SEMANTIC ANALYSIS OF TEXT: USE CASES
(CYBERBULLYING DETECTION, IRONY DETECTION, ASPECT-BASED SENTIMENT ANALYSIS, COGNATE DETECTION, WINE CLASSIFICATION)

Els Lefever

UCLouvain, March 5th 2020
LT³, LANGUAGE AND TRANSLATION TECHNOLOGY TEAM
• Dpt of Translation, Interpreting and Communication, Faculty of Arts and Philosophy, Ghent University

• fundamental and applied research in **language and translation technology** > How can we build models for computational natural language understanding?

• 3 ZAP, 4 Postdocs, 11 Phd students

• Headed by Prof. Véronique Hoste
TERMINOLOGY & COMPUTATIONAL SEMANTICS

• Lead: Prof. Els Lefever

• Automatic terminology extraction from monolingual, bilingual and comparable corpora (Ayla Rigouts Terryn)
• Term ambiguity in interdisciplinary research (Julie Mennes)
• Semantic Interoperability in medical communication between physicians and patients (Dirk Van Nimwegen)
• PLATOS: Detection of topics, stance and argumentation in a social media corpus (Nina Bauwelincck)
• SENTiVENT: event extraction and sentiment analysis for financial news (Gilles Jacobs)
• Automatic hypernym detection, automatic cognate detection, linguistic preprocessing (Els Lefever)
annotation
- Sort by readability (NL)
- Sort by readability (EN)
- Expert Readers (NL)
- Expert Readers (EN)

demo
- Compound splitter
- Readability
 - Assessing Readability
 - Classical formulas
 - Machine learning
 - Normalisation Demo
 - Sentiment Demo
 - LeTs Demo

software
- LeTs
CvT

The Terminology Centre (CvT) is active within the Department of Translation, Interpreting and Communication of Ghent University. The CvT co-ordinates the Department’s activities on terminology and terminography.

These activities relate to teaching, research and services.

The CvT’s staff is drawn from the Department's language sections and the language technology section.

The CvT operates as a unit within the research group LT3 the Department's Language and Translation Technology Team. Whereas most other research within LT3 is related to tools development, the CvT focuses on the use of tools for terminology management, term recognition, term extraction etc. and on the manual compilation of termbases.

Core Members

→ Els LEFEVER (LT3, Head)
→ Joost BUYSSCHAERT (English) (hon. Head)
→ Bart DEFRANCO (French)
The GhentCDH

The Ghent Centre for Digital Humanities (GhentCDH) engages in the field of "Digital Humanities" at Ghent University, ranging from archaeology and geography to linguistics and cultural studies. It develops DH collaboration and supports research projects, teaching activities and infrastructure projects across the faculties.

Geospatial analysis

The Ghent CDH offers advice, support and training regarding geospatial data management, analysis and visualisation to the humanities and social sciences researchers at the Ghent University.

Read more about this service
Outline

1. NLP & semantic analysis of text

2. Use cases:
 - Cross-lingual Word Sense Disambiguation
 - cyberbullying detection
 - irony detection
 - sentiment analysis
 - cognate detection
 - wine classification
 - other …
NLP & SEMANTIC ANALYSIS OF TEXT
NATURAL LANGUAGE PROCESSING (NLP)

Subfield of linguistics, computer science, … and artificial intelligence concerned with the interactions between computers and human (natural) languages, in particular how to program computers to process and analyze large amounts of natural language data (Wikipedia.org)
NATURAL LANGUAGE PROCESSING (NLP)

- Statistical techniques to model text from a computational perspective
- **Text mining:** Objective (e.g. news events, financial events, terminology extraction) and subjective information extraction (e.g. sentiment analysis, emotion detection, personality, profiling) from text
- Lots of applications!
A Standard Machine Learning Pipeline
SUPERVISED MACHINE LEARNING

- AI field that studies computer algorithms for automatically learning complex properties from training data and make predictions for new data
- **Classifier**: supervised machine learning technique that performs classification:
 - **Training data**: each item is labeled with the correct class label
 - **Test data**: class label? Predicted based on the model learned on the basis of the training data
<table>
<thead>
<tr>
<th>Data</th>
<th>Class label</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>fish</td>
<td>Animal, jaws, black, orange, white</td>
<td></td>
</tr>
<tr>
<td>panther</td>
<td>Animal, paws, black, black, black</td>
<td></td>
</tr>
<tr>
<td>bird</td>
<td>Animal, feathers, black, orange, white</td>
<td></td>
</tr>
</tbody>
</table>
Data

Features

Animal, **feathers**, black, orange, black

Class label

bird
FEATURES

- Relevant information to solve the task
- features for NLP:
 - Lexical features (e.g. words in a sentence, dictionary lookup)
 - Semantic features
 - Grammatical/syntactic features
 - ...
CORPORA

- A corpus = a collection of computer-readable texts, E.g. the Brown corpus (Kučera and Francis, 1967) with ± 1M English words from different text genres, the Google N-gram corpus (Lin et al., 2012) with 1 trillion tokens of historical and (some) specialized texts

- Corpora are the basis of any NLP task, allowing to extract information, find and learn patterns, calculate n-gram frequencies and co-occurrences (see later), etc.
TEXT PROCESSING

- Text processing = converting text to a standardized form to use it for computational analysis
- Rich lexical variety in natural language > meaningful representation
- Linguistic preprocessing:
 - Sentence splitting
 - Tokenization
 - Word normalization (lemmatization, stemming, …)
 - PoS-tagging
 - (dependency) parsing
 - Named entity recognition
Coronavirus: environ 1.000 personnes en quarantaine dans une ville allemande

La mesure s’applique au district de Heinsberg, à la frontière néerlandaise et à quelques kilomètres de la frontière belge
FEATURES: N-GRAMS

- N-grams are sequences of N units/tokens.
- These units/tokens can be **characters, syllables, words** (including abbreviations, numbers, punctuation marks, emoji,...), **phonemes**, etc. depending on the application.
- N refers to the **size of the sequence**, e.g, 1-gram/unigram, 2-gram/bigram, 3-gram/trigram, 4-gram/tetragram,...

I love NLP.

