

A Louvain-la-Neuve - 120 crédits - 2 années - Horaire de jour - En anglais

Mémoire/Travail de fin d'études : **OUI** - Stage : **optionnel** Activités en anglais: **OUI** - Activités en d'autres langues : **OUI**

Activités sur d'autres sites : optionnel

Domaine d'études principal : Sciences de l'ingénieur et technologie

Organisé par: Ecole polytechnique de Louvain (EPL)

Sigle du programme: MECA2M - Cadre francophone de certification (CFC): 7

Table des matières

Introduction	
Profil enseignement	
Compétences et acquis au terme de la formation	
Structure du programme	
Programme	
Programme détaillé par matière	
Préreguis entre cours	
Cours et acquis d'apprentissage du programme	
Informations diverses	
Conditions d'accès	
Pédagogie	
Evaluation au cours de la formation	
Mobilité et internationalisation	
Formations ultérieures accessibles	
Gestion et contacts	

MECA2M - Introduction

INTRODUCTION

Introduction

Le programme forme dans les matières principales de la mécanique : mécanique des fluides et transferts, méthodes de calcul en mécanique appliquée, mécanique des matériaux et des structures, dynamique appliquée, production mécanique, conception en génie mécanique, fabrication mécanique, machines thermiques, thermodynamique et énergétique.

Au cours des laboratoires didactiques, des études de cas, des projets et du mémoire, vous participerez à la vie des laboratoires de recherche et vous y initierez aux méthodes de pointe des disciplines concernées.

Les nombreux projets intégrés que vous réaliserez vous rendront capables de concevoir, modéliser, réaliser et valider expérimentalement des systèmes, prototypes et dispositifs.

Votre profil

Vous

- avez développé, au terme d'une première formation, des compétences solides dans le domaine de la mécanique ;
- envisagez de poursuivre une carrière dans le secteur industriel et d'y assumer une fonction de conception et de recherche, ou d'y assurer une mission d'organisation et de contrôle de la production ;
- souhaitez exercer vos compétences dans les secteurs de l'aéronautique, de l'industrie spatiale, de l'énergie, de l'industrie métallurgique ou plastique, de l'automobile, de la biomécanique, etc. ;
- cherchez une formation qui vous apporte la maîtrise des problèmes scientifiques, technologiques et humains qui se rapportent au domaine de la mécanique.

Votre futur job

Les ingénieurs civils sont présents dans tous les secteurs du monde industriel: industrie chimique, pharmaceutique et alimentaire, industrie électronique et des télécommunications, énergie, industrie métallurgique, aéronautique, construction et génie civil, grande distribution, services bancaires ou de consultance, nanotechnologies et technologies adaptées aux besoins de la médecine, etc.

Ils y jouent un rôle de chercheurs et de développeurs ; y exercent des responsabilités de production ou de gestion et occupent des postes dans le marketing et la vente (produits de haute technologie).

On les trouve dans les départements finance, informatique, formation ou contrôle de qualité, dans le secteur public, l'enseignement supérieur et universitaire ou au Ministère de l'équipement et des transports (www.fabi.be)

Votre programme

Le Master vous offre

- une formation polyvalente dans les domaines de base de la mécanique ;
- un vaste choix d'options, en lien direct avec les dernières avancées de la recherche dans le domaine ;
- des dispositifs pédagogiques qui articulent théorie et pratique : laboratoires, projets, études de cas, etc. ;
- un apprentissage avancé des méthodes numériques et de leurs applications ;
- l'occasion de réaliser un stage en industrie ;
- la possibilité de réaliser une partie de votre cursus à l'étranger, en Europe ou ailleurs dans le monde

MECA2M - Profil enseignement

COMPÉTENCES ET ACQUIS AU TERME DE LA FORMATION

Concevoir et innover, selon une approche polytechnique, des solutions et systèmes complexes liés à la mécanique et ses applications tels sont les défis que le diplômé ingénieur civil en mécanique se prépare à relever. Le programme du master vise à former des experts dans le domaine de la mécanique et ses applications, et ce dans un contexte européen et mondial en pleine évolution.

Le futur ingénieur civil en mécanique acquerra les connaissances et compétences pour devenir :

- Un professionnel polytechnicien capable d'intégrer plusieurs disciplines dans les domaines de la mécanique des milieux continus, la thermodynamique, la conception de machine.
- Un homme de terrain capable de mettre en pratique les compétences et d'utiliser les outils performants de la recherche et de la technologie.
- Un spécialiste des domaines d'application extrêmement variés et pointus tels que : l'énergétique, l'aéronautique, l'automobile, les transports ferroviaires, la robotique, la simulation numérique, l'informatique scientifique,
- Un manager qui gère des projets seul ou en équipe.

Polytechnique et multidisciplinaire, la formation offerte par l'Ecole polytechnique de Louvain (EPL) privilégie l'acquisition de compétences combinant théorie et pratiques ouvrant à des aspects d'analyse, de conception, de fabrication, de production, de recherche et de développement, et d'innovation en y intégrant des aspects éthiques, de développement durable.

Au terme de ce programme, le diplômé est capable de :

- 1.démontrer la maîtrise d'un solide corpus de connaissances en sciences fondamentales et sciences de l'ingénieur, lui permettant d'appréhender et de résoudre des problèmes qui relèvent de la mécanique.
- 1.1 Identifier et mettre en oeuvre les concepts, lois, raisonnements applicables à une problématique donnée relevant de :
 - · la mécanique des milieux
 - l'énergie, la thermodynamique et la thermique
 - la modélidation mathématique et la simulation numérique
 - · la gestion de projet
 - · la robotique, les systèmes et l'automatisation
- 1.2 Identifier et utiliser les outils de modélisation et de calcul adéquats pour résoudre ces problématique.
- 1.3 Vérifier la vraisemblance et confirmer la validité des résultats obtenus au regard de la nature du problème posé (ordre de grandeur, unités...).
- 2.organiser et de mener à son terme une démarche d'ingénierie appliquée au développement d'un produit (et/ou d'un service) répondant à un besoin ou à une problématique particulière dans le domaine de la mécanique.
- 2.1. Analyser le problème à résoudre ou le besoin fonctionnel à rencontrer, formuler le cahier des charges dans un domaine où les contraintes techniques et économiques sont prises en compte.
- 2.2. Modéliser le problème et concevoir une ou plusieurs solutions techniques en y intégrant les aspects mécaniques répondant au cahier des charges.
- 2.3. Évaluer et classer les solutions au regard de l'ensemble des critères figurant dans le cahier des charges : efficacité, faisabilité, qualité, ergonomie et sécurité.
- 2.4. Implémenter et tester une solution sous la forme d'une maquette, d'un prototype et/ou d'un modèle numérique.
- 2.5. Formuler des recommandations pour améliorer le caractère opérationnel de la solution étudiée.
- 3.organiser et de mener à son terme un travail de recherche pour appréhender un phénomène physique ou une problématique inédite relevant de la mécanique.
- 3.1. Se documenter et résumer l'état des connaissances actuelles dans le domaine de la mécanique.
- 3.2. Proposer une modélisation et/ou un dispositif expérimental permettant de simuler le comportement du système, en testant les hypothèses relatives au phénomène étudié.
- 3.3. Mettre en forme un rapport de synthèse visant à expliciter les potentialités d'innovation théoriques et/ou technique résultant de ce travail de recherche.
- 4.contribuer, en équipe, à la réalisation d'un projet pluridisciplinaire et de le mener à son terme en tenant compte des objectifs, des ressources, allouées et des contraintes qui le caractérisent.
- 4.1. Cadrer et expliciter les objectifs d'un projet compte tenu des enjeux et contraintes qui caractérisent l'environnement du projet.
- 4.2. S'engager collectivement sur un plan de travail, un échéancier.
- 4.3. Fonctionner dans un environnement pluridisciplinaire conjointement avec d'autres acteurs porteurs de différents points de vue.
- 4.4. Prendre des décisions en équipe lorsqu'il y a des choix à faire : que ce soit sur les solutions techniques ou sur l'organisation du travail pour faire aboutir le projet.
- 5.communiquer efficacement oralement et par écrit (en français et dans une ou plusieurs langues étrangères) en vue de mener à bien les projets qui lui sont confiés dans son environnement de travail.
- 5.1 Identifier les besoins du client : questionner, écouter les dimensions de sa demande et pas seulement les aspects techniques.
- 5.2 Argumenter et convaincre en s'adaptant au langage de ses interlocuteurs : collègues, techniciens, clients, supérieurs hiérarchiques.
- 5.3 Communiquer sous forme graphique et schématique ; interpréter un schéma, présenter un travail, structurer des informations.

