . .. vy, any set of clauses using those
literals in conjunctive normal form can be represented by a

system of linear inequalities: A—_.v = b_,A-v > b-.
4 : e - = AAAI 13 Paper of Ours 36



Contributions

Theorem 3.1 The DTDF problem is NP-complete even when the number of clusters is 2 and the tag
set of each item is of size at most 3.

What were the three options if the problemis
intractable?.

37



Contributions

Theorem 3.1 The DTDF problem is NP-complete even when the number of clusters is 2 and the tag
set of each item is of size at most 3.

What were the three options if the problem is
intractable?

If we require:
i) each explanation must have at most a tags

ii) no two explanations may have more than B tags
In common.

Theorem 5.1 The («, 3)-CONS-DESC problem can be solved in polynomial time when the number
of clusters k is fixed. This algorithm can also handle Together and Apart composition constraints.

This is called a fixed parameter tractable problem
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14
15

Simple Fixed Parameter Tractable
Algorithm

Algorithm 1: Description of our Algorithm for («, 3)-CONS-DESC

Input : A collection of k clusters C1, C, ..., C with tag sets for each instance in each cluster.

Output : A valid descriptor with at most « tags for each cluster such that any pair of descriptors
have at most 3 tags in common. (Please see the main text for the definition of a valid
descriptor.)

for Cluster C4 do Let N be the most tags used in a cluster

Get the next valid descriptor D;.
for Cluster Cs do # Possible Explanations N Choose a = O(Nok)
Get the next valid descriptor Ds.
, |T_i| <o hence O(a?) to check constraints
for Clust..er C,. do Trivial to check for Boverlap
Get the next valid descriptor Dy.
LetD=(Dy,Ds,...,Dy).
if Each pair of descriptors in D have at most [3 tags in common then
\ Output D as the solution and stop.
end
end
end
end
Print “No solution".




Code and Future Work

https://web.cs.ucdavis.edu/~davidson/description-
clustering/

— See readme file

The algorithm is polynomial, but is just brute force search
— Can we use a clever branch and bound method

Meta information about the tags

Lots of other types of explanations beyond disjunctions
— CNF, DNF

Explanations using other types beyond tags
— Need to use SMT, OMT solvers not ILP solvers

Measuring stability of explanations for measures of trust




Again This Setting — Simultaneously find
Clustering and Explanation

Descriptive Clustering: ILP and CP Formulations with Applications, Dao1l et al. [JCAI 2018

Setting | Features____| Descriptors/Tags

Twitter network Mention/Retweet Graph Hashtag usage
Images SIFT features Caption
EHR Health record Symptoms

 Many domains have a set of very good features/
attributes to form compact clusters on

— Graphs, SIFT features for images,
* But they cannot explain the clustering well

* Instead we have another set of (potentially
sparse and noisy) descriptors that are useful for
explanation
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Descriptive Clustering Problem

Two objectives find: f(s) a good clustering
(using the features) and g(s) a useful
description (using descriptors)

Objectives need not be compatible

Natural trade off between minimizing f(s) and
maximizing g(s).

* Compact clusters have too simple descriptions
* Wide clusters have too complex descriptions

ML has a tradition of adding together objective

functions with a hyper-parameter to tune.
— i.e. Model Fit and Model Complexity

— But they may not be compatible



Computing the Pareto Front

* |If we knew the
Pareto front
Wwas convex
could just add
two objectives
with varying
weights

Input: Features X, tags DD and number of clusters k.
Output: A complete Pareto front P.

P« 0;

s/ « minimize f subject to C;

1+ 1;

while s/ # NULL do

s? «+ maximize ¢ subject to C U {f < f(s])};

P+ PuU{sih

141+ 1;

s! « minimize f subject to C U {g > g(si-1)};

return P;

7N E— i
O 16}

2 W

+ I

.g— 12}

o R ‘ o
g 7,200 7,600 8,000 8,400

Cluster Compactness 43



Objective f: Cluster Compactness [pao,
Duong, Vrain, AlJ 2017]

\
f(Z,8)= max Z;Z]d(X;,X;),
> 1<g,2,j=1 ®
(
o
O<\>.
~ e ¥ .