→ Unigrams: “I”, “love”, “NLP”, “.”
→ Bigrams: “I love”, “love NLP”, “NLP .”
N-GRAMS

- Basic units for many NLP tasks: syntactic parsing, PoS-tagging, classification, language modeling, machine translation, readability prediction, etc.
- Example: how n-grams can be useful for tasks like sentiment analysis:

Vinayak Pujari @vinayakpujari42 · 11 jan.
We've no control over this disaster. That feeling of helplessness is really scary.
#AustralianBushfireDisaster
#AustralianBushfire

“no control”
“disaster”
“helplessness”
“scary” ...

“WINNER”
“outstanding”
“awards”

NetflixQueue ✔️ @NetflixQueue · 14 u
WINNER Outstanding Performance by a Female Actor in a Supporting Role, @LauraDern in @MarriageStory! #SAGAwards #MarriageStory
VECTOR SEMANTICS
VECTOR SEMANTICS

Distributional hypothesis*: "words that occur in similar contexts tend to have similar meanings"

The amount of meaning difference between two words corresponds roughly to the amount of difference in their environments (co-occurring words)

*Harris (1954), Firth (1957)
What the “Green Deal” doesn’t mention is that, as helpful as AI can, indeed, be in dealing with the dawning climate catastrophe, the AI industry itself has a rapidly growing carbon footprint. Some researchers estimate that by 2040, the whole tech industry could contribute as much as 14 percent to the world’s entire carbon footprint. And the AI industry, whose energy consumption has doubled during the last four years, plays a significant role in that: A powerful AI system that processes natural language, for example, emits 300,000 kilograms of carbon dioxide emissions while being trained, according to a study from earlier this year. That’s about as much as 125 round-trip flights from New York City to Beijing.

Proposed tools such as a carbon border tax — EU tariffs on imported goods based on their CO2 footprint — could be seen as a protectionist measure and a violation of World Trade Organization rules, for example.

Von der Leyen has insisted measures to make the bloc climate neutral are “a long-term economic imperative.”

Besides the carbon border tax, ongoing efforts to boost the role of the euro in global transactions — including in energy payments — are also meant to help the bloc become the world’s green growth champion and force others, especially economic competitors, to follow suit.

Cities consume more than two-thirds of the world’s energy, and account for more than 70 per cent of global carbon dioxide emissions. The choices that will be made on urban infrastructure in the coming decades on urban planning, energy efficiency, power generation and transport will have decisive influence on the emissions curve. Indeed, cities are where the climate battle will largely be won or lost.

But in addition to their enormous carbon footprint, cities generate more than 80 per cent of global gross domestic product and, as centers of education and entrepreneurship, they are hubs of innovation and creativity, with young people often taking the lead.
What the “Green Deal” doesn’t mention is that, as helpful as AI can, indeed, be in dealing with the dawning climate catastrophe, the AI industry itself has a rapidly growing carbon footprint. Some researchers estimate that by 2040, the whole tech industry could contribute as much as 14 percent to the world’s entire carbon footprint. And the AI industry, whose energy consumption has doubled during the last four years, plays a significant role in that: A powerful AI system that processes natural language, for example, emits 300,000 kilograms of carbon dioxide emissions while being trained, according to a study earlier this year. That’s about as much as 125 round-trip flights from New York City to Beijing.

Proposed tools such as a carbon border tax — EU tariffs on imported goods based on their CO2 footprint — could be seen as a protectionist measure and a violation of World Trade Organization rules, for example.

Von der Leyen has insisted measures to make the bloc climate neutral are “a long-term economic imperative.”

Besides the carbon border tax, ongoing efforts to boost the role of the euro in global transactions — including in energy payments — are also meant to help the bloc become the world’s green growth champion and force others, especially economic competitors, to follow suit.

Cities consume more than two-thirds of the world’s energy, and account for more than 70 percent of global carbon dioxide emissions. The choices that will be made on urban infrastructure in the coming decades on urban planning, energy efficiency, power generation and transport will have decisive influence on the emissions curve. Indeed, cities are where the climate battle will largely be won or lost.

But in addition to their enormous climate footprint, cities generate more than 80 percent of global gross domestic product and, as centers of education and entrepreneurship, they are hubs of innovation and creativity, with young people often taking the lead.
Vector semantics = learning representations of the meaning of words directly from their distributions in texts:

→ a word’s distribution is the set of concepts in which it occurs, the neighboring words or grammatical environments

→ two words that occur in very similar distributions are likely to have the same meaning
What does “bamkimuk” mean?

- He handed her a glass of red bamkimuk.
- Beef dishes are made to compliment this bamkimuk.
- He was feeling dizzy, because he drank too much bamkimuk.
- She drank some chilled white Californian bamkimuk with her bread and cheese.

bamkimuk = ??
What does “bamkimuk” mean?

- He handed her a glass of red bamkimuk.
- Beef dishes are made to compliment this bamkimuk.
- He was feeling dizzy, because he drank too much bamkimuk.
- She drank some chilled white Californian bamkimuk with her bread and cheese.

bamkimuk = wine
Multilingual contextual approach

Words occurring in similar contexts tend to be semantically similar

If the source and target terms have similar contexts → translations
BREW
Orang Utan Brewery and Pub - Asia's first to brew its own ale - has opened, following problems duties and other regulations. It is able to brew 10 different types of beer, including exotically become so popular that Guinness decided to brew in the country. In 1965, the first bottle local brewers Multi Bintang Indonesia - who brew FES - as the starting block to success. manager. and are pictured happily trying the brew with a not so happy who was unfortunately transplanted into the wrong soil. While she went to brew coffee Fletcher introduced Patrick and a surprise,' I smiled. 'A cheeky little brew but you'll be amused by its pretension. the table and sipped at the dark, bitter brew self-consciously, aware of his eyes, cool ozone, iodine and women. What a tempting brew. I've not enjoyed a dip in the briny since gin-aholic young females to come and sample our brew. We started it yesterday, so it should and dying animals make a strong political brew. America, which has not had a big oil spill Tom, 'Going To Nepal', a heady guitar/pop brew, was inspired by a real life experience this has yet to happen. </p><p>Charlotte Brew was the first woman to ride in the National But put together, they produced a potent brew which has caused an extraordinary about-face and then to reggae, the resulting musical brew was explosive. 'There can be no liberation
Look up contexts for terms

English terms
- brew
- beer
- ale
- bottle
- coffee
- bitter
- dark
- lager
- guinness
- ginger

Japanese terms
- 釀造
- 苦い ラガー
- 滴ります
- ビール ボトル
- 水 ガラス
- 煙
- シャン
- します
- 水 土壌
- ミルク
- ビール
- 廃棄物

👉 How to compare contexts in different languages?
Now we can compare the English and Japanese context words for all terms.
HOW TO COMPARE THESE CONTEXTS?