- 5.4 Lire, analyser et exploiter des documents techniques (normes, plans, cahier des charges...)
- 5.5 Rédiger des documents écrits en tenant compte des exigences contextuelles et des conventions sociales en la matière.
- 5.6 Faire un exposé oral convaincant, en utilisant les techniques modernes de communication.
- 6.faire preuve de rigueur, d'ouverture, d'esprit critique et d'éthique dans son travail. Tout en tirant parti des innovations technologiques et scientifiques à sa disposition, il prendra le recul nécessaire pour valider la pertinence socio-technique d'une hypothèse ou d'une solution.
- 6.1. Appliquer les normes et s'assurer de la robustesse de la solution dans les disciplines de la mécanique et de l'électricité.
- 6.2. Relativiser les solutions en élargissant le spectre à des enjeux non-techniques (le domaine de l'énergie et du climat, la prise en compte des aspects environnementaux et sociaux).
- 6.3. Faire preuve d'esprit critique vis-à-vis d'une solution technique.
- 6.4. Autoévaluer son propre travail.

STRUCTURE DU PROGRAMME

Outre un tronc commun (33 crédits) et une finalité spécialisée commune (30 crédits), les étudiants complètent leur formation technique en sélectionnant des cours (au minimum 34 crédits) parmi

les cours des cinq options principales de la mécanique :

- Energie.
- · Aéronautique,
- Dynamique, robotique et biomécanique,
- · Conception, fabrication et mécanique des matériaux
- · Génie nucléaire

et le module cours de polyvalence dans les cours au choix.

Dans un esprit d'ouverture et de polyvalence, les étudiants pourront compléter leur programme (au maximum 20 crédits). Inclure un stage, compléter sa formation en langues, choisir des cours d'ouverture ou des cours de sciences humaines est ainsi possible grâce à la flexibilité qui caractérise le programme du master ingénieur civil mécanicien. En fonction de leurs choix de cours, les étudiants se verront éventuellement valider une ou deux options.

Le travail de fin d'études est normalement réalisé en fin de programme (deuxième bloc annuel). En fonction de son projet de formation, l'étudiant peut placer ses cours dans le premier ou le deuxième bloc annuel si les pré-requis entre cours le permettent. En particulier, ceci peut être utile pour la constitution du programme des étudiants qui effectuent une partie de leur formation hors UCLouvain dans le cadre d'un programme d'échange.

Le programme ainsi constitué sera soumis à l'approbation de la commission de programme de ce master.

MECA2M Programme

PROGRAMME DÉTAILLÉ PAR MATIÈRE

Tronc Commun

- Obligatoire
- S Au choix
- △ Exceptionnellement, non organisé cette année académique 2022-2023
- O Non organisé cette année académique 2022-2023 mais organisé l'année suivante
- ⊕ Organisé cette année académique 2022-2023 mais non organisé l'année suivante
 △ ⊕ Exceptionnellement, non organisé cette année académique 2022-2023 et l'année suivante
- Activité avec prérequis
- Cours accessibles aux étudiants d'échange
- [FR] Langue d'enseignement (FR, EN, ES, NL, DE, ...)

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

UCLouvain - Université catholique de Louvain Catalogue des formations 2022-2023

MECA2M: Master [120] : ingénieur civil mécanicien

			a	annı	uel
				1	2
• LMECA2990	GraduationProject/End of Studies Project Le travail de fin d'études peut être écrit et présenté en Français ou en Anglais, en concertation avec le promoteur. Il pourra être accessible aux étudiants d'échange dans le cadre d'un accord préalable entre les promoteurs et/ou les deux universités.		🖎 [q1+q2] [] [25 Crédits] 🤀		x
• LMECA2840	Project in Mechanical Design II	Bruno Dehez Christophe Everarts (supplée Benoît Raucent) Renaud Ronsse	[q1+q2] [30h+30h] [6 Crédits] 🤀	x	
O LEPL2020	Professional integration work Les modules du cours LEPL2020 sont organisés sur les deux blocs annuels du master. Il est fortement recommandé à l'étudiant.e de les suivre dès le bloc annuel 1, mais il.elle ne pourra inscrire le cours que dans son programme de bloc annuel 2.	Myriam Banaï Francesco Contino (coord.) Delphine Ducarme Jean-Pierre Raskin	[q1+q2] [30h+15h] [2 Crédits] > Facilités pour suivre le cours en français	X	x

Bloc

Finalité spécialisée [30.0]

- Obligatoire
- 🛭 Au choix
- △ Exceptionnellement, non organisé cette année académique 2022-2023
- O Non organisé cette année académique 2022-2023 mais organisé l'année suivante
- ⊕ Organisé cette année académique 2022-2023 mais non organisé l'année suivante
- $\Delta \oplus$ Exceptionnellement, non organisé cette année académique 2022-2023 et l'année suivante
- Activité avec préreguis
- ⊕ Cours accessibles aux étudiants d'échange
- [FR] Langue d'enseignement (FR, EN, ES, NL, DE, ...)

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

Bloc

1 2

o Contenu:

O LMECA2220	Internal combustion engines	Francesco Contino Hervé Jeanmart	[q2] [30h+30h] [5 Crédits] 📵	х
O LMECA2322	Fluid mechanics II	Philippe Chatelain Eric Deleersnijder Grégoire Winckelmans	[q1] [30h+30h] [5 Crédits] 🕮	x
O LMECA2410	Mechanics of Materials	Laurent Delannay Aude Simar	[q2] [30h+30h] [5 Crédits]	x
O LMECA2755	Industrial automation	Bruno Dehez Paul Fisette Renaud Ronsse	[q1] [30h+30h] [5 Crédits]	x
O LMECA2854	Heat and mass transfer II	Yann Bartosiewicz Matthieu Duponcheel	[q2] [30h+30h] [5 Crédits]	x
• LMECA2801	Machine design	Benoît Raucent Thomas Servais (supplée Benoît Raucent)	(q1] [30h+30h] [5 Crédits]	x

Options et/ou cours au choix [54.0]

Dans la rubrique "Options du master ingénieur civil en mécanique", l'étudiant e qui choisit de valider une option doit sélectionner au minimum 20 crédits parmi les cours proposés. Il est possible de valider plusieurs options.