Objective g: Descriptiveness

 Max-Min Complete Tag Agreement (MMCTA)
 Minimize Tag a+BDisagreement (a+BMTD):

—>

uolleue|dx3 jo ssauiysiy

* Max-Min Neighborhood Agreement

(MMNA):
Use these to choose amongst tags to form a
description for each cluster

aoJuelsu|

#Trump2016 #MAGA  #CrookedHillary #lmWithHer #Dems2016 45
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Objective g: Description

* Max-Min Complete Tag Agreement
(MMCTA) - Useful for strong explanations

* Minimize Tag a+BDisagreement (a+BMTD):
* Max-Min Neighborhood Agreement
(MMNA):

g(s)=1 g(s2)=1
@ @

H#MAGA #lmWithHer



Objective g: Description

 Max-Min Complete Tag Agreement (MMCTA)

 Minimize Tag a+BDisagreement (a+BMTD):

* Max-Min Neighborhood Agreement
(MMNA):

Qr/ G\ZI

#MAGA  #CrookedHillary #lmWithHer #Dems2016

9JUe]sSu|
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Objective g: Description

 Max-Min Complete Tag Agreement (MMCTA)
 Minimize Tag a+BDisagreement (a+BMTD):
* Max-Min Neighborhood Agreement (MMNA):

* a= nhumber of tags an instance need not
posses

* B=number of instances a tag need not cover.
® 0 0 0 O O O
a:]. le
@ @

H#MAGA #ImWithHer
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Objective g: Description

 Max-Min Complete Tag Agreement (MMCTA)
 Minimize Tag a+p Disagreement (o+BMTD):
 Max-Min Neighborhood Agreement (MMNA):

* o for noisy tags i.e. someone doesn’t use right tag
* B for sparse tagsi.e. a tagis useful but rarely used

O 0 0 o0 O O G
a=1 le
@ @

H#MAGA #ImWithHer



Objective g: Description

 Max-Min Complete Tag Agreement (MMCTA)
 Minimize Tag a+BDisagreement (a+BMTD):

* Max-Min Neighborhood Agreement
(MMNA):

aoJuelsu|

#Trump2016 #MAGA #CrookedHillary #imWithHer #Dems2016 BWaxg)
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Objective g: Description

 Max-Min Complete Tag Agreement (MMCTA)

 Minimize Tag a+BDisagreement (a+BMTD):

* Max-Min Neighborhood Agreement
(MMNA):

#MAGA  #CrookedHillary #lmWithHer #Dems2016 BWaygey



Objective g: Description

 Max-Min Complete Tag Agreement (MMCTA)

 Minimize Tag a+BDisagreement (a+BMTD):

* Max-Min Neighborhood Agreement
(MMNA):

Theorem 1 The MMCTA problem is NP-complete even
when q = 1.

Theorem 2 (a) For any k > 3, the MMNA problem is NP-
complete even when q = 1. (b) The problem is efficiently
solvable for k = 2.
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Multi-Objective Formulation

Each imag described by SIFT features and variable number of
tags (i.e. fuzzy, tail, etc.). Animal names not given to algorithm
[Lampert, C. H.; Nickisch, H.; and Harmeling, S. CVPR 2009] 53