<table>
<thead>
<tr>
<th>ENGLISH</th>
<th>beer</th>
<th>water</th>
</tr>
</thead>
<tbody>
<tr>
<td>brew</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JAPANESE</th>
<th>beer</th>
<th>water</th>
</tr>
</thead>
<tbody>
<tr>
<td>醸造</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>ドリンク</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>します</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
Ref: Turney & Pantel, 2010
醸造

水

ビールを飲む

SEMANTIC SPACE: JAPANESE
SEMANTIC SPACE: COMBINED

beer

brew

ドリンクします

醸造

water
SIMILARITY = ANGLE BETWEEN VECTORS
A term-term or term-context matrix represents words and their co-occurrence with other words (i.e. their context)

→ the rows ("digital", "information") are vectors
→ the columns ("computer", "data") are dimensions
WORD2VEC

- Mikolov proposed to **learn word vectors using a neural network** with a single hidden layer (Mikolov et al 2013) => **word2vec embeddings**
- Intuition of the (skip-gram) algorithm: *"is word X likely to occur in the neighbourhood of word Y?"*
- Most important advantage of word2vec is that the algorithm learns the weights that make up the vectors based on raw input text
- Many neural architectures and models have been proposed for computing word vectors
 - **GloVe (2014)** - Global Vectors for Word Representation
 - **FastText (2017)** - Enriching Word Vectors with Subword Information
 - **ELMo (2018)** - Deep contextualized word representations
 - **BERT (2019)** - Bidirectional Encoder Representations from Transformers
CROSS-LINGUAL WORD SENSE DISAMBIGUATION
ParaSense: Parallel Corpora for Word Sense Disambiguation

Els Lefever
WORD SENSE DISAMBIGUATION

WSD = select the correct sense of a word in a given context

e.g. WordNet labels:
http://wordnetweb.princeton.edu/perl/webwn

Noun

- S: (n) pot (metal or earthenware cooking vessel that is usually round and deep; often has a handle and lid)
- S: (n) toilet, can, commode, crapper, pot, potty, stool, throne (a plumbing fixture for defecation and urination)
- S: (n) pot, porridg (the quantity contained in a pot)
- S: (n) pot, flowerpot (a container in which plants are cultivated)
- S: (n) batch, deal, flock, good deal, great deal, hatful, heap, lot, mass, mess, mickle, mint, mountain, muckle, passel, peck, pile, plenty, pot, quite a little, raft, sight, slew, spate, stack, tidy sum, wad (often followed by "of") a large number or amount or extent) "a batch of letters"; "a deal of trouble"; "a lot of money"; "he made a mint on the stock market"; "see the rest of the winners in our huge passel of photos"; "it must have cost plenty"; "a slew of journalists"; "a wad of money"
- S: (n) pot, jackpot, kitty (the cumulative amount involved in a game (such as poker)
- S: (n) pot, potbelly, bay window, corporation, tummy (slang for a paunch)
- S: (n) potentiometer, pot (a resistor with three terminals, the third being an adjustable center terminal; used to adjust voltages in radios and TV sets)
- S: (n) pot, grass, green goddess, dope, weed, gage, sess, sens, smoke, skunk, locoweed, Mary Jane (street names for marijuana)

Verb

- S: (v) pot (plant in a pot) "He potted the palm"
Cross-Lingual WSD = select the correct translation of a word in a given context

Dutch: Pot, German: Topf, French: marmite

Dutch: hasj, German: Cannabis, French: herbe

Dutch: bloempot, German: Blumentopf, French: pot

Dutch: Po, German: Toilettenaimer, French: vase de nuit

Dutch: Pot, German: Pot, French: Pot

Dutch: potpourri, German: Potpourri, French: pot-pourri
Tuesday 3, of June 2008

Lawyer with vinaigrette

Soup with potatoes

Fillet of Duck in the honey Vegetables

Chocolate Mousse

Mardi 3 juin 2008

Avocat vinaigrette

Potage parmentier

Filet de canard au miel Pommes frites Haricots verts

Mousse au chocolat

Product of the Philippines

Keep cool and dry/

Restez calme et sec
Example: *It is no longer the locomotive it once was, it is now the last coach in the train*

- Monolingual class label: coach%1:06:00
- Multilingual class label:
 - wagon, Waggon, wagon, vagón, vagone
ParaSense = a truly multilingual classification-based machine learning approach to Word Sense Disambiguation.

- start from 2 basic assumptions:

1. possibility to use parallel corpora to extract translation labels and disambiguating information in an automated way

2. incorporating multilingual evidence will be more informative than monolingual or bilingual features
PREPROCESSING OF THE DATA

- Data: six-lingual sentence-aligned subcorpus of the Europarl parallel corpus containing one of the 20 ambiguous focus words (total: 35,686 sentences)

- Shallow Linguistic Analysis:
 - Tokenisation
 - Part-of-Speech tagging
 - Chunking
 - Lemmatisation
FEATURE VECTOR CONSTRUCTION

– combination of English local context features and a set of bag-of-words (ngram) translation features
– class labels: automatically generated word alignments for the ambiguous focus words
LOCAL CONTEXT FEATURES

- features related to the focus word itself: word form, lemma, Part-of-Speech, chunk info
- local context features related to a 7-word window containing the ambiguous word
- Example: *It is no longer the locomotive it once was, it is now the last coach in the train*
 - features focus word: coach coach NN I-NP
 - features context word -3: now now RB I-ADVP
 - features context word -2: the the DT I-NP
 - features context word -1: last last JJ I-NP
 - features context word +1: in in IN I-PP
 - features context word +2: the the DT I-NP
 - features context word +3: train train NN I-NP
TRANSLATION FEATURES

a set of binary bag-of-words features from the aligned translations (four languages):

• **PoS-tagging** and **lemmatisation** on all aligned translations
• per ambiguous focus word, a **list of content words** (nouns, adjectives, verbs and adverbs) was extracted
• **one binary feature** per selected content word
Our Europe, that melting pot of cultures, languages and people, is possible thanks to free movement and study programmes.

