Table of contents

Introduction ... 2
Teaching profile .. 3
Learning outcomes ... 3
Programme structure .. 4
Programme ... 4
Detailed programme by subject 15
Course prerequisites ... 15
The programme’s courses and learning outcomes 15
Information .. 16
Access Requirements .. 16
Teaching method ... 18
Evaluation ... 18
Mobility and/or Internationalisation outlook 18
Possible trainings at the end of the programme 18
Contacts ... 19
Introduction

In order to meet essential challenges such as energy management, communication and information, sustainable development and climate change, it is essential to foster scientific and technological creativity in the field of industrial materials and processes.

You

- have acquired solid knowledge of chemical or physical engineering and mathematics;
- are interested in research and development as well as production and management in cutting edge industries: chemistry, metals and materials, metallic products, plastics, electronics or the process industry;
- would like to take advantage of the most recent research advances in your area of specialisation.

Your future job

Jobs in chemical and materials engineering range from research and development to production and marketing.

You can become:

- A « systems » engineer :
 Who designs new products or devices with specific properties or functions, e.g. a mitral valve, an electroluminescent polymer for a flexible display, a metallic alloy or a light composite for aerospace applications, a nanomaterial usable for memory storage.
- A « process » engineer :
 Who develops new production processes or manages the operation of production units, e.g. a plastics extrusion line, a factory for the extraction of a pharmaceutical compounds from a given plant, a water or waste treatment plant, a production line for electronic components, a production unit for a high purity chemical compound, etc.
- A combination of both :
 For instance, you develop a polymer material for the automotive industry and the synthesis/compounding process required for its industrial scale up.

Your programme

The master offers:

- a specialised training in an international environment: from 2015-2016, all courses organized by the programme commission (i.e. courses with LMAPR2xxx designation) are taught in English; assistance provided as needed to French-speaking students (“French-friendly” approach);
- an interdisciplinary approach to problem solving, rooted in physics and chemistry;
- research-based training: integration of students in experimental laboratories, research projects;
- exposure to industry: factory visits, industry internships, graduation project in a company;
- the possibility to obtain a dual degree if you are accepted in the Master's degree programme "Functionalised Advanced Materials & Engineering" (FAME), part of the Erasmus Mundus programme. It is entirely in English and starts with a year of general training either at the National Polytechnic Institute of Grenoble (France) or at the University of Augsburg (Germany); in the second year, students specialise in a field of materials sciences at one of 7 partner universities. UCLouvain offers a specialisation in materials and nanostructures engineering. Upon completing the programme, students are granted a dual Master's degree. More information available on the web page https://www.uclouvain.be/master-fame.html
Learning outcomes

Building on fundamental scientific and technical knowledge (physics, chemistry, mechanics, mathematics) acquired during the Bachelor’s program, the master’s program in chemistry and materials science enables the student to develop polytechnic as well as specialized competences relating to materials, nanotechnology, as well as chemical and environmental engineering, which will allow him/her to fill leadership positions in the design and production of advanced materials and systems as well as the development and management of advanced technological processes.

The program takes up the broad challenges confronting today’s engineers, thanks to a curriculum taught entirely in English (courses with MAPR2xxx designation) with assistance provided to French-speaking students.

The program combines coherence and flexibility thanks to a modular structure: a specialized focus and a common core taken by all students, complemented by major and elective courses, which provides students with a specific focus to their training. Depending on the majors chosen, the student may become:

- A systems engineer who designs new products or devices with targeted properties and functions;
- A process or chemical engineer who develops new production processes and optimizes or manages production facilities;
- A combination of both.

Through these activities, the chemical and materials engineer systematically takes into account constraints, values and rules (legal, ethical or economic).

He/she is autonomous, capable of managing industrial projects and comfortable working as part of a team. He/she is able to communicate in a foreign language, English in particular.

On successful completion of this programme, each student is able to:

1. demonstrate mastery of a solid body of knowledge and skills in engineering sciences allowing one to solve problems related to materials and procedures (axis 1).
 1.1 Identify and use concepts, laws and reasoning to solve a realistic problem.
 1.2 Identify, develop and use adequate modelling and calculation tools to solve realistic and complex problems.
 1.3 Verify the likelihood and confirm the validity of the results relating to a given problem.
2. organise and carry out an engineering procedure for the development of a specific material, a complex material system, a high purity product and/or complex compound or a process meeting a need or solving a particular problem (axis 2).
 2.1 Analyse a problem or functional requirement of realistic complexity and formulate a corresponding specifications note. An industrial specification for a material or a process contains many elements ranging from technical demands, to economic and logistic constraints as well as legal and safety aspects.
 2.2 Model a problem and design one or more original technical solutions corresponding to the specifications note.
 2.3 Evaluate and classify solutions with regard to all the criteria in the specifications note: efficiency, feasibility, quality, security and interaction/integration with other processes/components.
 2.4 Implement and test a solution in the form of a mock-up, a prototype, a lab or pilot module and/or a numerical model.
2.5 Come up with recommendations to improve the operationalisation of a solution under study.
3. organise and carry out a research project to understand a physical or chemical phenomenon or a new problem in materials engineering and science or chemical engineering (axis 3).
 3.1 Document and summarize the existing body of knowledge in the area under consideration.
 3.2 Propose a model and/or an experimental device in order to simulate and test hypotheses relating to the phenomenon under study.
 3.3 Write a summary report that explains the potential of the theoretical or technical innovations resulting from the research project.
4. contribute as part of a team to the planning and completion of a project while taking into account its objectives, allocated resources, and constraints (axis 4).
 4.1 Frame and explain the project’s objectives (in terms of performance indicators) while taking into account its issues and constraints (resources, budget, deadlines).
 4.2 Collaborate on a work schedule, deadlines and roles.
 4.3 Work in a multidisciplinary environment with peers holding different points of view; manage any resulting disagreement or conflicts.
 4.4 Make individual as well as team decisions when choices have to be made, whether they are about technical solutions or the division of labour to complete a project.
5. communicate effectively (orally or in writing) with the goal of carrying out assigned projects in the workplace. Ideally, the student should be able to communicate in one or more foreign languages in addition to his/her mother tongue (axis 5).
 5.1 Clearly identify the needs of the client or the user: question, listen and understand all aspects of their request and not just the technical aspects.