Dans la rubrique "Options et cours au choix en connaissances socioéconomiques", l'étudiant e valide une des deux options ou choisit obligatoirement au minimum 3 crédits parmi les cours au choix ou les cours de l'option en enjeux de l'entreprise.

Options du master ingénieur civil en mécanique

- > Option en aéronautique [prog-2022-meca2m-lmeca2220]
- > Option en dynamique, robotique et biomécanique [prog-2022-meca2m-lmeca2230]
- > Option en énergie [prog-2022-meca2m-lmeca224o]
- > Option en génie nucléaire [prog-2022-meca2m-lmeca2310]
- > Option en conception, fabrication et mécanique des matériaux [prog-2022-meca2m-lmeca2260]
- > Cours au choix disciplinaires [prog-2022-meca2m-lmeca2370]

Options et cours au choix en connaissances socio-économiques

- > Option en enjeux de l'entreprise [prog-2022-meca2m-lmeca2330]
- > Option Formation interdisciplinaire en création d'entreprise CPME [prog-2022-meca2m-lmeca2340]
- > Cours au choix en connaissances socio-économiques [prog-2022-meca2m-lmeca2000]

Autres cours au choix

> Autres cours au choix [prog-2022-meca2m-lmeca2320]

Options du master ingénieur civil en mécanique

Option en aéronautique

Ouverte aux étudiant-es ingénieurs civils mécaniciens et électromécaniciens, cette option reprend des cours sur l'application de la mécanique à l'aéronautique : structures aéronautiques, vibrations, aérodynamique, dynamique du vol... Cet apprentissage se fait au travers de cours approfondis de mécanique des fluides et des solides, avec une attention particulière portée aux méthodes numériques. Cette option est naturellement complétée par l'option en énergie, l'option en dynamique, robotique et biomécaniqueainsi que l'option en conception, fabrication et mécanique des matériaux pour les problématiques de l'énergie dans l'aéronautique, la motorisation, les aspects dynamiques et l'importance des matériaux dans la conception et la maintenance des avions.

- Obligatoire
- S Au choix
- △ Exceptionnellement, non organisé cette année académique 2022-2023
- O Non organisé cette année académique 2022-2023 mais organisé l'année suivante
- ⊕ Organisé cette année académique 2022-2023 mais non organisé l'année suivante
- $\Delta \oplus$ Exceptionnellement, non organisé cette année académique 2022-2023 et l'année suivante
- Activité avec prérequis
- ® Cours accessibles aux étudiants d'échange
- [FR] Langue d'enseignement (FR, EN, ES, NL, DE, ...)

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

LMECA2322 - Les étudiant-es de MECA2M ne peuvent pas créditer ce cours dans le cadre de l'option en aéronautique.

De 20 à 30crédit(s)

Bloc annuel

1 2

⇔ LGCIV2041	Numerical analysis of civil engineering structures	Hadrien Rattez João Saraiva Esteves Pacheco De Almeida	[q2] [20h+15h] [4 Crédits] > Facilités pour suivre le cours en français	X	X
State LMECA2195 State LMECA2195	Gasdynamics and reacting flows	Miltiadis Papalexandris	EN [q2] [30h+30h] [5 Crédits]	X	X
⇔ LMECA2300	Advanced Numerical Methods	Philippe Chatelain Christophe Craeye (coord.) Vincent Legat Jean-François Remacle	[q2] [30h+30h] [5 Crédits] 🕮	X	X
State LMECA2323 State LMECA2323	Aerodynamics of external flows	Philippe Chatelain Grégoire Winckelmans	[q2] [30h+30h] [5 Crédits]	х	X
MECA2550	Aircraft propulsion systems	Philippe Chatelain	EN [q1] [30h+30h] [5 Crédits] 🕮	X	X
⇔ LMECA2520	Calculation of planar structures	Issam Doghri	EN [q2] [30h+30h] [5 Crédits] ⊕	Х	X
⇔ LMECA2660	Numerical methods in fluid mechanics	Grégoire Winckelmans	EN [q2] [30h+30h] [5 Crédits]	Х	X
\$\$ LMECA2830	Aerospace dynamics.	Philippe Chatelain Pierre Schrooyen (supplée Philippe Chatelain)	[q1] [30h+30h] [5 Crédits] 🕮	X	X
⇔ LMECA2322	Fluid mechanics II	Philippe Chatelain Eric Deleersnijder Grégoire Winckelmans	[q1] [30h+30h] [5 Crédits] 🕮	X	X

Option en dynamique, robotique et biomécanique

Ouverte aux étudiant-es ingénieurs civils mécaniciens et électromécaniciens, cette option reprend des cours sur la dynamique, la robotique ainsi que la biomécanique. Que ce soit l'analyse des vibrations, la mise au point d'un robot ou la conception et la production de composantes ou micro-composantes en bio-ingénierie (implants artificiels, valves, prothèses), cette option permet à l'étudiant d'aborder l'une ou plusieurs de ces applications sous un angle principalement mécanique. Cette option est naturellement complétée par l'option en aéronautique, l'option en énergie, ainsi que l'option en conception, fabrication et mécanique des matériaux pour les étudiants intéressés dans les problématiques de la dynamique et de la robotique dans l'aéronautique et dans l'énergie. Le conception et le choix des matériaux est évidemment un point essentiel que ce soit pour la mise au point d'un robot ou le choix de bio-matériaux dans les problèmes de réhabilitation.

- Obligatoire
- 🛭 Au choix
- △ Exceptionnellement, non organisé cette année académique 2022-2023
- O Non organisé cette année académique 2022-2023 mais organisé l'année suivante
- ⊕ Organisé cette année académique 2022-2023 mais non organisé l'année suivante
- △ ⊕ Exceptionnellement, non organisé cette année académique 2022-2023 et l'année suivante
- Activité avec prérequis
- ® Cours accessibles aux étudiants d'échange
- FRI Langue d'enseignement (FR, EN, ES, NL, DE, ...)