Macao, as has already been said, has always been a melting pot of cultures and of new meetings of cultures, of religions too, and has always been a territory where peace, tranquillity and coexistence between peoples of the most diverse ethnic backgrounds have reigned.

La nostra Europa, quel crogiolo di culture, lingue e persone, è possibile grazie alla libera circolazione e ai programmi di studio.

Macao, come è stato detto, è sempre stata un crogiolo di culture, civiltà e religioni, una regione in cui le etnie più diverse convivono in pace e serenità.
Italian

• *Sentence 1*: La nostra Europa, quel **crogiolo** di culture, lingue e persone, è possibile grazie alla libera circolazione e ai programmi di studio.

• *Sentence 2*: Macao, come è stato detto, è sempre stata un **crogiolo** di culture, civiltà e religioni, una regione in cui le etnie più diverse convivono in pace e serenità.

<table>
<thead>
<tr>
<th>Europa crogiolo cultura lingua persona essere possibile grazie libero circolazione programma studio Macao dire sempre civiltà religione regione etnia più diverso convivere pace serenità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentence 1</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Sentence 2</td>
</tr>
<tr>
<td>0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>
RESULTS
CYBERBULLYING DETECTION
AMICA

- Detect situations that are harmful or threatening to young people in social networks
 - Cyberbullying
 - Sexually transgressive behaviour (for example grooming by paedophiles)
 - Depression and suicide announcement
=> Facilitate efficient action by moderators, police, parents, peer group, social services
PREPROCESSING / NORMALISATION OF USER-GENERATED TEXT
USER GENERATED CONTENT

Social media: blogs and microblogs (Twitter: 190 million tweets/day), wikis, podcasts, social networks (Facebook: 70 billion shares/month) ⇒ Enormous amount of UGC
UGC NORMALIZATION

Maxims of chat language:

– Write **as fast as you can** (fluent interaction)
 – Abbreviations, letter omission, acronyms, flooding, concatenation, capitalization, punctuation, spelling and grammar errors, ...

– Write **as you speak** (informal character of the conversation)
 – Dialectical, phonetic, emoticons, ...
PROPERTIES OF CHAT LANGUAGE

- Omission of words / characters (spoke – spoken)
- Abbreviations, acronyms (LOL – laughing out loud)
- Deviations from standard spelling (luv – love, you iz – you are)
- Expression of emotions:
 - Flooding (looooooooove)
 - Emoticons (:p)
 - Capitalized letters (STUPID)
- Dutch-specific:
 - Concatenation of tokens (khou – ik hou)
 - Elimination of clitics and pronouns (edde – heb je)
 - Lot of dialects!
PROBLEM FOR TEXT ANALYSIS TOOLS

- Most NLP tools are developed for or trained on standard language
- They fail miserably on UGC
- Solutions
 - Develop new tools
 - E.g. Tweet NLP (CMU): http://www.cs.cmu.edu/~ark/TweetNLP/
 - Normalize the ‘non-standard’ language
ENSEMBLE APPROACH

MODULES

– **Preprocessing**
 – Tokenization and sentence splitting
 – includes emoticons, emojis etc.
 – Character floooooooooding

– **Token-based modules**
 – Abbreviations
 – Expansion dictionary (~ 350 abbrevs)
 – Spell checker
 – Levenshtein on dictionary (~ 2.3 million words)
 – Compound Module
 – Checks if a pair of words is actually one word
 – Word Splitter
 – ‘misje’ = ‘mis je’ (miss you)
MODULES

- Context-based modules
 - Statistical Machine Translation
 - Token-unigram, character unigram, character-bigram and combinations
 - Transliteration (supervised ML)
 - supervised ML, memory-based learning style
 - $+\text{da+n}_i++\text{ged} \rightarrow \text{iet}$
 - WAYS (Write As You Speak): G2P + P2G (memory-based learning)
 - ni (niet, *not*)
 - kem (ik heb, *I have*)

- “Original” Module
 - Many words are correct
USE CASE: CYBERBULLYING DETECTION
RESEARCH MOTIVATION

- ± 20-40% of all youth have been victimized online (Tokunaga, 2010)
- Anonymity, lack of supervision and impact make social media a convenient way for cyberbullies to target their victim (Hinduja & Patchin, 2006)
- Information overload on the Web has made manual monitoring unfeasible

Source: the EU Kids Online report (2015)
http://www.lse.ac.uk/media/lse/research/EUKidsOnline
We need large data sets to train machine learning systems.

Data collection for Dutch and English:
- Data from relevant social media
- BUT: few / private data
- Media campaign for donating examples of cyberbullying messages
- BUT: sensitive data!
- Cyberbullying simulations
DATASET CONSTRUCTION: SIMULATION EXPERIMENTS

- Role playing in secondary schools on social media platform: FB-like social network, scenarios, profile cards (roles), debriefing
- Additional goal: education (prevention)
DATA ANNOTATION

- **Brat rapid annotation tool** (Stenetorp et al., 2012)
- **Two annotation levels** (Van Hee et al., 2015)
 - Post level
 - Cyberbullying -vs- non-cyberbullying
 - textual content that is published online by an individual and that is aggressive or hurtful against a victim.
 - Harmfulness score
 - 0 → the post does not contain indications of cyberbullying
 - 1 → the post contains indications of cyberbullying, although they are not severe
 - 2 → the post contains serious indications of cyberbullying
 - **Author’s role**
 - Harasser
 - Victim
 - Bystander-defender
 - Bystander-assistant
DATA ANNOTATION

- (Sub)sentence level: identification of fine-grained text categories related to cyberbullying
 - Threat/blackmail
 - Insult
 - Curse/exclusion
 - Defamation
 - Sexual talk
 - Defense
 - Encouragements (to the harasser)