5.2 Present arguments and adapt to the language of the interlocutors: technicians, colleagues, clients, superiors.
5.3 Communicate through graphs and diagrams: interpret a diagram, present project results, structure information.
5.4 Read and use different technical documents (rules, plans, specification notes).
5.5 Draft documents that take into account demands and conventions of the field.
5.6 Make a convincing oral presentation possibly using modern communication techniques.

6. demonstrate rigor, openness, critical thinking and a sense of ethics in your work. Using the technological and scientific innovations at your disposal, validate the socio-technical relevance of a hypothesis or a solution and act responsibly (axis 6).

6.1 Apply the standards of your discipline (terminology, measurement units, quality, security and environmental standards).

6.2 Find solutions that go beyond strictly technical issues by considering sustainable development and the ethical aspects of a project (for example, “life cycle analysis” among others).

6.3 Demonstrate critical awareness of a technical solution in order to verify its robustness and minimize the risks that may occur during implementation. (This skill is mainly developed during the graduation project which requires the critical analysis of implemented techniques as well as research for the Master’s thesis.)

6.4 Evaluate oneself and independently develop necessary skills for “lifelong learning” in the field (this skill is most notably developed through projects requiring bibliographic research).

Programme structure

The Master’s degree programme consists of:
- a core curriculum (30 credits) including the graduation project (28 credits) and a religion course (2 credits);
- a professional focus (30 credits);
- one major;
- elective courses to round out the programme.

The overwhelming majority of courses is given in English (all courses with LMAPR2xxx designation and a large proportion of the courses organized by EPL), with assistance provided to French-speaking students (“French-friendly” approach).

The student MUST choose at least one major among the two proposed in chemistry and materials.

He/she is further ALLOWED to choose a major among the two proposed in Business management and creation.

Normally, professional focus courses are taken during the first annual unit and the graduation project during the last one. However, students may (depending on their project) take these courses in the 1st or 2nd annual unit as long as they have completed the course prerequisites. This is particularly the case for students who complete part of their education abroad (ERASMUS or MERCATOR exchange, FAME dual degree).

If during the student’s previous studies, he or she has already taken a course that is part of the programme (either required or elective) or they have participated in an academic activity that is approved by the programme commission, the student will replace them with other elective courses or activities that are in keeping with programme regulations.

Regardless of the focus, major or elective courses selected, the Master’s degree programme will consist of minimum of 120 credits divided over two annual units. The first annual unit has to consist of a minimum of 60 credits, the second the number of credits needed to complete the Master’s degree.

The student will verify that he/she has obtained the minimum number of credits required for the approval of the diploma as well as for the approval of the major, in order to include them in the diploma supplement.

Programmes that respect the above rules will be submitted for approval to the relevant Master’s degree programme commission.
CORE COURSES [27.0]

- **Mandatory**
- **Optional**
- ▲ Not offered in 2022-2023
- ◆ Not offered in 2022-2023 but offered the following year
- ◆◆ Offered in 2022-2023 but not the following year
- ◆◆◆ Not offered in 2022-2023 or the following year
- ◆◆◆◆ Activity with requisites
- ◆◆◆◆◆ Open to incoming exchange students
- ◆◆◆◆◆◆ Not open to incoming exchange students
- [FR] Teaching language (FR, EN, ES, NL, DE, ...)