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

De 20 à 30crédit(s)

Bloc annuel

⇔ LGBIO2040	Biomechanics	Greet Kerckhofs	[q2] [30h+30h] [5 Crédits] > Facilités pour suivre le cours en français	X	X
⇔ LGCIV2042	Dynamics of structures	João Saraiva Esteves Pacheco De Almeida	[q1] [20h+15h] [4 Crédits] > Facilités pour suivre le cours en français	X	X
⇔ LMECA2170	Numerical Geometry	Vincent Legat Jean-François Remacle	[q1] [30h+30h] [5 Crédits] 🕮	X	X
⇔ LMECA2215	Vehicle System Dynamics	Paul Fisette	[q1] [30h+30h] [5 Crédits]	X	X
State LMECA2355	Mechanical design in biomedical engineering	Greet Kerckhofs Benoît Raucent Ann Vankrunkelsven (supplée Benoît Raucent)	[q1] [30h+30h] [5 Crédits] 🕮	X	X
CELME2732 CELME2732	Robot modelling and control	Renaud Ronsse	[q2] [30h+30h] [5 Crédits] > Facilités pour suivre le cours en français	X	X
S LMECA2802	Multibody system Dynamics	Paul Fisette	[q2] [30h+30h] [5 Crédits]	X	X
S LINMA2875	System Identification	Gianluca Bianchin	[q2] [30h+30h] [5 Crédits] > Facilités pour suivre le cours en français	X	X
⇔ LMECA2335	Biorobotics	Renaud Ronsse	[q2] [30h+30h] [5 Crédits]	X	X

Option en énergie

Cette option reprend des cours sur la problématique de l'énergie dans le monde actuel. Cette discipline est abordée dans son entièreté, d'abord par l'étude des techniques de production et de conversion d'énergie (machines thermiques, énergie nucléaire, énergies renouvelables), ensuite par l'analyse des risques associés à la production d'énergie et des moyens de les minimiser (risques majeurs, pollution), et enfin par l'étude des enjeux et conséquences de la consommation énergétique. Cette option est naturellement complétée par l'option en aéronautique pour les étudiant-es intéressé-es dans les problématiques de l'énergie et la motorisation dans l'aéronautique. C'est aussi le cas de l'option en dynamique, robotique et biomécanique ainsi que de l'option en conception, fabrication et mécanique des matériaux pour les étudiants intéressés dans les aspects dynamiques, l'automatisation et de l'importance des matériaux dans la conception et la maintenance des systèmes de production et de conversion d'énergie.

- Obligatoire
- 🛭 Au choix
- Δ Exceptionnellement, non organisé cette année académique 2022-2023
- O Non organisé cette année académique 2022-2023 mais organisé l'année suivante
- ⊕ Organisé cette année académique 2022-2023 mais non organisé l'année suivante
- $\Delta \oplus$ Exceptionnellement, non organisé cette année académique 2022-2023 et l'année suivante
- Activité avec prérequis
- ® Cours accessibles aux étudiants d'échange
- R] Langue d'enseignement (FR, EN, ES, NL, DE, ...)

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

De 19 à 30crédit(s)

Bloc annuel

1 2

© LENVI2007	Renewable energy sources	Emmanuel De Jaeger Patrick Gerin (coord.) Hervé Jeanmart	[q1] [45h+15h] [5 Crédits] > Facilités pour suivre le cours en français	х	х
⇔ LMECA2160	Combustion and fuels	Miltiadis Papalexandris	DN [q1] [30h+30h] [5 Crédits]	X	X
LELME2240	Energy systems lab.	Francesco Contino Hervé Jeanmart	[q2] [30h+30h] [5 Crédits] > Facilités pour suivre le cours en français	X	X
⇔ LMECA2325	Biomass conversion	Patrick Gerin Hervé Jeanmart	[q1] [30h+30h] [5 Crédits]	X	X
B LELME2420	Energetics	Francesco Contino Hervé Jeanmart	[q2] [30h+15h] [5 Crédits] > Facilités pour suivre le cours en français	X	X
St LMECA2600	Introduction to nuclear engineering and reactor technology (LLN)	Hamid Aït Abderrahim	[q1] [30h+30h] [5 Crédits]	X	X
S LMECA2771	Thermodynamics of irreversible phenomena.	Miltiadis Papalexandris	[q2] [30h+30h] [5 Crédits]	X	X
State LMECA2780 State LMECA2780	Introduction to Turbomachinery	Laurent Bricteux Sergio Lavagnoli	[q2] [30h+30h] [5 Crédits]	X	X
S LMECA2675 ■	Robust Optimization of Energy Systems	Francesco Contino	[q1] [30h+30h] [5 Crédits]	X	X
B LELME2150	Thermal cycles	Yann Bartosiewicz	[q1] [30h+30h] [5 Crédits] > Facilités pour suivre le cours en français	X	X

Option en génie nucléaire

Commune aux masters ingénieur civil électromécanicien finalité spécialisée énergie et ingénieur civil mécanicien, cette option a pour objectif d'offrir une formation approfondie dans les principaux aspects du génie nucléaire. L'accès de cette option qui est organisée pour sa plus grande partie au Centre d'énergie nucléaire de Mol est conditionnée à une évaluation des compétences des candidat-es suivant les règles utilisées pour les candidatures aux échanges ERASMUS-SOCRATES. Plus de détails sur cette option sont disponibles sur le site du SCK-CEN de Mol.

- Obligatoire
- 🛭 Au choix
- △ Exceptionnellement, non organisé cette année académique 2022-2023
- O Non organisé cette année académique 2022-2023 mais organisé l'année suivante
- \oplus Organisé cette année académique 2022-2023 mais non organisé l'année suivante
- △ ⊕ Exceptionnellement, non organisé cette année académique 2022-2023 et l'année suivante
- Activité avec prérequis
- ® Cours accessibles aux étudiants d'échange
- [FR] Langue d'enseignement (FR, EN, ES, NL, DE, ...)

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

Bloc annuel

o Contenu:

o Cours obligatoires de l'option en génie nucléaire (10 crédits)

O LMECA2600	Introduction to nuclear engineering and reactor technology (LLN)	Hamid Aït Abderrahim	[q1] [30h+30h] [5 Crédits]	X
O LMECA2648	Nuclear Thermal-Hydraulics (Centre d'étude nucléaire-Mol)	Yann Bartosiewicz	[q1] [40h+7.5h] [5 Crédits] 🕮	x

o Cours au choix de l'option en génie nucléaire

⇔ LBNEN2002	Introduction to Nuclear Physics & Measurements (Centre d'étude nucléaire-Mol)	EN [q1] [] [3 Crédits]	х
□ LBNEN2003	Safety of Nuclear Powerplants (Centre d'étude nucléaire-Mol)	[q2] [] [5 Crédits]	X
BNEN2011	Radiation protection (Centre d'étude nucléaire-Mol)	[q1] [] [3 Crédits]	хх

Option en conception, fabrication et mécanique des matériaux

Ouverte aux étudiant-es ingénieurs civils mécaniciens et électromécaniciens, cette option reprend des cours sur la conception, la fabrication et l'importance des matériaux dans la mise au point d'un système mécanique. La compréhension des propriétés physiques et chimiques et du comportement des métaux, des polymères et des composites peut être abordée dans cette option. Ensuite, les grandes techniques de mise en forme de ces matériaux (moulage par injection ou compression, étirage, laminage, forgeage, extrusion, emboutissage) sont étudiées d'un point de vue thermo-mécanique et technologique. Enfin, la modélisation numérique de ces procédés est également abordée, avec une attention particulière portée aux techniques de soudure. Toutes les phases du processus de fabrication mécanique sont également étudiées, depuis l'étape de conception et la mise en place de techniques de fabrication appropriées jusqu'à la planification de la production et l'organisation des ateliers. Cette option est naturellement complétée par l'option en aéronautique, l'option en énergie, ainsi que l'option en dynamique, robotique et biomécanique pour les étudiant-es intéressé-es dans les problématiques de la conception, de la fabrication et de l'importance des matériaux que ce soit dans l'aéronautique, l'énergie, les transports ou la bio-ingénierie.