Reference: Guidelines for the fine-grained analysis of cyberbullying, version 1.0 (2015)
Van Hee, C., Verhoeven, B., Lefever, E., De Pauw, G., Daelemans, W., & Hoste, V.
<table>
<thead>
<tr>
<th>Category</th>
<th>Brat annotation example</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threat/blackmail</td>
<td>1_Har Threat or Blackmail</td>
<td>I’ll smash you in the face when I see you x</td>
</tr>
<tr>
<td></td>
<td>2_Har s ik u tegen kom zieke rak op u gezicht x</td>
<td></td>
</tr>
<tr>
<td>Insult</td>
<td>1_Har General Insult General Insult</td>
<td>HAHAHAHA YOU LOSER ;(X POTATO HEAD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Just commit suicide, nobody thinks you’re funny...</td>
</tr>
<tr>
<td>Curse/exclusion</td>
<td>2_Har Curse or Exclusion General Insult</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Pleen zelfmoord niemand vindt u geestig ...</td>
<td></td>
</tr>
<tr>
<td>Defamation</td>
<td>1_Har Defamation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>u mama versiert andere mannen hahahahaha</td>
<td>Your mom is flirting with other men hahaha</td>
</tr>
<tr>
<td>Sexual talk</td>
<td>4_Har Sexual harassment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Stuur my u naakt foto, nu!!</td>
<td>Send me a naked picture of yourself, now!!</td>
</tr>
<tr>
<td>Defense</td>
<td>1_Bystander defender General victim defense General victim defense</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Meid, koppie omhoog het Laat je ni doen door die domme anoniempjes</td>
<td></td>
</tr>
<tr>
<td>Encouragements to the harasser</td>
<td>2_Bystander assistant General Insult Encouraging harasser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 inderdaad ze is geen leven waar!!</td>
<td>Indeed, she shouldn’t be alive !!</td>
</tr>
</tbody>
</table>
CYBERBULLYING EXPERIMENTS

- **Class**
 - Binary (bullying or non-bullying)
 - Binary (for each fine-grained class)
- **Features**
 - Word unigrams and bigrams
 - Character trigrams
 - Subjectivity lexicon features
 - Lexicon features (diminishers, intensifiers, proper names, negation words)
 - Topic model features
- **Classifier**: SVM (Pattern) with linear kernel
- **Data**: ~85,000 posts
- **Annotation agreement (kappa)**: 60-65%
- **Very skewed data**, scarce positive data (~10%)

RESULTS BULLYING /VS/ NON-BULLYING

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>recall</th>
<th>F1-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td>73%</td>
<td>57%</td>
<td>64%</td>
</tr>
<tr>
<td>NL</td>
<td>71%</td>
<td>53%</td>
<td>61%</td>
</tr>
</tbody>
</table>

BUT:
- **Ambiguity**
 - “Hi bitches, anyone in for a movie tonight?”
 - “Shut up, you bitch!”
- **Implicit realizations of cyberbullying**
 - “You make my fists itch…”
- **Data sparseness**
IRONY DETECTION
PhD of Cynthia Van Hee: "Can machines sense irony?" (2017)
Corpus construction and annotation

Experiments:
- Exp. 1: Automatic irony detection
- Exp. 2: Modelling prototypical sentiment
- Exp. 3: Irony detection for sentiment analysis
CORPUS CONSTRUCTION

- Irony examples necessary to train the classifier
- Genre = Twitter
- Irony-related hashtags: #not, #sarcasm, #irony
- 3,000 English tweets (Van Hee et al., 2016a)

CORPUS ANNOTATION

- Manual annotations by trained linguists
- Task: which tweets are ironic and how is the irony realised?

Literal sentiment: positive (“can’t wait”)
Intended sentiment: negative (“go to the dentist”)
ANNOTATION SCHEME

Fine-grained irony categories (Van Hee et al., 2016b)

1) Ironic by a polarity contrast

2) Situational irony

3) Other forms of verbal irony

4) Not ironic

ANNOTATION SCHEME

- **Fine-grained irony categories**
 1. Ironic by a polarity contrast
 2. Situational irony
 3. Other forms of verbal irony
 4. Not ironic

![Pie chart showing distribution of irony types]

- Ironic by a polarity contrast: 58%
- Situational irony: 20%
- Other verbal irony: 13%
- Not ironic: 9%
EXP. 1 AUTOMATIC IRONY DETECTION: HOW?

- Experimental corpus
 3,000 tweets annotated corpus + extra non-ironic tweets for balanced distribution
- Preprocessing
 Removal of hashtags #irony, #not, #sarcasm
EXP. 1 AUTOMATIC IRONY DETECTION: FEATURES

LEXICAL: word & character sequences, character & punctuation repetition, emoticon frequency,…

SYNTACTIC: part of speech frequencies, verb tenses, named entity frequencies

[V, A, N, #, E] - [past/present] - [people/location/organisation]

SENTIMENT: number of explicit positive/negative words

[hate] - [joyful] - [don’t like] - [bright]

SEMANTIC: semantic word clusters/topics

[college] [degree] [dissertation] [essay] [monday] [insomnia] [headache] [presentation]
EXP. 1 AUTOMATIC IRONY DETECTION: HOW?

<table>
<thead>
<tr>
<th>feature group</th>
<th>accuracy</th>
<th>precision</th>
<th>recall</th>
<th>F_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>lexical</td>
<td>66.81</td>
<td>67.43</td>
<td>66.60</td>
<td>67.01</td>
</tr>
<tr>
<td>sentiment</td>
<td>58.77</td>
<td>61.54</td>
<td>49.48</td>
<td>54.86</td>
</tr>
<tr>
<td>semantic</td>
<td>63.05</td>
<td>63.67</td>
<td>62.89</td>
<td>63.28</td>
</tr>
<tr>
<td>syntactic</td>
<td>64.82</td>
<td>64.18</td>
<td>69.07</td>
<td>66.53</td>
</tr>
</tbody>
</table>
EXP. 1 AUTOMATIC IRONY DETECTION: BOTTLENECKS

- Tweets that carry implicit or prototypical sentiment

 Just love to go to the dentist

 ↓

 explicitly positive

 ↓

 implicitly negative
EXP. 2 MODELLING PROTOTYPICAL SENTIMENT:

Input:
- going to the dentist
- not being able to sleep
- two hour flight delay
- car decides not to start
- eight hour car ride

2 approaches:

SenticNet 4: lexical and semantics database (Cambria et al., 2016)