Trade off Compactness vs Useful

Description

Cl# | Composition by animals | Description by tags
Cl 1 grizzly bear, 2 dalmatiar * ' ~re v Pt ‘e, newworld, smart
C2 | 5 antelope, 2 grizzly bear, quadrapedal, new-
cat | | | |
C3 | 69 beaver, 64 dalmatian, 4 nid, smart, solitary
C4 | 100 Killer whale, 69 blue v . e o o o o -9
C5 | 95 antelope, 97 grizzly be: I quadrapedal, new-
siamese cat P :
| |
| I
Cl# | Composition by animals 16 - [ I
C1 | 2 antelope, 4 dalmatian, 2 | I iewworld, oldworld,
man shepherd, 4 siamese ¢ < I :
C2 | 2 beaver, 1 persian cat, 1 Z _____ -9 | I
man shepherd | : |
C3 | 100 grizzly bear, 98 beave 2 | | | y
cat, 1 siamese cat 14 ———9 1 I |
C4 | 100 killer whale, 100 blue 2 | | | I ish, plankton, arctic,
I |
| I
C5 | 98 antelope, 96 dalmatian, 1 ' 1 ' iewworld, oldworld,
german shepherd, 95 siam 1 : | :
| |
| | |
12 : I I I
Cl# | Composition by animals 1 | | !
C1 | 100 antelope, 100 dalmati: PN | : | : e, agility, newworld,
- = | I
|
C2 | 100 horse, 99 german s 'J ! : I : A I | quadrapedal, active,
siamese cat ) —
C3 | 100 grizzly bear, 100 beav 7.,~OO ( .600 8,000 8.400 , newworld, ground,
cat
C4 | 100 Kkiller whale, 100 blue Diame ter ish, plankton, arcfic,
C5 | 100 persian cat, | erman oucpiiciu, 1 | gray, 1uiny, paus, pawo, wit, VI WG, VGO VIaW 9, Waino, 1aot, yuautapuaar, agully, meat, newworld,

siamese cat

oldworld, ground, smart, solitary, domestic

(c) Fifth Pareto point: MMNA maximized. MMCTA=15, MMNA=18
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Limitations

* Pareto optimization using the method is really
slow

— Efficient ways to compute a subset of the Pareto
front?

 How to use or interpret the Pareto front?

— Counter to most ML which gives you a single
result, here we have a range of results



Plan For The Clustering Module

Adding explanation to clustering

— How can we make clustering explainable

Classic formulations of clustering
— Correlation clustering

Using CP to add constraints to clustering

Human in the loop style minimal modification
clustering



Correlation Clustering

Completely
New
Settings

Extending
Classic Settings

Classic Setting

Extensions To .
Pure SAT/MIP/ SAT/MIP/CP Hybrid

CP Formulation Formulations
Solvers




Correlation Clustering Versus Graph
Partitioning

G(V,E)
/W .

Nodes V; € V Edges € c b

€ij € E means the two nodes are “similar”
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An Objective

/ _
Cluster S E(S,S)
Sparsest cut objective |E(S’ q)‘
S| - 15

N
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Correlation Clustering Also Considers
Negative Edges
G(V,E)

>

Nodes v; € V Edges €;; € I
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Correlation Clustering Also Considers
Negative Edges

G(V,E)
Nodes V; € V Edges € c kb

Cut solution?
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Correlation Clustering Also Considers
Negative Edges

G(V,E)
Nodes V; € V Edges € c kb

This clustering
Seems unsuitable

E(S)

Cluster S S, S)

s
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Correlation Clustering Also Considers

Negative Edges
G(V,E)

/ N

Nodes v; € V Edges €;; € I

This seems more
reasonable

Effectively

Maximize/Minimize
Agreement/Disagreement

b/w Given Graph and Induced Graph
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Formalizing Problem

Unweighted
“Adjacency” Matrix Given Graph

Min- .
disagree mlnz C@J — zj [2,__!, = +1/O for a +ve/-ve edge

+Z - Ci)Ei;  “Adjacency” Matrix Induced Graph

b (';; =1/0 for two points in the

gﬂgi’é'e maxz Ci; Eij same/different cluster

+ Z z'j) G(V7 E)

/ N

Nodes U; € V Edges €j; cFE




Lots of Applicat

Berel [ Rumblomy @ [
grmm T TS

(a) Input image and
boundary scribbles (red)

Figure 3:

Interactive

(b) Resulting
segmentation

multi-object segmentation:

’ infusium
PanTene
g e

6.
>
n
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Results So Far From Theoretical CS

Correlation clustering is NP-hard [BBCO2]

Constant factor approximation based on
simple rounding scheme [BBCO02]

Simple randomized algorithm produces a 3
approximation with linear run-time [ACNO5]

Best approximation is a 2.06 factor use LP
then rounding

The next formulation will solve this problem
exactly



MIP Formulation

Berg, Jeremias, and Matti Jarvisalo. "Optimal correlation clustering via MaxSAT, AlJ
Journal 2017

Let x;=1 if instance jand j put in same cluster
et s() =1 if instance i and j have positive edge

et s() =0 if instance i and j have negative edge

H Dis—agreementS\ j # Agreements
MINIMIZE Z Tij — Z i
s(vi,v;)=0 s(vi,vj)=1
where xi; + xj < 14 x;, for all distinct 7, 5, k

z;; € {0,1} for all 7, j s.t i # j.

“attempts to optimally solve this integer program have not so far been reported”
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Solving Time (s)

Berg, Jeremias, and Matti Jarvisalo. "Optimal correlation clustering via MaxSAT, AlJ

MAXSAT Formulation

Journal 2017

Hard Clauses F :

(—-a:z-j V ﬁa?jk V IL’IA)

for all (v, vj,vr) € V°

where 2, 7, k are distinct

Soft Clauses F. : (xi;)  forall s(v;,vj) =1
(ﬁa?ij) for all s(vi,vj) =0
ey ¢
>|< /
1000 | K .
100 1+ Does not require k to be specified
1- Number of transitivity constraints
o/ i
3 />< MaxSAT Enc2 —}—
- X MaxSAT Enc 1 > |
1>é L L | L L L L | L f L | L L L | L L f 1 L .I.P ."-I->K-.'".
100 150 200 250 300 350 400

Number of Points
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Solving Time (s)

Benefits of Adding Guidance

Berg, Jeremias, and Matti Jarvisalo. "Optimal correlation clustering via MaxSAT, AlJ
Journal 2017

e Benefit of MAXSAT formulation: adding
composition constraints: x;= T, x; = F

* Results in runtime going substantially down

_
T D1-669P —|— Open Questions
. D2-586P -3¢ |
1000 L D3-567P (- |
L i D4-654P ]

Can we derive partial solutions to “seed”
the solver?

100 |

_ Can we formalize IF adding

constraints will produce the most

10 | speed up? i.e. graph properties

Can we formalize WHICH
o 1 2 s 4 5 6 7 s s 10 constraints will produce the greatest
UK Added (%) speedup. i.e. active setting (9




Plan For The Clustering Module

Adding explanation to clustering

— How can we make clustering explainable

Classic formulations of clustering
— Correlation clustering

Using CP to add constraints to clustering

Human in the loop style minimal modification
clustering



Adding Constraints to Clustering



Consider These Problems

72



Consider These Problems
ow With Gwdance/Constramts/Slde Info

Maximum width of a lane is 3 meters

/3



Brief History

2000’s lots of work on adding side information (modeled
as constraints) to learning

— Recent attention by parts of CP community.

Why? Regular Clustering is fine in knowledge poor
domains such as Google (ads), Amazon/Netflix

(recommenders).
— No need to be consistent with or satisfy domain side
information.
— But in domain/knowledge rich areas ... N o I
N :
Benefits? Compensates for Constrained
— Improves performance c.f. ground truth Clustering

— Lack of labeled data with weaker guidance Advances in Algorithms,
— Objective function being limited

) . DL A PN |
I’'m talking on Tuesday at DL + CC Tuesday 3§§ VES

Fheory, and Applications




Limitations of Existing Work

* Simple conjunctions of simple constraints
— Big AND of together/apart pairwise constraints

— Why? Mechanism to encode constraints is typically a
graph/matrix

— Difficult to encode anything but: “satisfy all constraints”

— Other complex constraints could we place on clusters
e Cardinality, Density etc.