0	Oblig	gat	oir	е

S Au choix

△ Exceptionnellement, non organisé cette année académique 2022-2023

O Non organisé cette année académique 2022-2023 mais organisé l'année suivante

⊕ Organisé cette année académique 2022-2023 mais non organisé l'année suivante

 $\Delta \oplus \mathsf{Exceptionnellement},$ non organisé cette année académique 2022-2023 et l'année suivante

Activité avec prérequis

Cours accessibles aux étudiants d'échange

FR] Langue d'enseignement (FR, EN, ES, NL, DE, ...)

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

De 20 à 30crédit(s)

Bloc annuel

1 2

窓 LMAPR2483	Durability of materials	Laurent Delannay Thomas Pardoen	[q2] [30h+22.5h] [5 Crédits] > Facilités pour suivre le cours en français	X	X
⇔ LMECA2453	Advanced manufacturing technologies	Aude Simar	[q1] [30h+30h] [5 Crédits]	Х	X
⇔ LMECA2520	Calculation of planar structures	Issam Doghri	[q2] [30h+30h] [5 Crédits]	X	X
⇔ LMECA2640	Mechanics of composite materials	Issam Doghri	[q2] [30h+30h] [5 Crédits]	Х	X
⇔ LMECA2860	Welding Science and Technology	Pascal Jacques Aude Simar	[q1] [30h+30h] [5 Crédits]	X	X
⇔ LMECA2711	Quality management and control.	Nicolas Bronchart	[q2] [30h+30h] [5 Crédits]	X	X
State LMAPR2020 State LMAPR2020	Materials selection	Bernard Nysten Thomas Pardoen	[q2] [30h+22.5h] [5 Crédits] > Facilités pour suivre le cours en français	X	X
S LMAPR2018	Rheology	Evelyne Van Ruymbeke	[q2] [30h+30h] [5 Crédits] > Facilités pour suivre le cours en français	X	X

Cours au choix disciplinaires

- Obligatoire
- 🛭 Au choix
- △ Exceptionnellement, non organisé cette année académique 2022-2023
- Non organisé cette année académique 2022-2023 mais organisé l'année suivante
- \oplus Organisé cette année académique 2022-2023 mais non organisé l'année suivante
- $\Delta \oplus$ Exceptionnellement, non organisé cette année académique 2022-2023 et l'année suivante
- Activité avec prérequis
- Cours accessibles aux étudiants d'échange
- ™ Cours NON accessibles aux étudiants d'échange
- [FR] Langue d'enseignement (FR, EN, ES, NL, DE, ...)

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

Bloc annuel

o Contenu:

S LELEC1530	Circuits électroniques analogiques et digitaux fondamentaux	Denis Flandre Jean-Didier Legat	[q1] [30h+30h] [5 Crédits] 🕮	хх
ELEC1370	Circuits et mesures électriques	Christophe Craeye Bruno Dehez Claude Oestges (coord.)	117 [q2] [30h+30h] [5 Crédits] 🖲	хх
S LINMA1510	Linear Control	Gianluca Bianchin	[q1] [30h+30h] [5 Crédits] > Facilités pour suivre le cours en français	хх
S LMECA1451	Fabrication mécanique	Laurent Delannay Aude Simar	FK [q2] [30h+30h] [5 Crédits] 🕮	хх
S LMECA2645	Risques technologiques majeurs de l'industrie	Denis Dochain Aude Simar	🕦 [q2] [30h] [3 Crédits] 🕮	хх

Options et cours au choix en connaissances socio-économiques [3.0]

Option en enjeux de l'entreprise

- Obligatoire
- 🛭 Au choix
- △ Exceptionnellement, non organisé cette année académique 2022-2023
- ${\it extstyle extstyle$
- ⊕ Organisé cette année académique 2022-2023 mais non organisé l'année suivante
- △ ⊕ Exceptionnellement, non organisé cette année académique 2022-2023 et l'année suivante
- Activité avec prérequis
- ⊕ Cours accessibles aux étudiants d'échange
- [FR] Langue d'enseignement (FR, EN, ES, NL, DE, ...)

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

Les étudiant·es doivent réussir au moins 15 crédits pour valider l'option.

Cette option ne peut être prise simultanément avec l'option « Formation interdisciplinaire en création d'entreprise - CPME ».

Bloc

1 2

o Contenu:

• LEPL2211	Business issues introduction	Benoît Gailly	[q2] [30h] [3 Crédits] > Facilités pour suivre le cours en français	X	X	Ī
○ LEPL2212	Financial performance indicators	André Nsabimana	[q2] [30h+5h] [4 Crédits] > Facilités pour suivre le cours en français	X	X	
○ LEPL2214	Droit, régulation, contexte juridique	Vincent Cassiers Werner Derycke	[q1] [30h+5h] [4 Crédits]	X	X	

o Un cours parmi

De 3 à 5crédit(s)

窓 LEPL2210	Ethics and ICT	Axel Gosseries Olivier Pereira	[q2] [30h] [3 Crédits] > Facilités pour suivre le cours en français	X	· >	Κ
S LLSMS2280	Business Ethics and Compliance Management	Carlos Desmet	EN [q1] [30h] [5 Crédits] @	X	. >	K

SMGEST1108	Marketing	Nadia Sinigaglia	[q2] [45h+20h] [6 Crédits]	X	X
MLSMM2136 ■	Tendances en Digital Marketing	Ingrid Poncin	[q2] [30h] [5 Crédits]		X
	E-comportement du consommateur	Karine Charry	FR [q2] [30h] [5 Crédits] @		X

□ LISMS2036	Supply Chain Procurement	Constantin Blome Antony Paulraj (supplée Per Joakim Agrell)	N [q1] [30h] [5 Crédits] 🕮	X	X
S LLSMS2038	Procurement Organisation and Scope	Constantin Blome	□N [q1] [30h] [5 Crédits] ⊕	X	X
LLSMS2037	Sourcing Strategy	Constantin Blome Michael Henke	N [q1] [30h] [5 Crédits] 🕮	X	X

□ Variante de l'option "Enjeux de l'entreprise" pour les sciences informatiques

Les étudiants en sciences informatiques qui ont déjà suivi de nombreux cours dans la discipline durant leur programme de bachelier, peuvent suivre cette option facultaire en sélectionnant entre 16 et 20 crédits parmi les cours de la mineure en gestion pour les sciences informatiques

Option Formation interdisciplinaire en création d'entreprise - CPME

Commune à la plupart des masters de l'EPL, cette option a pour objectif de familiariser l'étudiant e avec les spécificités de l'entreprenariat et de la création d'entreprise afin de développer chez lui les aptitudes, connaissances et outils nécessaires à la création d'entreprise.

Cette option rassemble des étudiants de différentes facultés en équipes interdisciplinaires afin de créer un projet entrepreneurial. La formation interdisciplinaire en création d'entreprise (CPME) est une option qui s'étend sur 2 ans et s'intègre dans plus de 30 Masters de 9 facultés/écoles de l'UCLouvain. Le choix de l'option CPME implique la réalisation d'un mémoire interfacultaire (en équipe) portant sur un projet de création d'entreprise. L'accès à cette option, ainsi qu'à chacun des cours, est limité aux étudiant es sélectionnés sur dossier. Toutes les informations sur www.uclouvain.be/cpme.