Twitter: resource of opinions shared in real time
EXP. 2 MODELLING PROTotypical SENTIMENT: SenticNet

"going to the dentist"

overall polarity: -0.81
EXP. 2 MODELLING PROTOTYPICAL SENTIMENT: SENTICNET

Accuracy: 37%

- Fast and simple approach
- Focus on single words
- Rapidly evolving world → will coverage ever be sufficient?
EXP. 2 MODELLING PROTOTYPICAL SENTIMENT: TWITTER

“going to the dentist”

preprocessing

On my agenda tomorrow: going to the dentist 😞
RT @someuser: uhu, I have to go take my wisdom teeth out #going to the dentist 😞
“Yay weekend!”, but NOOO, this gurl is going to the dentist first -_-.

automatic sentiment analysis

polarity: negative
Accumacy: 72%

- Look-up of multi-word phrases possible
- Sentiment based on real-time ‘public’ opinion
- Sentiment based on real-time ‘public’ opinion
- Requires a large set of relevant tweets + automatic sentiment analysis system

Effect of crises, trends?
EXP. 2 IRONY DETECTION: POLARITY CONTRAST APPROACH

- Lexical, syntactic, semantic + polarity contrast information

- **Results:** improves irony detection performance

<table>
<thead>
<tr>
<th>system</th>
<th>positive class</th>
<th>implicit sentiment</th>
<th>accuracy</th>
<th>precision</th>
<th>recall</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline SVM</td>
<td>ironic by clash + situational + other</td>
<td>-</td>
<td>69.21%</td>
<td>68.92%</td>
<td>71.34%</td>
<td>70.11</td>
</tr>
<tr>
<td>(lex+sem+synt)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 AND-combination</td>
<td>ironic by clash + situational + other</td>
<td>gold-standard</td>
<td>63.78%</td>
<td>73.96%</td>
<td>43.92%</td>
<td>55.11</td>
</tr>
<tr>
<td>2 OR-combination</td>
<td>ironic by clash + situational + other</td>
<td>gold-standard</td>
<td>62.42%</td>
<td>59.15%</td>
<td>83.30%</td>
<td>69.18</td>
</tr>
<tr>
<td>3 AND-combination</td>
<td>ironic by clash + situational + other</td>
<td>automatic</td>
<td>58.98%</td>
<td>69.01%</td>
<td>34.43%</td>
<td>45.94%</td>
</tr>
<tr>
<td>4 OR-combination</td>
<td>ironic by clash + situational + other</td>
<td>automatic</td>
<td>62.11%</td>
<td>58.97%</td>
<td>82.68%</td>
<td>68.84%</td>
</tr>
</tbody>
</table>

- **Challenge:** tweets that need more context: “Excellent presentation #not”

Precision: 69% → 74%
Recall: 71% → 83%
IRONY DETECTION FOR SENTIMENT ANALYSIS

- State-of-the-art sentiment analysis systems work well: $F_1 = 68\%$ (Rosenthal et al., 2017)
- Bottleneck: irony

“automatically defining whether a given piece of text is positive, negative or neutral”
EXP. 3 IRONY DETECTION FOR SENTIMENT ANALYSIS

- Sentiment classifier exploiting a rich feature set (Van Hee et al., 2014)
- Ranked 16th among 50 submissions in SemEval-2014 (Rosenthal et al., 2014)

Results: Without irony detection

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMS2013</td>
<td>70.53%</td>
</tr>
<tr>
<td>TWE2013</td>
<td>66.36%</td>
</tr>
<tr>
<td>TWE2014</td>
<td>64.83%</td>
</tr>
<tr>
<td>TWE2014Sarcasm</td>
<td>16.58%</td>
</tr>
<tr>
<td>LiveJour.2014</td>
<td>68.00%</td>
</tr>
<tr>
<td>full test</td>
<td>67.28%</td>
</tr>
</tbody>
</table>

EXP. 3 IRONY DETECTION FOR SENTIMENT ANALYSIS: RESULTS

- Sentiment classifier optimisation: system ranks 1st
- Adding irony information to sentiment classifier
- Results: Without irony detection

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter2014Sarcasm</td>
<td>17.11%</td>
<td>30.76%</td>
<td>54.35%</td>
<td>16.58%</td>
</tr>
</tbody>
</table>

With irony detection

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter2014Sarcasm</td>
<td>59.21%</td>
<td>40.56%</td>
<td>69.81%</td>
<td>36.71%</td>
</tr>
</tbody>
</table>

+42 %

+20 %
SHORT OVERVIEW OTHER USE CASES
ASPECT-BASED SENTIMENT ANALYSIS
COLLECT DIRECT CUSTOMER FEEDBACK

"On a scale of 0 to 10, how would you recommend X to a friend or family?"

QUANTITATIVE DATA

Trademark of Bain & Company, Inc and Fred Reichfeld
2. “Why did you assign this score?”

➡ QUALITATIVE DATA

FREE TEXT

» Writing in their own language (various languages, dialect, typos, ...)

» Expressing **sentiments** about a variety of **aspects**

Store: PERSONNEL, COLLECTION, COMMUNICATION, ...
ASPECT-BASED SENTIMENT ANALYSIS (ABSA)

i. Extract all **aspect** expressions of the entities

ii. Categorize these aspect expressions into predefined **categories**

iii. Determine whether an **opinion** on an aspect is **positive**, **negative** or **neutral**

➡ **SUPERVISED MACHINE LEARNING**
WHAT are they talking about?

HOW are they talking about it?

INTEGRATED PIPELINE WITH GOOD RESULTS

WHAT?

ASPECT TERM EXTRACTION (which words?)

ASPECT CATEGORY CLASSIFICATION (which aspects?)

HOW?

