

At Louvain-la-Neuve - 120 credits - 2 years - Day schedule - In English Dissertation/Graduation Project : YES - Internship : optional Activities in English: YES - Activities in other languages : YES Activities on other sites : optional Main study domain : Sciences de l'ingénieur et technologie Organized by: Louvain School of Engineering (EPL) Programme acronym: ELEC2M - Francophone Certification Framework: 7

Table of contents

Introduction	ż
Teaching profile	
Learning outcomes	
Programme structure	4
Programme	5
Detailed programme by subject	5
Course prerequisites	
The programme's courses and learning outcomes	
Information	
Access Requirements	
Teaching method	
Evaluation	
Mobility and/or Internationalisation outlook	
Possible trainings at the end of the programme	
Contacts	23

ELEC2M - Introduction

Introduction

Introduction

This Master's degree offers you:

- Diverse professional opportunities in the industrial sector and in the multiple applications of electricity and its related fields;
- Learning how to approach a project;
- Immersion in research laboratories and high technology;
- A large choice of majors;
- The possibility to complete a part of your coursework or internship abroad (in Europe and elsewhere in the world).

Your profile

You:

- have solid skills in the field of electrical sciences and are capable of seeing a job through to the end;
- Wish to develop the skills that will allow you to meet future technological challenges in the scientific and technical fields linked to electricity and its applications;
- Want to design, model, carry out and validate projects by way of experiments, devices, equipment and complex systems;
- Envisage a career in research or industry.

Your programme

This Master's degree offers you:

- Mastery of mathematical and physical methods related to electricity (circuits and measures, electromagnetics, physical electronics);
- Advanced education in electronics, electromagnetics, communication, information technology, mathematics and system design;
- Specialisations in electronic systems, telecommunication, microwaves, information and signal processing, biomedicine, cryptography, electronics, MEMS receptors, nanotechnology and photovoltaic techniques.

ELEC2M - Teaching profile

Learning outcomes

An essential challenge in the training of electrical engineers is the wide variety of elements that must be mastered, which range from knowledge about hardware and software to technology and mathematics to theoretical experiments in modern electricity and its different disciplines to the ability to use a wide variety of applications on a wide scale from small (such as micro-nano-technology) to big (such as spatial communication).

This programme offers diverse professional perspectives in a variety of industrial sectors: the design and achievement [of a project], installation, real time programming, security, marketing, the analysis of given signals from electronic systems, communication networks, information or receptors, electrical equipment used in industrial production, biomedical transport, aerospace, energy and sustainable development.

This Master's programme builds on students' existing knowledge of electricity acquired as part of their Bachelor's degree program including mathematical and physical approaches to electricity (circuits and measures, electromagnetism, physical electronics) as well as key related fields (electronics, telecommunications, signals, and electrotechnology). By the end of their Master's programme in electrical engineering (ELEC), students will have acquired (through their major coursework) in-depth knowledge of the following fields: electronics, electronics, communication, information technologies, mathematics, and system design.

In addition, students may choose between a more general type of major and one that is more specialized (such as a major in a specific technological field).

In its entirety, the programme offers an introduction to industrialisation and research as well as to jobs in production and design or doctoral programmes in R&D.

This Master's programme in electrical engineering is a multipurpose training programme allowing students to acquire expertise in a wide and specialized variety of fields. Its objective is to create engineers who are capable of meeting future technological challenges in the scientific and technical fields linked to electricity and in the context of the rapidly changing circumstances of Europe and the world.

On successful completion of this programme, each student is able to :

1.Show the mastery of a solid body of knowledge in basic and engineering sciences, permitting him/her to understand and solve problems that are raised by electricity (Axis 1)

1.1 Identify and use concepts, laws and reasoning applicable to a given problem

During the first year of studies, in the required courses for the Master's degree in ELEC, we aim for a general education through different classes dealing with the following electrical subjects:

- Methods for mathematics and physics
- Electronics
- Communication
- Signal processing
- Electrotechnology, energy and automation (EEA)
- On board computing

In the major fields of study, the courses are specific to professional fields:

- Nanotechologies
- · Electronic systems and circuits
- Electric machines and control
- Electronic security and information technology
- Communication network systems
- RF systems
- Biomedicine

1.2 Identify and use modelling and calculation tools to solve problems

- Measuring devices
- Systems of complex equations
- Calculation and simulation software (Matlab, SPICE)
- CAO software (Comsol, Synopsys, Cadence, TCAD)

1.3 Verify the plausibility and confirm the validity of results; study them closely, notably by comparing them with experimental and/or theoretical results

Verify the units of different variables and the constituent terms in model equations.