* Relaxation of problem so not finding global optima

— i.e. Spectral clustering only finds min-cut for two-way cut
* Optimizes simple objective functions

— Hope the objective function matches real world criteria



CP Formulations for Constrained
Clustering

Completely
New
Settings

Extending
Classic Settings

Classic Setting

Extensions To .
Pure SAT/MIP/ SAT/MIP/CP Hybrid

CP Formulation Formulations
Solvers




CP Formulations

Bich Duong, Khanh-Chuong, and Christel Vrain. "A declarative framework for
constrained clustering”. ECML, 2013. ... AlJ 2017 [http://cp4clustering.com/]

* Decision variables G, ... G, Search Tree
— Dom(G,) ={1..k} )%Gl\k
— No need to enforce transitivity. G,

e But lots of symmetry
— First point always in cluster 1
— Cluster k is never used until predecessors are used
Vie[2,N],if Gi=kthen 3j<ist. G =k —1
Precede(|Gy, .., Gy, [1, Kmax])|
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Optimization Criteria

Bich Duong, Khanh-Chuong, and Christel Vrain. "A declarative framework for

constrained clustering”. ECML, 2013. and AlJ 2017

S= (d(0,0")) .

= min
c#c'€[1,k],0eC,,0'€C ./

Maximizing the minimal split

wosp=Y 2 ZC d(0,0) -l
€

ce[1,k] ~ 0,0'€Ce .
\/_/
L

Minimizing the WCSD

D = a d(o,0
et 2% 0, [ ) 0

N

Minimizing the maximal diameter

\ 1
Wess= 3" Y lo-mlf= Y = ) dlod
\ llo—m|l acy] 2 (0,0') o
c€[1,k] 0€C, c€[1,k] 0,0'€C,

Minimizing the WCSS
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Search Strategies

Bich Duong, Khanh-Chuong, and Christel Vrain. "A declarative framework for
constrained clustering”. ECML, 2013. and AlJ 2017

Tree search: instantiating G’s in random order?
— Use further point first ordering

o ! Points are then ordered and indexed,
© © so that points that are probably
o © é’ ® o @ representatives have small index
® o @ 0

2nd point: furthest from
the 1st point

[ 0search strategy in CP1
B @ search strategy in CP2
103 S

10*

#nodes in the search tree

e

Synthetic Control ~ Vehicle Yeast Wave Form Image Multi Features 7 9




Pruning the Domains of Variables

Bich Duong, Khanh-Chuong, and Christel Vrain. "A declarative framework for
constrained clustering”. ECML, 2013. and AlJ 2017

* Bounds on min-max cluster diameter D,

* Let the FPF of first k points be D¢y,
— Then Dg,; < Dgpp < 2D, [Gonzalez 1985]
—Then Do \in [Depp/ 2, Depel

— Hence \forall
* Lower Bound Test: D(i,j) < Dgpe / 2 => G= G,
* Upper Bound Test: D(i,j) > Dgpe => G; <> G;



Good News and Bad News

Bich Duong, Khanh-Chuong, and Christel Vrain. "A declarative framework for

constrained clustering”. ECML, 2013. and AlJ 2017

BaB: Branch-and-Bound approach (Brusco et al., 2003)

GC: Algorithm based on graph coloring (Hansen et al., 1978)

CP1: direct modeling (DDV, 2013)

CP2: modeling using dedicated global constraint (DDV, 2015)

Dataset Dopt BaB GC CP1 CP2
Iris 2.58 1.4 1.8 <01 <01
Wine 458.13 2 23 <01 <01
Glass 4.97 8.1 42 0.4 0.2
lonoSphere 8.6 - 0.6 0.3 0.3
User Knowledge 1.17 — 3.7 15.4 0.2
Breast Cancer 2377.96 — 1.8 0.7 0.4
Synthetic Control 109.36 — — 23.6 1.6
Vehicle 264.83 — — 11.9 0.9
Yeast 0.67 — — 574.2 5.2
Multi Features 12505.5 — — — 10.4
Image Segmentation 436.4 — —  226.7 5.7
Waveform 15.6 — — — 50.1
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Some Directions

* No need to believe human constraints are
compatible with optimizing objective
— Treat as Pareto optimization problem?