Click on the course title to see detailed informations (objectives, methods, evaluation...)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Year 1</th>
<th>Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LKIMA2990</td>
<td>Graduation project/End of studies project</td>
<td>[q1+q2]</td>
<td>[25 Credits]</td>
</tr>
<tr>
<td></td>
<td>The graduation project can be written and presented in French or English, in consultation with the supervisor. It may be accessible to exchange students by prior agreement between the supervisors and/or the two universities.</td>
<td>▲</td>
<td>x</td>
</tr>
<tr>
<td>LEPL2020</td>
<td>Professional integration work</td>
<td>[q1+q2]</td>
<td>[30h+15h] [2 Credits]</td>
</tr>
<tr>
<td></td>
<td>Les modules du cours LEPL2020 sont organisés sur les deux blocs annuels du master. Il est fortement recommandé à l'étudiant.e de les suivre dès le bloc annuel 1, mais il.e elle ne pourra inscrire le cours que dans son programme de bloc annuel 2.</td>
<td>▲</td>
<td>x</td>
</tr>
</tbody>
</table>
PROFESSIONAL FOCUS [30.0]

- **Mandatory**
- **Optional**
- △ Not offered in 2022-2023
- ○ Not offered in 2022-2023 but offered the following year
- ★ Offered in 2022-2023 but not the following year
- △ ○ Not offered in 2022-2023 or the following year
- ● Activity with requisites
- ○ Open to incoming exchange students
- ● Not open to incoming exchange students
- ● Teaching language (FR, EN, ES, NL, DE, ...)

Click on the course title to see detailed informations (objectives, methods, evaluation...)

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
</table>

Content:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Faculty</th>
<th>Credits</th>
<th>Hours</th>
<th>Teaching Language</th>
<th>Open to Incoming Exchange Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMAPR2001</td>
<td>Project "chemical & materials engineering for a sustainable future"</td>
<td>Juray De Wilde, Pascal Jacques, Alain Jonas, Patricia Luis Alconero, Samuel Poncé</td>
<td>[q2]</td>
<td>[45h+60h]</td>
<td>[10 Credits]</td>
<td>✗</td>
</tr>
<tr>
<td>LMAPR2013</td>
<td>Science and engineering of metals and ceramics</td>
<td>Pascal Jacques</td>
<td>[q1]</td>
<td>[30h+30h]</td>
<td>[5 Credits]</td>
<td>✗</td>
</tr>
<tr>
<td>LMAPR2019</td>
<td>Polymer Science and Engineering</td>
<td>Sophie Demoustier, Alain Jonas (coord.), Evelyne Van Ruymbeke</td>
<td>[q1]</td>
<td>[45h+15h]</td>
<td>[5 Credits]</td>
<td>✗</td>
</tr>
<tr>
<td>LMAPR2231</td>
<td>Metallurgical and electrochemical processes</td>
<td>Joris Proost</td>
<td>[q2]</td>
<td>[30h+22.5h]</td>
<td>[5 Credits]</td>
<td>✗</td>
</tr>
<tr>
<td>LMAPR2430</td>
<td>Industrial processes for the production of base chemicals</td>
<td>Juray De Wilde</td>
<td>[q1]</td>
<td>[30h+22.5h]</td>
<td>[5 Credits]</td>
<td>✗</td>
</tr>
</tbody>
</table>

OPTIONS

Dans la rubrique "Options du master ingénieur civil en chimie et science des matériaux", l'étudiant-e doit valider au moins une des options proposées.

Dans la rubrique "Options et cours au choix en connaissances socio-économiques", l'étudiant-e valide une des deux options ou choisit obligatoirement au minimum 3 crédits parmi les cours au choix ou les cours de l’option en enjeux de l'entreprise.

Major in chemical and materials

- ▶ Major in chemical engineering [en-prog-2022-kima2m-kima221o]
- ▶ Major in materials science and engineering [en-prog-2022-kima2m-kima222o]
- ▶ Cours au choix disciplinaires [en-prog-2022-kima2m-kima237o]

Options et cours au choix en connaissances socio-économiques

- ▶ Business risks and opportunities [en-prog-2022-kima2m-kima235o]
- ▶ Major in small and medium sized business creation [en-prog-2022-kima2m-kima236o]
- ▶ Cours au choix en connaissances socio-économiques [en-prog-2022-kima2m-kima200o]

Others elective courses

- ▶ Other elective courses [en-prog-2022-kima2m-kima952o]

MAJOR IN CHEMICAL ENGINEERING [15.0]

- **Mandatory**
- **Optional**
- △ Not offered in 2022-2023
- ⊙ Not offered in 2022-2023 but offered the following year
- ⊙ Offered in 2022-2023 but not the following year
- △ ⊙ Not offered in 2022-2023 or the following year
- Activity with requisites.
- ⊙ Open to incoming exchange students
- ⊙ Not open to incoming exchange students
- [FR] Teaching language (FR, EN, ES, NL, DE, ...)

Content:

Required courses (15 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMAPR2118</td>
<td>Fluid-fluid separations</td>
<td>Patricia Luis Alconero, Denis Mignon</td>
<td>[q2]</td>
<td>30+22.5</td>
<td>EN</td>
</tr>
<tr>
<td>LMAPR2330</td>
<td>Reactor Design</td>
<td>Juray De Wilde</td>
<td>[q2]</td>
<td>30+30</td>
<td>EN</td>
</tr>
<tr>
<td>LMAPR2647</td>
<td>Sustainable treatment of industrial and domestic waste: Fundamentals</td>
<td>Olivier Françoisse, Patricia Luis Alconero, Olivier Noiset, Benoît Stenuit</td>
<td>[q1]</td>
<td>30+15</td>
<td>EN</td>
</tr>
</tbody>
</table>

MAJOR IN MATERIALS SCIENCE AND ENGINEERING [15.0]

- **Mandatory**
- **Optional**
- △ Not offered in 2022-2023
- ⊙ Not offered in 2022-2023 but offered the following year
- ⊙ Offered in 2022-2023 but not the following year
- △ ⊙ Not offered in 2022-2023 or the following year
- Activity with requisites.
- ⊙ Open to incoming exchange students
- ⊙ Not open to incoming exchange students
- [FR] Teaching language (FR, EN, ES, NL, DE, ...)