L'étudiant.e qui choisit de valider cette option doit sélectionner au minimum 20 crédits et au maximum 25 crédits. Cette option n'est pas accessible en anglais et ne peut être prise simultanément avec l'option « Enjeux de l'entreprise ».

- Obligatoire
- S Au choix
- △ Exceptionnellement, non organisé cette année académique 2022-2023
- O Non organisé cette année académique 2022-2023 mais organisé l'année suivante
- ⊕ Organisé cette année académique 2022-2023 mais non organisé l'année suivante
- $\Delta \oplus \mathsf{Exceptionnellement},$ non organisé cette année académique 2022-2023 et l'année suivante
- Activité avec prérequis
- ® Cours accessibles aux étudiants d'échange
- [FR] Langue d'enseignement (FR, EN, ES, NL, DE, ...)

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

Bloc annuel

1 2

o Contenu:

o Cours obligatoires en création de petites et moyennes entreprises

O LCPME2001	Théorie de l'entrepreneuriat	Frank Janssen	FR [q1] [30h+20h] [5 Crédits] 🛞	Х	
O LCPME2002	Aspects juridiques, économiques et managériaux de la création d'entreprise	Yves De Cordt Marine Falize	[q1] [30h+15h] [5 Crédits] 🖲	x	
○ LCPME2003	Plan d'affaires et étapes-clefs de la création d'entreprise Les séances du cours LCPME2003 sont réparties sur les deux blocs annuels du master. L'étudiant doit les suivre dès le bloc annuel 1, mais ne pourra inscrire le cours que dans son programme de bloc annuel 2.	Frank Janssen	117 [q2] [30h+15h] [5 Crédits] 🖲		×
O LCPME2004	Séminaire d'approfondissement en entrepreneuriat	Frank Janssen	FR [q2] [30h+15h] [5 Crédits] 🛞	Х	

☎ Cours préalable CPME

Les étudiants qui n'ont pas suivi un cours de gestion durant leur formation antérieure doivent mettre au programme de cette option le cours LCPME2021.

O LCPME2021	Financer son projet	Yves De Rongé	[q2] [30h+15h] [5 Crédits] (#	X

Cours au choix en connaissances socio-économiques

- Obligatoire
- 🛭 Au choix
- △ Exceptionnellement, non organisé cette année académique 2022-2023
- Non organisé cette année académique 2022-2023 mais organisé l'année suivante
- \oplus Organisé cette année académique 2022-2023 mais non organisé l'année suivante
- $\Delta \oplus \mathsf{Exceptionnellement},$ non organisé cette année académique 2022-2023 et l'année suivante
- Activité avec prérequis
- Cours accessibles aux étudiants d'échange
- ™ Cours NON accessibles aux étudiants d'échange
- [FR] Langue d'enseignement (FR, EN, ES, NL, DE, ...)

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

Bloc annuel

1 2

☎ LFSA2995	Stage en entreprise	Dimitri Lederer Jean-Pierre Raskin	[q1+q2] [30h] [10 Crédits] 🕮	х	()	(
窓 LFSA2212	Innovation classes	Benoît Macq Jean-Pierre Raskin Benoît Raucent	[q1] [30h+15h] [5 Crédits] > Facilités pour suivre le cours en français	X	()	
State LMECA2711 State LMECA2711	Quality management and control.	Nicolas Bronchart	[q2] [30h+30h] [5 Crédits]	X	()	(
S LMECA2645	Risques technologiques majeurs de l'industrie	Denis Dochain Aude Simar	[q2] [30h] [3 Crédits]	X	()	

Autres cours au choix

Les étudiant-e-s peuvent également inscrire à leur programme tout cours faisant partie des programmes d'autres masters de l'EPL moyennant l'approbation du jury restreint.

Autres cours au choix

Obligatoire

🛭 Au choix

△ Exceptionnellement, non organisé cette année académique 2022-2023

O Non organisé cette année académique 2022-2023 mais organisé l'année suivante

⊕ Organisé cette année académique 2022-2023 mais non organisé l'année suivante

 $\Delta \oplus \mathsf{Exceptionnellement},$ non organisé cette année académique 2022-2023 et l'année suivante

Activité avec prérequis

Cours accessibles aux étudiants d'échange

FR] Langue d'enseignement (FR, EN, ES, NL, DE, ...)

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

Bloc annuel

1 2

o Contenu:

Les étudiant es peuvent également inscrire à leur programme tout cours faisant partie des programmes d'autres masters de l'EPL moyennant l'approbation du jury restreint.

Les étudiant es peuvent inclure dans leurs cours au choix tout cours de langues de l'ILV. Leur attention est attirée sur les séminaires d'insertion professionnelle suivants:

X LALLE2500	Séminaire d'insertion professionnelle: allemand	Caroline Klein (coord.)	DE [q1+q2] [30h] [3 Crédits] 🕮	X	X
B LALLE2501	Séminaire d'insertion professionnelle: allemand	Caroline Klein (coord.)	DE [q1+q2] [30h] [5 Crédits]	X	X
ESPA2600	Séminaire d'insertion professionnelle - Epagnol (B2.2 /C1)	Rocio Cuberos Vicente Paula Lorente Fernandez (coord.)	[q1] [30h] [3 Crédits] 🕮	x	X
LESPA2601	Séminaire d'insertion professionnelle - Espagnol (B2.2 /C1)	Rocio Cuberos Vicente Paula Lorente Fernandez (coord.)	[q1] [30h] [5 Crédits] 🕮	x	X
S LNEER2500	Séminaire d'insertion professionnelle: néerlandais - niveau moyen	Marie-Laurence Lambrecht (coord.)	[q1 ou q2] [30h] [3 Crédits]	X	X
UNEER2600	Séminaire d'insertion professionnelle: néerlandais - niveau approfondi	Dag Houdmont Marie-Laurence Lambrecht (coord.)	NL [q1 ou q2] [30h] [3 Crédits] 🕮	X	X

⇔ Dynamique des groupes

窓 LEPL2351	Dynamique des groupes - Q1	Delphine Ducarme Claude Oestges (coord.) Thomas Pardoen Benoît Raucent	ER [q1] [15h+30h] [3 Crédits] ®	x	X
窓 LEPL2352	Dynamique des groupes - Q2	Delphine Ducarme Claude Oestges (coord.) Thomas Pardoen Benoît Raucent	⊞ [q2] [15h+30h] [3 Crédits]	X	X

L'étudiant-e peut choisir maximum 8 ects de cours hors EPL considérés comme non-disciplinaires par la commission de diplôme

PRÉREQUIS ENTRE COURS

Le **tableau** ci-dessous reprend les activités (unités d'enseignement - UE) pour lesquelles existent un ou des prérequis au sein du programme, c'est-à-dire les UE du programme dont les acquis d'apprentissage doivent être certifiés et les crédits correspondants octroyés par le jury avant inscription à cette UE.

Ces activités sont par ailleurs identifiées dans le programme détaillé : leur intitulé est suivi d'un carré jaune.

Prérequis et programme annuel de l'étudiant-e

Le prérequis étant un préalable à l'inscription, il n'y a pas de prérequis à l'intérieur d'un même bloc annuel d'un programme. Les prérequis sont définis entre UE de blocs annuels différents et influencent donc l'ordre dans lequel l'étudiant-e pourra s'inscrire aux UE du programme.