Critically compare analytical/simple/approximate solutions with those obtained by more complex numerical methods.

In the first year of studies (major/minor), classes on electrical circuits and electronics, for example, address the problem of modeling by conducting experiments or simulations and formulating simple hypotheses.

During the Master's degree programme (common core courses and coursework for the major field of study), simulation (for example: Matlab) is emphasized above all and laboratories are used to carry out projects on the justification and validation of circuit choices, technologies, programmes, protocols.

2.Organise and carry out an applied engineering process applied to the development of a product (and/or a service) corresponding to a need or a problem specific to the field of electricity (Axis 2)

2.1 Analyse a problem based on actual case studies dealt with by electrical engineers (in interdisciplinary projects) such as devices and electronic circuits and formulate corresponding specifications.

2.2 Model a problem and design one or several original technical solutions corresponding to the assignment specifications (i.e. analysis of existing case studies) and projects (based on new specifications).

2.3 Evaluate and classify solutions in light of the criteria found in the specifications, principally in the context of interdisciplinary projects and specific courses (for example MEMS design or micro-nano-manufacturing technologies).

2.4 Implement and test a solution in the form of a mock-up, a prototype or a numerical model in the context of achieving experimental interdisciplinary projects and for certain classes (for example, micro-nano-manufacturing technologies) as well as for numerical modeling (such as MEMS design).

2.5 Formulate recommendations to improve the operation of the solution under review.

3.Organize and carry out research projects in order to learn about a physical phenomenon or a new problem relating to electricity. (Axis 3)

3.1 When confronted with a new problem, explore the field in question by gathering necessary information through the various available resources (library, scientific articles, Internet, research assistants, industry).

3.2 Suggest a representative mathematical model of an underlying phenomenon and then by working either in a laboratory or via a software platform, create a device or programme that allows the experimental or virtual simulation of the system's behaviour (all the while taking influential parameters into account).

3.3 Write a summary report about the technical aspects of a study in a concise scientific manner; provide an overview of experimental lab results in written reports and suggest possible interpretations of the results.

4.As part of a team, carry out a multidisciplinary project keeping in mind its objectives, allocated resources and relevant constraints. (Axis 4)

4.1 Frame and explain project objectives taking into account the issues and constraints (emergencies, quality, resources, budget) that characterise the project.

4.2 Work collectively to create a project schedule and to determine team member roles in order to successfully carry out the project. This may include the organisation and planning of individual work and that of the team as well as determining the intermediate steps, division of labour, necessary documents, work schedule, and how to integrate your own investigative work into that of the group.

4.3 Work in a multidisciplinary environment in collaboration with other individuals who may hold different points of view or with experts possessing different specialisations all the while being able to put things in perspective in order to overcome any difficulties or conflicts in the team.

4.4 Make team decisions when necessary whether they be about technical solutions or about the division of labour to complete the project.

5.Communicate effectively (speaking or writing in French or a foreign language) with the goal of carrying out assigned projects. (Axis 5)

5.1 Identify the clients' needs: take up a sizable problem regarding an electronic component or system or communicate the functionalities of an algorithm or software program.

5.2 Present your arguments and convince your interlocutors (technicians, colleagues, clients, superiors) by adopting their language; from the laboratory technician to the research engineer or doctoral researcher, notably in the context of graduation projects (TFE) and experiments or APE with access to technical infrastructures or even industry internships.

5.3 Communicate through graphics and diagrams: interpret a diagram, present work results, structure information.

5.4 Read and analyse different technical documents related to the profession (standards, drawings, specifications); for example, circuit or component data sheets, communication protocols, electrical standards.

5.5 Draft a document that takes into account contextual requirements and the target audience: the specifications for an industrial project, the minutes for a project meeting, internship reports, graduation projects (TFE), etc.

5.6 Use modern communication techniques to give scientific and/or technical oral presentations in French and in English and respond to diverse questions (general or specific) generated by your presentation.

6.Demonstrate rigor, openness and critical and ethical awareness in your work: validate the socio-technical relevance of a hypothesis or a solution. (Axis 6)

6.1 Rigorously apply the field's standards (terms, units of measure, quality standards and security).

6.2 Find solutions that go beyond strictly technical issues by considering sustainable development and the socio-economic ethics of a project (for example, in the fields of photovoltaic cells or biomedical applications)

6.3 Demonstrate critical awareness of a technical solution in order to verify its robustness and minimize the risks that may occur during implementation. For example, the development of a solution that impacts work conditions or users' life in the biomedical field

6.4 Evaluate the knowledge necessary to carry out a project and independently include knowledge that has not been addressed explicitly in the course programme.