ASPECT POLARITY CLASSIFICATION (sentiment?)
DOMAINS: BANKING, RETAIL, HR

DATASETS AND ANNOTATIONS: banking, retail, HR

<table>
<thead>
<tr>
<th>MARCOM</th>
<th>Communication, promotion</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSONNEL</td>
<td>Advice, availability, expertise, reception, service</td>
</tr>
<tr>
<td>PRODUCT</td>
<td>Price, variety, kids, general, men, women, colour, sizes, quality, fit, pricequality</td>
</tr>
<tr>
<td>STORE</td>
<td>Fitting rooms, parking, general</td>
</tr>
<tr>
<td>CUSTSERVICE</td>
<td>General</td>
</tr>
<tr>
<td>BRANDS</td>
<td>General</td>
</tr>
<tr>
<td>WEBSHOP</td>
<td>General</td>
</tr>
</tbody>
</table>

e.g. RETAIL: 24 aspects
1. ASPECT TERM EXTRACTION
Sequential IOB labeling task

- Token shape features (capitalization, digits, alphanum, suffix)
- Lemma, PoS, chunk and NE label (LeTs preprocess, Van de Kauter et al. 2014)
- CRF Suite (LBFGS optimization function): 90% train - 10% test
2. ASPECT CATEGORY CLASSIFICATION
Multiclass classification

- Lexical features: bag-of-words (token unigrams)
- Lexical-semantic features: Dutch WordNet (Cornetto, Vossen et al. 2013) & DBPedia (Lehmann et al. 2013)
- LibSVM: 90% train - 10% test
- Output from previous step used as input for this step
3. ASPECT POLARITY CLASSIFICATION

Multiclass classification (😊😊😊)

- Bag-of-words (token unigrams), predicted aspect category
- Lexicon-lookup features: training, Pattern (De Smedt and Daelemans 2012) & DUOMAN (Jijkoun and Hoffman 2009) + NEGATION
- LibSVM: 90% train - 10% test
- Output from previous two steps used as input for this step
Reference: De Clercq, O., Lefever, E., Jacobs, G., Carpels, T., & Hoste, V. (2017). Towards an integrated pipeline for aspect-based sentiment analysis in various domains. In Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (pp. 136–142).
Cognate Detection
COGNATES VS FALSE FRIENDS

Cognates: words with high formal and semantic cross-lingual similarity

False friends: words which have similar forms, but differ in their meaning
Cognate detection = task to distinguish cognates from non-cognates (non-related words + false friends)

Use:
- Important skill for second language learners (CALL)
- Boost the performance of automatic alignment between related languages
- Compile bilingual lexicons
GOALS

New gold standard
- Context-independent
- English-Dutch, French-Dutch

Supervised binary classifier
- Perform cognate detection
- Orthographic & semantic similarity information
- Binary: no distinctions made for false friends and non-equivalents words

1. ORTHOGRAPHIC SIMILARITY FEATURES

- 15 different string similarity metrics (Frunza and Inkpen 2007)
- Measure formal relatedness between source and target words
- Metrics:
 Prefix, Dice (4 variants), Longest Common Subsequence Ratio, Normalized Levenshtein Similarity, Jaccard index, Jaro-Winkler similarity, Spsim (learns grapheme mappings between language pairs, Gomes and Pereira Lopes, 2011)
2. Semantic information

Measure the semantic similarity between word pairs

Embeddings

• Pre-trained fastText embeddings (Common Crawl & Wikipedia)
• **Incremental re-training** (Grave et al., 2018) with domain-specific information
 → Accommodate for unseen words
• **Unsupervised mapping** in common vector space (Artetxe et al., 2018)
 → transformation matrix initialized by Singular Value Decomposition
 → train iteratively
• Cosine similarity
RESULTS

<table>
<thead>
<tr>
<th></th>
<th>Cognate</th>
<th>Non-cognate</th>
<th>Average score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prec</td>
<td>Rec</td>
<td>F-score</td>
</tr>
<tr>
<td>Ortho</td>
<td>0.909</td>
<td>0.992</td>
<td>0.952</td>
</tr>
<tr>
<td>Sem</td>
<td>0.997</td>
<td>1.000</td>
<td>0.998</td>
</tr>
<tr>
<td>Ortho + sem</td>
<td>0.915</td>
<td>0.993</td>
<td>0.955</td>
</tr>
</tbody>
</table>

Table 1: Precision (Prec), Recall (Rec) and F1-score for the classifier trained on English-Dutch data

<table>
<thead>
<tr>
<th></th>
<th>Cognate</th>
<th>Non-cognate</th>
<th>Average score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prec</td>
<td>Rec</td>
<td>F-score</td>
</tr>
<tr>
<td>Ortho</td>
<td>0.951</td>
<td>0.940</td>
<td>0.945</td>
</tr>
<tr>
<td>Sem</td>
<td>0.915</td>
<td>1.000</td>
<td>0.956</td>
</tr>
<tr>
<td>Ortho + sem</td>
<td>0.943</td>
<td>1.000</td>
<td>0.971</td>
</tr>
</tbody>
</table>

Table 2: Precision (Prec), Recall (Rec) and F1-score for the classifier trained on French-Dutch data
ANALYSIS

Semantic information helps to:

- detect cognate pairs showing less orthographic resemblance (older-ouderen, widespread-wijdverbreid, sweating-zweten, shame-schaamte)
- generate less false negatives. Wrongly labeled by the classifier relying on orthographic information: affects-effecten, unlocking-blokkering, provide-profielen, where-wateren
- Generate few additional false negatives (include-inhouden, docker-dokwerker) and false positives (told-toen, because-bepaalde)
WINE CLASSIFICATION
Cantina del Pino makes some of the finest Barbaresco available today. This shows a succulent quality, with aromas of smoked bacon, wild berries and forest underbrush. Savory and sophisticated, this has loads of personality.

Red, 2009, Nebbiolo grape, price $45, Italy, rating of 91
RESEARCH QUESTIONS

1. Do wine experts share a common vocabulary, or is it just “purple prose” (Quandt, 2007)?
 - What is the usefulness of domain-specific terminology as feature representations?
 ⇒ Classification experiments
2. Is there a correlation between prices and (subjective) ratings of wines? Between ratings and review text? More expensive wines > more “expensive” (longer) words?