Content:

Required courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMAPR2014</td>
<td>Physics of Functional Materials</td>
<td>Xavier Gonze, Luc Piraux, Gian-Marco Righanese</td>
<td>[q1]</td>
<td>37.5+22.5</td>
<td>EN</td>
</tr>
<tr>
<td>LMAPR2481</td>
<td>Deformation and fracture of materials</td>
<td>Hosni Idrissi, Thomas Pardoen</td>
<td>[q1]</td>
<td>30+30</td>
<td>EN</td>
</tr>
<tr>
<td>LMAPR2011</td>
<td>Molecules and materials analysis</td>
<td>Arnaud Delcorte, Sophie Hermans</td>
<td>[q1]</td>
<td>30+30</td>
<td>EN</td>
</tr>
</tbody>
</table>
Cours au choix disciplinaires

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Code</th>
<th>Credits</th>
<th>Teacher(s)</th>
<th>Language(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMAPR2016</td>
<td>Project in Polymer Science</td>
<td>[q2] [0h+45h] [5 Credits]</td>
<td></td>
<td>Charles-André Fustin, Alain Jonas</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LCHM2261</td>
<td>Polymer Chemistry and Physical Chemistry</td>
<td>[q1] [45h+15h] [5 Credits]</td>
<td></td>
<td>Charles-André Fustin, Jean-François Gohy, Alain Jonas</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LMAPR2018</td>
<td>Rheology</td>
<td>[q2] [30h+30h] [5 Credits]</td>
<td></td>
<td>Evelyne Van Ruymbeke</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LMAPR2420</td>
<td>High performance metallic materials</td>
<td>[q2] [30h+30h] [5 Credits]</td>
<td></td>
<td>Pascal Jacques, Aude Simar</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LMAPR2672</td>
<td>Sintered materials and surface treatments</td>
<td>[q2] [30h+30h] [5 Credits]</td>
<td></td>
<td>Jean-Pierre Eura, Pascal Jacques, Joris Proost</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LMECA2860</td>
<td>Welding Science and Technology</td>
<td>[q1] [30h+30h] [5 Credits]</td>
<td></td>
<td>Pascal Jacques, Aude Simar</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LMAPR2141</td>
<td>Metals Processing and Recycling</td>
<td>[q2] [30h+30h] [5 Credits]</td>
<td></td>
<td>Philippe Henry, Joris Proost</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LMECA2640</td>
<td>Mechanics of composite materials</td>
<td>[q2] [30h+30h] [5 Credits]</td>
<td></td>
<td>Issam Doghri</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LMECA2520</td>
<td>Calculation of planar structures</td>
<td>[q2] [30h+30h] [5 Credits]</td>
<td></td>
<td>Issam Doghri</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LGCIV1022</td>
<td>Mechanics of structures</td>
<td>[q2] [30h+30h] [5 Credits]</td>
<td></td>
<td>Pierre Latteur</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LMAPR2642</td>
<td>Crystallographic and microstructural characterisation of materials</td>
<td>[q2] [30h+30h] [5 Credits]</td>
<td></td>
<td>Hosni Idrissi, Pascal Jacques</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LMAPR2631</td>
<td>Surface Analysis</td>
<td>[q2] [30h+15h] [5 Credits]</td>
<td></td>
<td>Arnaud Delcote, Bernard Nysten</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LMAPR2020</td>
<td>Materials Selection</td>
<td>[q2] [30h+22.5h] [5 Credits]</td>
<td></td>
<td>Bernard Nysten, Thomas Parden</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LMAPR2483</td>
<td>Durability of materials</td>
<td>[q2] [30h+22.5h] [5 Credits]</td>
<td></td>
<td>Laurent Delannay, Thomas Parden</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LMAPR2021</td>
<td>Societal challenges with polymers</td>
<td>[q2] [30h+22.5h] [5 Credits]</td>
<td></td>
<td>Karine Glinel, Alain Jonas, Evelyne Van Ruymbeke</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LENVI2007</td>
<td>Renewable energy sources</td>
<td>[q1] [45h+15h] [5 Credits]</td>
<td></td>
<td>Emmanuel De Jaeger, Patrick Gerin, Hervé Jeanmart</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LENVI2101</td>
<td>Sociétés, populations, environnement, développement: problématiques et approches interdisciplinaires</td>
<td>[q1] [45h] [6 Credits]</td>
<td></td>
<td>Denis Dochain, Nathalie Froneux, Julie Hermesse, Caroline Nieberding, Jean-Pierre Raskin</td>
<td>French-friendly</td>
</tr>
</tbody>
</table>
Cours au choix disciplinaires en bio- & Nanotechnologies