En outre, lorsque le jury valide le programme individuel d'un e étudiant e en début d'année, il en assure la cohérence :

- Il peut imposer à l'étudiant-e de combiner l'inscription à deux UE distinctes qu'il considère nécessaires d'un point de vue pédagogique
- En fin de cycle uniquement, il peut transformer un prérequis en corequis.

Pour plus d'information, consulter le règlement des études et des examens (https://uclouvain.be/fr/decouvrir/rgee.html).

Tableau des prérequis

MLSMM2134 "E-comportement du consommateur" a comme prérequis MGEST1108

• MGEST1108 - Marketing

MLSMM2136 "Tendances en Digital Marketing" a comme prérequis MGEST1108

• MGEST1108 - Marketing

COURS ET ACQUIS D'APPRENTISSAGE DU PROGRAMME

Pour chaque programme de formation de l'UCLouvain, un référentiel d'acquis d'apprentissage précise les compétences attendues de tout diplômé au terme du programme. Les fiches descriptives des unités d'enseignement du programme précisent les acquis d'apprentissage visés par l'unité d'enseignement ainsi que sa contribution au référentiel d'acquis d'apprentissage du programme.

MECA2M - Informations diverses

CONDITIONS D'ACCÈS

Les conditions d'accès aux programmes de masters sont définies par le décret du 7 novembre 2013 définissant le paysage de l'enseignement supérieur et l'organisation académique des études.

Tant les conditions d'accès générales que spécifiques à ce programme doivent être remplies au moment même de l'inscription à l'université.

Sauf mention explicite, les bacheliers, masters et licences repris dans ce tableau/dans cette page sont à entendre comme étant ceux délivrés par un établissement de la Communauté française, flamande ou germanophone ou par l'Ecole royale militaire.

SOMMAIRE

- > Conditions d'accès générales
- > Conditions d'accès spécifiques
- > Bacheliers universitaires
- > Bacheliers non universitaires
- > Diplômés du 2° cycle universitaire
- > Diplômés de 2° cycle non universitaire
- > Accès par valorisation des acquis de l'expérience
- > Accès sur dossier
- > Procédures d'admission et d'inscription

Conditions d'accès spécifiques

Ce programme étant enseigné en anglais, aucune preuve préalable de maitrise de la langue française n'est requise. Une preuve de niveau d'anglais est demandée aux titulaires d'un diplôme non belge, voir critères académiques d'évaluation des dossiers de l'Accès sur dossier

Bacheliers universitaires

Diplômes	Conditions spécifiques	Accès	Remarques
Bacheliers universitaires de l'U	CLouvain		
Bachelier en sciences de l'ingénieur, orientation ingénieur civil		Accès direct	L'étudiant n'ayant pas suivi au préalable la filière dans la discipline de son master ingénieur civil peut se voir proposer par le jury une adaptation de son programme de master.
Autres bacheliers de la Commu l'Ecole royale militaire inclus)	unauté française de Belgique (ba	acheliers de la Communauté ger	manophone de Belgique et de
Bachelier en sciences de l'ingénieur, orientation ingénieur civil		Accès direct	L'étudiant n'ayant pas acquis au préalable les compétences équivalentes à la filière dans la discipline de son master ingénieur civil peut se voir proposer par le jury une adaptation de son programme de master.
Bacheliers de la Communauté	flamande de Belgique		
Bachelor in de ingenieurswetense	chappen	Accès moyennant compléments de formation	
Bacheliers étrangers			
Bachelier en sciences de l'ingénieur	Bacheliers provenant du réseau Cluster	Accès direct	L'étudiant n'ayant pas acquis au préalable les compétences équivalentes à la filière dans la discipline de son master ingénieur civil peut se voir proposer par le jury une

UCLouvain - Université catholique de Louvain Catalogue des formations 2022-2023

MECA2M: Master [120] : ingénieur civil mécanicien

			adaptation de son programme de master.
Bachelier en sciences de l'ingénieur	Autres institutions	Accès sur dossier	Voir "Accès sur dossier"

Bacheliers non universitaires

> En savoir plus sur les passerelles vers l'université

Diplômés du 2° cycle universitaire

Diplômes	Conditions spécifiques	Accès	Remarques
Licenciés			
Masters			
Master ingénieur civil		Accès direct	

Diplômés de 2° cycle non universitaire

Accès par valorisation des acquis de l'expérience

> Il est possible, à certaines conditions, de valoriser son expérience personnelle et professionnelle pour intégrer une formation universitaire sans avoir les titres requis. Cependant, la valorisation des acquis de l'expérience ne s'applique pas d'office à toutes les formations. En savoir plus sur la Valorisation des acquis de l'expérience.

Accès sur dossier

L'accès sur dossier signifie que, sur base du dossier soumis, l'accès au programme peut soit être direct, soit nécessiter des compléments de formation pour un maximum de 60 crédits ECTS, soit être refusé.

La première étape de la procédure consiste à introduire un dossier en ligne (voir www.uclouvain.be/fr/etudier/inscriptions/futurs-etudiants.html).

Des informations complémentaires sur les critères académiques d'évaluation des dossiers sont disponibles ici (l'adresse de contact: epl-admission@uclouvain.be).

Procédures d'admission et d'inscription

Consultez le Service des Inscriptions de l'université.

PÉDAGOGIE

Modalités qui contribuent à favoriser l'interdisciplinarité

Le programme du *master ingénieur civil en mécanique* est directement lié au rôle de l'ingénieur civil mécanicien qui est au centre de l'industrie actuelle : robots, moyens de transport, production d'énergie, micro-dispositifs médicaux, fusées spatiales, tout se passe via son intermédiaire. L'ingénieur mécanicien doit concevoir des produits très divers comme des instruments, des véhicules, des machines ou des systèmes plus larges. Il doit aussi concevoir les procédés de fabrication de ces produits. Il joue enfin un rôle prépondérant dans l'organisation, le contrôle, l'entretien et la maintenance des systèmes de production. Sa polyvalence est requise dans des secteurs aussi contrastés que l'aéronautique, l'énergétique, la métallurgie, la pétrochimie, l'automobile ou la biomécanique.

Le programme d'études d'ingénieur civil mécanicien doit donc être par nature **polyvalent**. D'une part, le domaine disciplinaire de la mécanique est très étendu et comporte des lignes de contact avec la plupart des autres domaines d'ingénierie, notamment, l'électricité, les matériaux, la chimie, le génie civil, l'automatique, la modélisation. D'autre part, le caractère non-exclusif des options, la flexibilité dans la constitution du programme de chaque étudiant permet d'acquérir une compétence pointue dans l'un ou l'autre domaine, tout en conservant un solide bagage scientifique et technique. En outre, l'étudiant qui le souhaite a la possibilité d'ouvrir largement sa formation à des disciplines non-techniques par le biais de cours à option.

Les compétences de recherche de l'équipe enseignante sont extrêmement variées et vont de la simulation numérique avancée, aux aspects énergiques et aux techniques de conception : c'est incontestablement une richesse de la formation proposée à l'UCL. Le mémoire de fin d'études est souvent une dernière source d'interdisciplinarité : il est possible de choisir son promoteur de recherche parmi tous les académiques de l'Ecole Polytechnique de Louvain ou de l'effectuer dans une autre Institution tel que le Von Karman Institute.