=> Regression analysis
CORPUS OF WINE REVIEWS

- from http://www.winemag.com
- Corpus of 76,410 unique reviews from 33 experts
- labeled with meta data (price, color, producer, grape, etc)
- short reviews (39 words on average)
- rating between 80 and 100
- we only use the reviews without missing values
CLASSIFICATION EXPERIMENTS

- Goal: automatically predict objective wine characteristics: color, grape variety, and country of origin
- Experimental set-up:
 - Supervised machine learning: SVM
 - Train (80%) – Test (20%)

<table>
<thead>
<tr>
<th>Classification Task</th>
<th>Training</th>
<th>Test</th>
<th>Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>56,893</td>
<td>14,209</td>
<td>3</td>
</tr>
<tr>
<td>Grape type</td>
<td>39,900</td>
<td>9,976</td>
<td>28</td>
</tr>
<tr>
<td>country</td>
<td>61,128</td>
<td>15,282</td>
<td>47</td>
</tr>
</tbody>
</table>
INFORMATION SOURCES

- Linguistically preprocessed (Stanford toolkit)
- Three different feature types:
 1. Lexical features (BoW)
 2. Semantic features (word embeddings)
 3. Terminology features (TExSIS)
LEXICAL FEATURES

- Bag-of-words unigram features
- Lowercased lemmas
- Filtered on PoS-tag (nouns, adjectives, verbs, adverbs)
- Incorporated as binary features
SEMANTIC FEATURES

- **Word embeddings** from the training reviews (Word2Vec, Mikolov 2013): BoW model, context size=8, 200 features
- **Clustered** the resulting word vectors (group words that share common contexts in the wine reviews) using K-means clustering (300 clusters)
- Implemented resulting clusters as **binary features**
SEMANTIC FEATURES

⇒ Clusters indeed semantically related terms
⇒ E.g. cluster 82 (terms related to floral and other related aromas):

abundant, acacia, aromatic, bee's, clover, dandelion, delicate, enticing, floral, flower, foremost, fragrant, freesia, fresh-cut, freshly, fuzz, garden, jasmine, lightweight, lilac, musk, oils, peony, petroleum, pretty, roses, rosewater, subtle, talcum, wax, wisp, wispy
TERMINOLOGY FEATURES

- Wine-specific terms were extracted with TExSIS (Macken et al. 2013)

- hybrid term extractor:
 - Linguistic **preprocessing** (LeTs Preprocess, Van de Kauter et al., 2013)
 - Linguistic information > generate syntactically valid **candidate terms**
 - **Statistical filtering** (termhood, log-likelihood, c-value), intuition: domain-specific terms have higher relative frequency in the wine corpus than in standard corpus (Web 1T 5-gram corpus)
 - Incorporated 15,000 terms with **highest termhood** values as binary features
TOP-20 TERMINOLOGY FEATURES

<table>
<thead>
<tr>
<th>Term</th>
<th>Termhood</th>
</tr>
</thead>
<tbody>
<tr>
<td>flavor</td>
<td>1359.38</td>
</tr>
<tr>
<td>tannin</td>
<td>1018.32</td>
</tr>
<tr>
<td>aroma</td>
<td>997.62</td>
</tr>
<tr>
<td>wine</td>
<td>935.61</td>
</tr>
<tr>
<td>acidity</td>
<td>929.98</td>
</tr>
<tr>
<td>fruit</td>
<td>814.73</td>
</tr>
<tr>
<td>palate</td>
<td>792.01</td>
</tr>
<tr>
<td>finish</td>
<td>590.85</td>
</tr>
<tr>
<td>off-dry</td>
<td>587.43</td>
</tr>
<tr>
<td>cherry</td>
<td>580.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Termhood</th>
</tr>
</thead>
<tbody>
<tr>
<td>single-vineyard</td>
<td>503.82</td>
</tr>
<tr>
<td>tannic</td>
<td>489.55</td>
</tr>
<tr>
<td>mouthfeel</td>
<td>488.72</td>
</tr>
<tr>
<td>cool-climate</td>
<td>448.87</td>
</tr>
<tr>
<td>black-fruit</td>
<td>432.85</td>
</tr>
<tr>
<td>crisp</td>
<td>418.22</td>
</tr>
<tr>
<td>Port-like</td>
<td>237.21</td>
</tr>
<tr>
<td>tangy</td>
<td>210.88</td>
</tr>
<tr>
<td>crisp acidity</td>
<td>207.21</td>
</tr>
<tr>
<td>cherry fruit</td>
<td>185.69</td>
</tr>
</tbody>
</table>
Classification Results

<table>
<thead>
<tr>
<th>Setup</th>
<th>RBF opt</th>
<th>Lin Kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BoW</td>
<td>96.75%</td>
<td>96.59%</td>
</tr>
<tr>
<td>Word2Vec</td>
<td>96.31%</td>
<td>96.18%</td>
</tr>
<tr>
<td>TExSIS</td>
<td>93.49%</td>
<td>91.66%</td>
</tr>
<tr>
<td>All features</td>
<td>96.09%</td>
<td>95.29%</td>
</tr>
<tr>
<td>Grape Variety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BoW</td>
<td>42.10%</td>
<td>48.28%</td>
</tr>
<tr>
<td>Word2Vec</td>
<td>57.39%</td>
<td>56.46%</td>
</tr>
<tr>
<td>TExSIS</td>
<td>72.53%</td>
<td>72.77%</td>
</tr>
<tr>
<td>All features</td>
<td>76.16%</td>
<td>76.61%</td>
</tr>
<tr>
<td>Country</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BoW</td>
<td>66.50%</td>
<td>60.32%</td>
</tr>
<tr>
<td>Word2Vec</td>
<td>69.17%</td>
<td>68.27%</td>
</tr>
<tr>
<td>TExSIS</td>
<td>78.67%</td>
<td>79.06%</td>
</tr>
<tr>
<td>All features</td>
<td>82.27%</td>
<td>82.84%</td>
</tr>
</tbody>
</table>
CONCLUSION

- Wine experts indeed share a common vocabulary, making it possible to predict color, grape variety and country of origin.

- Terminological features express sensory information.

- Terminological features outperform BoW-features and semantic features.

- Review length and avg. word length are significantly related to review price and rating.
NLP FOR DIGITAL HUMANITIES

- Historical sentiment analysis
- Detect orthographic and semantic similarity between epigrams in medieval Greek

Workshop on Language Technology Resources and Tools for Digital Humanities (LT4DH)

Language technology for digital humanities: introduction to the special issue

Erhard Hinrichs, Marie Hinrichs, Sandra Kübler & Thorsten Trippel

Language Resources and Evaluation 53, 559–563(2019) | Cite this article
Els Lefever
LT³ Language and translation technology team

Ghent University

Interested in collaboration?
els.lefever@ugent.be