* Adding in more complex constraints

— Complex combinations of instance level
constraints

— Cluster level constraints
— Constraints b/w clusters



New Types of Constraints

Completely
New
Settings

Extending
Classic Settings

Classic Setting

Extensions To .
Pure SAT/MIP/ SAT/MIP/CP Hybrid

CP Formulation Formulations
Solvers




Imagine This Dinner Parties Problem

* Your new years resolution - Be more social?

Partition to get friends-of-friends?

Create k parties, but avoid parties of
i) Mostly men/woman

i) Wide age discrepancy

iii) Of people with nothing in common

34



Imagine This Dinner Parties Problem

* Your new years resolution - be more social

Partition to get friends-of-friends?
Like to require for each party:

a) Balance males/females

b) Diameters on properties like age

c) Density regs. w.r.t. to interests

Each of these could be a constraint
or another objective

85



Beyond Pairwise Constraints

Duong et. al. ”A Framework for Actionable Clustering”. ECAI 2016

Partition to get friends-of-friends?
New Types of Constraints
a) Cardinality: Balance males/females

b) Geometric: Diameters
c) Density: Minimum relations
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Plan For The Clustering Module

Adding explanation to clustering

— How can we make clustering explainable

Classic formulations of clustering
— Correlation clustering

Using CP to add constraints to clustering

Human in the loop style minimal
modification clustering



Minimal Modification Problem

Completely
New
Settings

Extending
Classic Settings

Classic Setting

Extensions To .
Pure SAT/MIP/ SAT/MIP/CP Hybrid

CP Formulation Formulations
Solvers




Problem Setting

A Framework for Minimal Clustering Modification via Constraint
Programming, Tom Kuo et. al. AAAI 17

a) Cardinality: Balance
males/females
b) Geometric: Diameter:

e D / c) Density: Minimum
Favorite | _ | relations
Clustering | > Clustering Tt | "~ Summary S
Algorithm | | | ‘

L )

| User
- \_Feedback
s R |
Modified | Clustering | Modified
Clustering TT' < | Modification | Summary S'
.~ Approach
S )

Minimally modify N to obtain N’ to satisfy S’

minlilipize d(M, n’)

subject to [’ satisfies S’ 39



Intractable Problem

A Framework for Minimal Clustering Modification via Constraint
Programming, Tom Kuo et. al. AAAI 17

The reclustering problem where ¢ = 2 is NP-complete.

Proof idea: reduction to Covering Points by Unit Squares.

Even for very limited settings

Theorem (2)

Suppose the number of dimensions along which the maximum

diameter must be reduced is a variable £. The reclustering problem
is NP-complete for any k > 3.

o

Proof idea: similarly reduction to Covering Points by Unit
Hypercubes. 90



Formulation

A Framework for Minimal Clustering Modification via Constraint

Programming, Tom Kuo et. al. AAAI 17
n

minimize E z|i]
27C9L7H7r|/ i—1 \
= Number of modifications

subject to
W:L”wkﬂW]w.w?AaqﬂHmﬂﬂc]
Vi=1,...,n, z[i] = I[V[i] # O[]

Ve=1,...,k, VYt=1,... f,
Llc,t] = min {Clc,i|(X]i,t] = Mu[t])} + Mu[t]

iI=1,....n

Hlc,t] = max {Clc, i](X]i, t](</\/ll:t:)} + M[t]

i=1,....n

Smallest/largest values for tth feature

Mqﬂ—Lhﬂfﬂﬂqﬂ\\\

User given constant 91



Results

A Framework for Minimal Clustering Modification via Constraint
Programming, Tom Kuo et. al. AAAI 17
Data: Facebook egonets!