Variété de stratégies d'enseignement

La pédagogie utilisée est en continuité avec celle du programme de bachelier en sciences de l'ingénieur : apprentissage actif, mélange équilibré de travail de groupe et de travail individuel, place importante réservée au développement de compétences non techniques. Une caractéristique forte du programme de mécanique est l'immersion des étudiants dans les laboratoires de recherche des enseignants : cela forme les étudiants par le questionnement inhérent à la recherche.

Le programme met en avant des **projets**, y compris un projet de grande ampleur mettant les groupes d'étudiants en situation semiprofessionnelle. Les projets intégrant plusieurs matières développent chez les étudiants un esprit critique, qui les rend capables de concevoir, modéliser, réaliser et valider un prototype. En outre, au sein de l'option *création de petites et moyennes entreprises*, les étudiants doivent réaliser des travaux de groupe par équipes pluridisciplinaires durant toute la durée du master.

Le travail de fin d'études représente la moitié de la charge de travail de la dernière année, il offre la possibilité de traiter en profondeur un sujet donné et constitue, par sa taille et le contexte dans lequel il se déroule, une véritable initiation à la vie professionnelle d'ingénieur ou de chercheur. Ce travail est réalisé sur un thème relatif à une ou plusieurs des disciplines fondamentales de la mécanique, au sein de l'Ecole Polytechnique de Louvain, de la Faculté des Sciences ou du *Von Karman Institute*. Il peut aussi se faire en lien direct avec une entreprise sur un sujet d'application ou de recherche. Finalement, pour les étudiants avec l'option *création de petites et moyennes entreprises*, le travail de fin d'étude est conçu de manière interdisciplinaire afin de permettre à des groupes de trois étudiants, idéalement issus de facultés différentes, de travailler sur un projet de création d'entreprise.

Diversité de situations d'apprentissage

L'étudiant sera confronté à des dispositifs pédagogiques variés et adaptés aux différentes disciplines : cours magistraux, projets, séances d'exercices, séances d'apprentissage par problème, études de cas, laboratoires expérimentaux, stages industriels ou de recherche, travaux de groupes, travaux à effectuer seul, séminaires. Dans certaines matières, l'e-learning permet aux étudiants de se former en suivant leur rythme et d'effectuer une expérimentation virtuelle.

Cette variété de situations développe les compétences disciplinaires ainsi que transversales et non-techniques. Ainsi, l'étudiant acquiert son savoir de manière progressive, tout en développant son autonomie, son sens de l'organisation, sa maîtrise du temps et ses capacités de communication.

EVALUATION AU COURS DE LA FORMATION

Les méthodes d'évaluation sont conformes au <u>règlement des études et des examens</u> (https://uclouvain.be/fr/decouvrir/rgee.html). Plus de précisions sur les modalités propres à chaque unité d'apprentissage sont disponibles dans leur fiche descriptive, à la rubrique « Mode d'évaluation des acquis des étudiants ».

Les activités d'enseignement sont évaluées selon les règles en vigueur à l'Université (voir <u>le règlement des études et des examens</u> (https://uclouvain.be/fr/decouvrir/rgee.html)) à savoir des examens écrits et oraux, des examens de laboratoire, des travaux personnels ou en groupe, des présentations publiques de projets et défense de mémoire.

La diversité des dispositifs d'évaluation permet de tester l'ensemble des compétences du référentiel d'acquis d'apprentissage. Pour tester les acquis d'apprentissage de l'axe 1, les examens écrits ou oraux sont appropriés. Les QCM permettent d'évaluer les connaissances mais plus difficilement la capacité des étudiants à les mobiliser dans diverses situations. Ils ne sont donc jamais utilisés seuls. Ils sont complétés par des questions ouvertes. Pour certains examens écrits, l'énoncé commence par la présentation d'une situation-problème nouvelle pour l'étudiant et la plupart des questions font alors référence à différentes étapes de la résolution de cette situation-problème. L'examen n'est alors plus exercice de restitution ou même de dissertation mais un réel travail de mobilisation des acquis pour résoudre une nouvelle situation-problème. Cela permet alors de tester les compétences de l'étudiant vis-à-vis de certaines étapes de la démarche de l'ingénieur (axe 2). L'axe 3 est principalement évalué via les séminaires et le travail de fin d'étude en master. Les axes 4-6 sont évalués par divers dispositifs. Par exemple, pour l'axe 5, la communication à l'écrit peut être évaluée via les examens écrits ou la rédaction de rapports, la communication orale est quant à elle évaluée via les examens oraux, les défenses orales, les présentations orales de travaux, de rapports.

L'évaluation certificative des apprentissages pour les axes 1 et 2 est réalisée principalement à l'occasion des examens de fin de quadrimestre. Les questions portent majoritairement sur des applications de type exercices. Ceci est en cohérence avec les acquis

d'apprentissage des enseignements correspondants. Les objectifs de l'axe 3 à 6, sont le plus souvent travaillés durant des mini-projets disciplinaires à réaliser en petits groupes. Ils sont inclus dans le dispositif d'un enseignement. Chaque fois que cela est le cas, le rapport de ce mini-projet est évalué et la note contribue à la note finale. Dans certains cas, l'enseignement est organisé sous la forme d'APP (apprentissage par problèmes), par exemple le cours obligatoire LMECA2801. Dans ce cas les rapports des APP réalisés en groupe contribuent à la note finale pour l'enseignement.

Pour en savoir plus sur les modalités d'évaluation, l'étudiant est invité à consulter la fiche descriptive des activités.

Pour l'obtention de la moyenne, les notes obtenues pour les unités d'enseignement sont pondérées par leurs crédits respectifs.

MOBILITÉ ET INTERNATIONALISATION

L'Ecole Polytechnique de Louvain (EPL) participe depuis leur création aux divers <u>programmes de mobilité</u> (https://uclouvain.be/fr/facultes/epl/mobilite-internationale.html) qui se sont mis en place tant au niveau européen qu'à l'échelle du reste de la planète.

FORMATIONS ULTÉRIEURES ACCESSIBLES

Master de spécialisation accessible : Master de spécialisation en génie nucléaire

Formations doctorales accessibles : via l'école doctorale GRASMECH (GRAduate School in MECHanics)

Par ailleurs, des masters UCLouvain (généralement 60) sont largement accessibles aux diplômés masters UCLouvain. Par exemple :

- les différents Masters 60 en sciences de gestion (accès direct movennant examen du dossier); voir dans cette liste.
- le Master [60] en information et communication à Louvain-la-Neuve ou le Master [60] en information et communication à Mons

GESTION ET CONTACTS

Gestion du programme

Entité

Entité de la structure Dénomination Faculté Secteur Sigle

Adresse de l'entité

SST/EPL/MECA

Commission de programme - Ingénieur civil mécanicien (MECA)

Ecole polytechnique de Louvain (EPL) Secteur des sciences et technologies (SST)

MECA

Place du Levant 2 - bte L5.04.03

1348 Louvain-la-Neuve Tél: +32 (0) 10 47 22 00

Responsable académique du programme: Philippe Chatelain

Jury

- Claude Oestges
- Vincent Legat

Personne(s) de contact

• Isabelle Hennau