<table>
<thead>
<tr>
<th>Code</th>
<th>Titre</th>
<th>Professeur(s)</th>
<th>Crédits</th>
<th>Souci d'anglicisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGBIO2030</td>
<td>Biomaterials</td>
<td>Sophie Demouster, Christine Dupont</td>
<td>[q1] 30h+30h [5 Credits]</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LBIR1355</td>
<td>Métabolisme microbien et synthèse de biomolécules</td>
<td>Michel Ghislain, Yvan Larondelle</td>
<td>[q2] 22.5h+15h [4 Credits]</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LELEC2560</td>
<td>Micro and Nanofabrication Techniques</td>
<td>Laurent Francis, Benoît Hackens, Jean-Pierre Raskin</td>
<td>[q2] 30h+30h [5 Credits]</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LBIRC2108</td>
<td>Biochemical and Microbial Engineering</td>
<td>Benoît Stemul</td>
<td>[q2] 30h+22.5h [5 Credits]</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LGBIO2020</td>
<td>Bioinstrumentation</td>
<td>André Mouraux, Michel Verleyisen</td>
<td>[q1] 30h+30h [5 Credits]</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LMAPR2015</td>
<td>Physics of Nanostructures</td>
<td>Jean-Christophe Charlier, Xavier Gonze, Luc Piraux</td>
<td>[q1] 37.5h+22.5h [5 Credits]</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LMAPR2471</td>
<td>Transport phenomena in solids and nanostructures</td>
<td>Jean-Christophe Charlier, Luc Piraux</td>
<td>[q2] 30h+30h [5 Credits]</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LELEC2541</td>
<td>Advanced Transistors</td>
<td>Denis Flandre, Benoît Hackens, Jean-Pierre Raskin</td>
<td>[q2] 30h+22.5h [5 Credits]</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LELEC2550</td>
<td>Special electronic devices</td>
<td>Vincent Bayot</td>
<td>[q1] 30h+15h [5 Credits]</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LELEC2710</td>
<td>Nanoelectronics</td>
<td>Vincent Bayot, Benoît Hackens</td>
<td>[q1] 30h+30h [5 Credits]</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LELEC2895</td>
<td>Design of micro and nanosystems</td>
<td>Laurent Francis</td>
<td>[q1] 30h+30h [5 Credits]</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LCHM2170</td>
<td>Introduction to protein biotechnology</td>
<td>Pierre Morsonne, Pierre Morisonne, Patrice Soumilion</td>
<td>[q1] 22.5h+7.5h [3 Credits]</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LBIRC2101</td>
<td>Biochemical analysis</td>
<td>François Chaumont, Pierre Morisonne, (coordonné)</td>
<td>[q1] 22.5h+30h [4 Credits]</td>
<td>English-friendly</td>
</tr>
</tbody>
</table>

Cours au choix disciplinaires en génie chimique

<table>
<thead>
<tr>
<th>Code</th>
<th>Titre</th>
<th>Professeur(s)</th>
<th>Crédits</th>
<th>Souci d'anglicisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINMA1510</td>
<td>Linear Control</td>
<td>Gianluca Bianchin</td>
<td>[q1] 30h+30h [5 Credits]</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LINMA2300</td>
<td>Analysis and control of distributed parameter systems</td>
<td></td>
<td>[q1] 30h+30h [5 Credits]</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LMAPR2320</td>
<td>Advanced Reactor and Separation Technologies for the Production of Base Chemicals and Polymers</td>
<td>Juray De Wilde, Patricia Luis Alonso, Denis Mignon</td>
<td>[q1] 30h+15h [5 Credits]</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LMAPR2380</td>
<td>Solid-fluid separation</td>
<td>Tom Leyssens, Patricia Luis Alonso</td>
<td>[q1] 30h+22.5h [5 Credits]</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LMAPR2691</td>
<td>Technology of chemical and environmental engineering</td>
<td>Patricia Luis Alonso, Grégoire Winckelmans</td>
<td>[q2] 30h+15h [5 Credits]</td>
<td>French-friendly</td>
</tr>
<tr>
<td>LINMA1702</td>
<td>Optimization models and methods I</td>
<td>François Glineur</td>
<td>[q2] 30h+22.5h [5 Credits]</td>
<td>French-friendly</td>
</tr>
</tbody>
</table>
BUSINESS RISKS AND OPPORTUNITIES

<table>
<thead>
<tr>
<th>Content:</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>LEPL2211 Business issues introduction</td>
<td>Benoît Gailly</td>
</tr>
<tr>
<td>LEPL2212 Financial performance indicators</td>
<td>André Nsabimana</td>
</tr>
<tr>
<td>LEPL2214 Law, Regulation and Legal Context</td>
<td>Vincent Cassiers Werner Derycke</td>
</tr>
</tbody>
</table>

Alternative to the major in business risks and opportunities for computer science students

Computer science students who have already taken courses in this field while pursuing their Bachelor's degree may choose between 16-20 credits from the courses offered in the management minor for computer sciences.
MAJOR IN SMALL AND MEDIUM SIZED BUSINESS CREATION

Commune à la plupart des masters de l'EPL, cette option a pour objectif de familiariser l'étudiant·e avec les spécificités de l'entrepreneuriat et de la création d'entreprise afin de développer chez lui les aptitudes, connaissances et outils nécessaires à la création d'entreprise.