Initial clustering: 4-way clustering from spectral clustering on
friendship graph

Modification: balance (i.e. bounds diameters) two
features/dimensions, gender and some language

Results:

(a) Initial (b) Modified

Figure: Visualization of clusterings on Facebook egonets graph.
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Wrapping up



Why SAT/CP/ILP for ML and DM?

* SAT/CP/MIP can alleviate classical ML and DM
limitations:
1.Complex constraints
2.Multiple (arbitrary) objectives
3.Find one, multiple or all solutions
4.Stay close to original data properties
5.Solve discrete optimization problem directly

—> Allows solving more complex problems,
by building on existing tools



How Are SAT/MIP/CP Solvers Being Used
in ML/DM Settings?

Completely
New
Settings

Extending Classic
Settings

Classic Setting




Common theme (1/2)

Classic Setting —— Extending Classic

Settings

Model classic problem to support additional
constraints

* constraint-based itemset mining

* constraint-based sequence mining

* constrained hierarchical and centroid clustering
* constraint-based decision tree induction



Common theme (2/2)

* Novel problem variants and applications
- constrained correlated itemset mining
- direct mining of subj. interesting (relational) patterns
- overlapping hierarchical clustering
- exact multi-objective clustering

* New problems
- dominance programming (multi-obj, relevant, ...)
- outlier description problem
- cluster modification
- fairness in decision trees and other variations



Common theme (2/2)

And many using SAT/MIP/CP we did not have time to discuss:
- cis-regulatory module detection (itemset variant)
- toxiphore detection (set of itemset variant)
- trajectory mining
- Bayesian structure learning
- inverse frequent itemset mining

New problems:

- electoral map construction

- ranked tiling

- maximum order preserving submatrix
- pattern-guided k-anonimity



How Are SAT/MIP/CP Solvers Being Used
in ML/DM Settings?

Pure Extensions To Hybrid

Formulations

SAT/MIP/CP SAT/MIP/CP
Formulation Solvers




How to choose between
SAT/MIP/CP?

No free lunch!

General guidelines:
* if decision problem: try SAT first
* if inherently Boolean: try (max)SAT first
* if few constraints or natural to relax: try MIP first
* if highly complex constraints: try CP first



Common theme

Hybridize state-of-the-art with solvers

* specialised algorithms in solver (extentions to solvers)
- itemset mining coverage
- correlated itemsets non-linear objective
- relational patterns non-linear objective
- seguence mining coverage

- clustering objective functions

* chaining solvers with algorithms
- pattern set mining
- conceptual clustering

- minimal cluster modificiation



Suitability of CP/MIP/SAT

* Problems we discussed typically were:
— Discrete problems
— With additional, complex, side-constraints

— Worthwhile to enumerate all solutions or find a near-
optimal one

* And main challenges we discussed:
— generality vs efficiency trade-offs
— how the problem is modeled matters
— exploiting problem structure in the solution method



New problems

distributed learning <+~ DCOP
(Distributed Constrained Optimisation)

pattern sets

streaming data / online setting
learning under structural constraints
explainable Al

human-in-the-loop approaches:
constraints to express knowledge



Future works

* Generic frameworks for complex ML and DM

- for prototype and baseline approaches

- canh become part of applied ML and DM toolbox

* Hybridization

- best of both worlds approaches

* New applications and problems

- requiring complex constraints, discrete structure, etc



Data Mining and Machine Learning
with CP/SAT/MIP

Slides at:;

https://sites.uclouvain.be/cp4dm/tutorial/ijcai17/

Siegfried Nijssen
Université catholique de Louvain, Belgium
siegfried.nijssen@uclouvain.be

Tias Guns
VUB Brussel and KU Leuven, Belgium
tias.guns@vub.be

lan Davidson
University of California — Davis
davidson@cs.ucdavis.edu
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