Cette option rassemble des étudiants de différentes facultés en équipes interdisciplinaires afin de créer un projet entrepreneurial. La formation interdisciplinaire en création d’entreprise (CPME) est une option qui s’étend sur 2 ans et s’intègre dans plus de 30 Masters de 9 facultés/écoles de l’UCLouvain. Le choix de l’option CPME implique la réalisation d’un mémoire interfacultaire (en équipe) portant sur un projet de création d’entreprise. L’accès à cette option, ainsi qu’à chacun des cours, est limité aux étudiant·es sélectionnés sur dossier. Toutes les informations sur www.uclouvain.be/cpme.

L’étudiant·e qui choisit de valider cette option doit sélectionner au minimum 20 crédits et au maximum 25 crédits. Cette option n'est pas accessible en anglais et ne peut être prise simultanément avec l'option « Enjeux de l’entreprise ».

☐ Mandatory
☐ Optional
△ Not offered in 2022-2023
☐ Not offered in 2022-2023 but offered the following year
☐ Offered in 2022-2023 but not the following year
△ ☐ Not offered in 2022-2023 or the following year
☐ Activity with requisites
☐ Open to incoming exchange students
☐ Not open to incoming exchange students
☐ Teaching language (FR, EN, ES, NL, DE, ...)

Click on the course title to see detailed informations (objectives, methods, evaluation...)

Content:

Required courses for the major in small and medium sized businesses

- **LCPME2001** Théorie de l'entrepreneuriat
 - Frank Janssen
 - [q1] 30h+20h 5 Credits
 - [1]

- **LCPME2002** Aspects juridiques, économiques et managériaux de la création d'entreprise
 - Yves De Cordt
 - [q1] 30h+15h 5 Credits
 - [1]

- **LCPME2003** Plan d'affaires et étapes-clés de la création d'entreprise
 - Les séances du cours LCPME2003 sont réparties sur les deux blocs annuels du master. L'étudiant doit les suivre dès le bloc annuel 1, mais ne pourra inscrire le cours que dans son programme de bloc annuel 2.
 - Frank Janssen
 - [q2] 30h+15h 5 Credits
 - [1]

- **LCPME2004** Séminaire d'approfondissement en entrepreneuriat
 - Frank Janssen
 - [q2] 30h+15h 5 Credits
 - [1]

Prerequisite CPME courses

Student who have not taken management courses during their previous studies must enroll in LCPME2021.

- **LCPME2021** Financer son projet
 - Yves De Rongé
 - [q2] 30h+15h 5 Credits
 - [1]
COURS AU CHOIX EN CONNAISSANCES SOCIO-ÉCONOMIQUES

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Optional</th>
<th>Not offered in 2022-2023</th>
<th>Not offered in 2022-2023 but offered the following year</th>
<th>Offered in 2022-2023 but not the following year</th>
<th>Not offered in 2022-2023 or the following year</th>
<th>Activity with requisites</th>
<th>Open to incoming exchange students</th>
<th>Not open to incoming exchange students</th>
<th>Teaching language (FR, EN, ES, NL, DE, ...)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Click on the course title to see detailed informations (objectives, methods, evaluation...)

Content:

<table>
<thead>
<tr>
<th>Year</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

LFSA2995
Company Internship

- Dimitri Lederer
- Jean-Pierre Raskin

- [q1+q2] [30h] [10 Credits]

<table>
<thead>
<tr>
<th>Year</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

LFSA2212
Innovation classes

- Benoît Maq
- Jean-Pierre Raskin
- Benoît Raucent

- [q1] [30h+15h] [5 Credits]

- French-friendly

OTHERS ELECTIVE COURSES

L’étudiant·e est également libre de proposer d'autres cours des programmes de Masters EPL, SC, AGRO, MED ou de de la KULeuven qui seraient pertinents à son parcours personnel, pour autant que cela respecte les règles de constitution de programme du Master.

Ces cours doivent être approuvés par le jury restreint.

OTHER ELECTIVE COURSES

L’étudiant·e est également libre de proposer d'autres cours des programmes de Masters EPL, SC, AGRO, MED ou de de la KULeuven qui seraient pertinents à son parcours personnel, pour autant que cela respecte les règles de constitution de programme du Master.

Ces cours doivent être approuvés par le jury restreint.

Languages

Students may select from any language course offered at the ILV. Special attention is placed on the following seminars in professional development:

<table>
<thead>
<tr>
<th>Year</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Languages</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Seminar of Entry to professional life in Dutch - Intermediate level

- **Code:** LNEER2500
- **Title:** Seminar of Entry to professional life in Dutch - Intermediate level
- **Coordinator:** Marie-Laurence Lambrecht
- **Semester:** Q1 or Q2
- **Credits:** 3
- **Hours:** 30h

Seminar of Entry to professional life in Dutch - Upper-Intermediate level

- **Code:** LNEER2600
- **Title:** Seminar of Entry to professional life in Dutch - Upper-Intermediate level
- **Coordinator:** Dag Houdmont Marie-Laurence Lambrecht
- **Semester:** Q1 or Q2
- **Credits:** 3
- **Hours:** 30h

Group dynamics

Group dynamics - Q1

- **Code:** LEPL2351
- **Title:** Group dynamics - Q1
- **Instructors:** Delphine Ducarme, Claude Oestges (coord.), Thomas Pardoen, Benoît Raucent
- **Semester:** Q1
- **Credits:** 3
- **Hours:** 15h+30h

Group dynamics - Q2

- **Code:** LEPL2352
- **Title:** Group dynamics - Q2
- **Instructors:** Delphine Ducarme, Claude Oestges (coord.), Thomas Pardoen, Benoît Raucent
- **Semester:** Q2
- **Credits:** 3
- **Hours:** 15h+30h

Autres UEs hors-EPL

L'étudiant-e peut choisir maximum 8 ects de cours hors EPL considérés comme non-disciplinaires par la commission de diplôme
Course prerequisites

The table below lists the activities (course units, or CUs) for which there are one or more prerequisites within the programme, i.e. the programme CU for which the learning outcomes must be certified and the corresponding credits awarded by the jury before registering for that CU.

These activities are also identified in the detailed programme: their title is followed by a yellow square.

Prerequisites and student’s annual programme

As the prerequisite is for CU registration purposes only, there are no prerequisites within a programme year. Prerequisites are defined between CUs of different years and therefore influence the order in which the student will be able to register for the programme’s CUs.

In addition, when the jury validates a student’s individual programme at the beginning of the year, it ensures its coherence, meaning that it may:

• require the student to combine registration in two separate CUs which it considers necessary from a pedagogical point of view.
• transform a prerequisite into a corequisite if the student is in the final year of a degree course.

Prerequisites list

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Prerequisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLSMM2134</td>
<td>“E-comportement du consommateur”</td>
<td>MGEST1108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLSMM2136</td>
<td>“Tendances en Digital Marketing”</td>
<td>MGEST1108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The programme's courses and learning outcomes

For each UCLouvain training programme, a reference framework of learning outcomes specifies the skills expected of every graduate on completion of the programme. Course unit descriptions specify targeted learning outcomes, as well as the unit’s contribution to reference framework of learning outcomes.
Access Requirements

Master course admission requirements are defined by the French Community of Belgium Decree of 7 November 2013 defining the higher education landscape and the academic organisation of courses.

General and specific admission requirements for this programme must be satisfied at the time of enrolling at the university.

Unless explicitly mentioned, the bachelor's, master's and licentiate degrees listed in this table or on this page are to be understood as those issued by an institution of the French, Flemish or German-speaking Community, or by the Royal Military Academy.

In the event of the divergence between the different linguistic versions of the present conditions, the French version shall prevail.

SUMMARY

- > General access requirements
- > Specific access requirements
- > University Bachelors
- > Non university Bachelors
- > Holders of a 2nd cycle University degree
- > Holders of a non-University 2nd cycle degree
- > Access based on validation of professional experience
- > Access based on application
- > Admission and Enrolment Procedures for general registration

Specific access requirements

This programme is taught in English with no prerequisite in French. A certificate is required for the holders of a non-Belgian degree, see selection criteria of the access on the file.

University Bachelors

<table>
<thead>
<tr>
<th>Diploma</th>
<th>Special Requirements</th>
<th>Access</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCLouvain Bachelors</td>
<td></td>
<td>Direct access</td>
<td>Students who have neither major nor minor in the field of their civil engineering Master’s degree may have an adapted master programme.</td>
</tr>
<tr>
<td>Bachelor in engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others Bachelors of the French speaking Community of Belgium</td>
<td></td>
<td>Direct access</td>
<td>Students with a Bachelor’s degree in engineering sciences who have not taken the equivalent of a minor in the field of their civil engineering master degree may have an adapted master programme.</td>
</tr>
<tr>
<td>Bachelor in engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelors of the Dutch speaking Community of Belgium</td>
<td></td>
<td>Access with additional training</td>
<td>Students who have no specialisation in the field of their civil engineering master degree may have an adapted master programme with up to 60 additional credits.</td>
</tr>
<tr>
<td>Bachelor in Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Foreign Bachelors

<table>
<thead>
<tr>
<th>Diploma</th>
<th>Special Requirements</th>
<th>Access</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor in Engineering</td>
<td>Bachelor degree of Cluster Institution</td>
<td>Direct access</td>
<td>Students with a Bachelor’s degree in engineering sciences who have not taken the equivalent of a minor in the field of their civil engineering master degree may have an adapted master programme with up to 60 additional credits.</td>
</tr>
</tbody>
</table>
Non university Bachelors

> Find out more about links to the university

Holders of a 2nd cycle University degree

<table>
<thead>
<tr>
<th>Diploma</th>
<th>Special Requirements</th>
<th>Access</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Licenciés"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Masters

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Direct access</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Master in engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Holders of a non-University 2nd cycle degree

Access based on validation of professional experience

> It is possible, under certain conditions, to use one's personal and professional experience to enter a university course without having the required qualifications. However, validation of prior experience does not automatically apply to all courses. Find out more about Validation of prior experience.

Access based on application

Access based on application: access may be granted either directly or on the condition of completing additional courses of a maximum of 60 ECTS credits, or refused.

The first step of the admission procedure requires to submit an application online: https://uclouvain.be/en/study/inscriptions/futurs-etudiants.html

Selection criteria are summarized here (contact: epl-admission@uclouvain.be).

Admission and Enrolment Procedures for general registration

A student with no major in applied chemistry and physics from UCL, nor any option deemed equivalent, shall submit an application to the Faculty of applied sciences, including a detailed past curriculum (courses and grades by year). Engineering Bachelors are exempted from this procedure, if they have a minor in applied chemistry and physics from UCL, or an option deemed equivalent. The Faculty, after consulting the Applied chemistry and physics diploma committee, will decide as to the applicant's admissibility, pursuant to rules relative to links between degrees. Moreover, the Faculty can propose a customized curriculum, by drawing on the volume of elective courses of the KIMA curriculum and, if necessary, up to 15 additional credits. For some students (e.g. bachelors in industrial engineering), the Faculty might require an additional year of studies prior to the Master's, corresponding to 60 credits of the major in applied chemistry and physics.
Teaching method

A variety of teaching methods

The teaching methods used in the Master’s degree programme in chemical and materials engineering are in keeping with those used in the Bachelor’s degree programme in engineering sciences: active learning, an equal mix of group work and individual work, and emphasis on the development of non-technical skills. An important characteristic of the programme is the immersion of students in the research laboratories of the professors who teach in the programme (lab work, case studies, projects and theses), which allows students to learn cutting edge methods used in their field and to learn from the questioning process inherent in research. In addition, there is an optional 10 credit internship carried out over at least 9 months in a research centre or company that allows motivated students to get experience in the professional world.

Diverse learning situations

Students are exposed to a variety of pedagogies: lectures, projects, exercise and problem-solving sessions, case studies, experimental laboratories, computer simulations, educational software, internships in industry or research, factory visits, graduation trips, individual or group work, seminars given by visiting scientists. This variety of pedagogies helps students to build their knowledge in an iterative and progressive manner all the while developing their independence, organisational and time management skills as well as their ability to communicate.

Interdisciplinary Methods

The Master’s degree in chemical and materials engineering is by its very nature interdisciplinary because it serves as an interface between chemistry and physics. It has an interdisciplinary foundation, which provides students with an introduction the large array of applications used in applied physics and chemistry and training through practical work and cutting edge research as well as major courses in chemistry and material technologies: polymers and macromolecules, inorganic materials and processes, materials mechanics, chemical engineering, nanotechnologies and environmentalism and sustainable development. The programme is open to biotechnology with majors in biomaterials and bioprocesses as well as to business management with majors in management and small and medium sized business creation. The programme is composed of a significant number of classes such as PHYS (or PHY), CHIM (or CHM), BIOL, INMA, MECA, ELEC, BRNA and BIR, which shows that the programme is open and interdisciplinary. Finally, the programme allows students to select up to 40 credits of elective courses from the medical and science programmes and up to 6 credits of classes in the humanities and social sciences, which allow students to create a personalised programme of study.

Evaluation

The evaluation methods comply with the regulations concerning studies and exams (https://uclouvain.be/fr/decouvrir/rgee.html). More detailed explanation of the modalities specific to each learning unit are available on their description sheets under the heading “Learning outcomes evaluation method”.

Student work is evaluated according to University rules (see the rules for evaluating coursework and exams) namely written and oral exams, laboratory exams, individual or group work, public presentations of projects and theses defences. Details about evaluation methods for each teaching unit are explained by the professors at the beginning of the semester.

For more information on evaluation methods, students may consult the relevant evaluation descriptions.

Mobility and/or Internationalisation outlook

Since its creation, the Louvain School of Engineering (EPL) has participated in diverse exchange programs that were put into place at the European level and beyond.

Possible trainings at the end of the programme

Accessible specialised Master’s degrees

The Master’s degree in nanotechnology and the Master’s degree in nuclear engineering are natural extensions of the programme.

Accessible doctoral degrees

The Master’s degree programme in chemistry and materials engineering also prepares students for doctoral programmes. Programme professors are members of doctoral programmes such as CHIM (molecular, supramolecular and functional chemistry), MAIN (materials, interfaces and nanotechnologies) and GEPROC (process engineering). These programmes are suitable for students who would like to continue their studies at the doctoral level.

UCLouvain Master’s degrees (about 60) are accessible to UCLouvain Master’s degree holders

For example:

- Different Master’s degree programmes in management (automatic admission based on written application): see this list
- The Master’s degree (60) in information and communication at Louvain-la-Neuve or the Master’s degree (60) in information and communication at Mons
Contacts

Curriculum Management

Entity
Structure entity
Denomination
Faculty
Sector
Acronym
Postal address

SST/EPL/FYKI
(FYKI)
Louvain School of Engineering (EPL)
Sciences and Technology (SST)
FYKI
Place Sainte Barbe 2 - bte L5.02.02
1348 Louvain-la-Neuve
Tel: +32 (0) 10 47 24 87 - Fax: +32 (0) 10 47 40 28

Academic supervisor: Pascal Jacques

Jury
• Claude Oestges
• Pascal Jacques

Useful Contact(s)
• Vinciane Gandibleux