Programme structure

The Master's degree program is comprised of:

- a core curriculum (32 credits)
- a final specialisation (30 credits)
- one or more major or elective courses listed below

The graduation project is normally completed during the second year. However, students opt to complete the project in either the first or second year so long as they have fulfilled the necessary prerequisites. This is particularly the case for students who have completed part of their education abroad.

If during the student's previous studies, he or she has already taken a course that is part of the programme (either required or elective) or they have participated in an academic activity that is approved by the programme commission, the student may count this activity toward their graduation requirements (but only if they respect programme rules). The student will also verify that he/she has obtained

the minimum number of credits required for the approval of their diploma as well as for the approval of their major (in order to include their academic distinctions in the diploma supplement).

These types of programmes will be submitted for approval by the relevant Master's degree programme commission.

ELEC2M Programme

Detailed programme by subject

CORE COURSES [32.0]

O Mandatory

8 Optional

 Δ Not offered in 2021-2022

 \oslash Not offered in 2021-2022 but offered the following year

- Offered in 2021-2022 but not the following year
- $\Delta \oplus$ Not offered in 2021-2022 or the following year
- Activity with requisites [FR] Teaching language (FR, EN, ES, NL, DE, ...)

Click on the course title to see detailed informations (objectives, methods, evaluation...)

				Ye 1	aı 2
• LELEC2990	Graduation project/End of studies project		[q1+q2] [] [25 Credits]		x
O LELEC2102	Project in Electrical Engineering: Integration of wireless embedded sensing systems	David Bol (coord.) Laurent Jacques Jérôme Louveaux François- Xavier Standaert	(BN [q1] [22.5h+22.5h] [5 Credits]	x	x
O LEPL2020	Professional integration work « Les modules du cours LEPL2020 sont organisés sur les deux blocs annuels du master. Il est fortement recommandé à l'étudiant.e de les suivre dès le bloc annuel 1, mais il.elle ne pourra inscrire le cours que dans son programme de bloc annuel 2.	Myriam Banaï Francesco Contino (coord.) Delphine Ducarme Jean-Pierre Raskin	(1) [q1+q2] [30h+15h] [2 Credits]	x	x

PROFESSIONAL FOCUS [30.0]

O Mandatory
🕱 Optional
△ Not offered in 2021-2022
Ø Not offered in 2021-2022 but offered the following year
\oplus Offered in 2021-2022 but not the following year
$\Delta \oplus$ Not offered in 2021-2022 or the following year
Activity with requisites
[FR] Teaching language (FR, EN, ES, NL, DE,)

Click on the course title to see detailed informations (objectives, methods, evaluation...)

• Content:

• Compulsory courses (20 credits)

O LELEC2531	Electronic digital systems	Jean-Didier Legat	EN [q1] [30h+30h] [5 Credits]	х	х
O LELEC2795	Communication systems	Jérôme Louveaux Claude Oestges (coord.) Charles Wiame (compensates Luc Vandendorpe)	EN [q1] [30h+30h] [5 Credits]	x	х
O LELEC2103	Project in Electrical Engineering: Optimization of wireless embedded sensing systems	David Bol (coord.) Laurent Jacques Jérôme Louveaux François- Xavier Standaert	[q2] [22.5h+22.5h] [5 Credits]	x	х
• LELEC2900	Signal processing	Laurent Jacques Luc Vandendorpe	[2] [2] [30h+30h] [5 Credits]	х	х

• Elective courses (10 credits)

Les étudiant es choisissent obligatoirement 2 cours parmi les 3 cours suivants (le cours ci-dessous qui n'aurait pas été choisi dans le cadre de la finalité peut être suivi en option parmi les cours au choix disciplinaires) :

Stelec2520	Electrical power systems	Emmanuel De Jaeger	EN [q1] [30h+30h] [5 Credits]	х	х
Stelec2910	Antennas and propagation	Christophe Craeye (coord.) Claude Oestges	(20) [q1] [30h+30h] [5 Credits]	x	x
🔀 LELEC2330	Opto-electronic and power devices	Denis Flandre Laurent Francis (coord.)	EN [q1] [30h+30h] [5 Credits]	х	Х

Year 1 2

OPTIONS

	 Major in electrotechnics and electrical energy [en-prog-2021-elec2m-lelec2210] Major in communication systems [en-prog-2021-elec2m-lelec2220] Major in information and signal processing [en-prog-2021-elec2m-lelec2240] Major in electronic circuits and systems [en-prog-2021-elec2m-lelec2270] Major in cryptography and information security [en-prog-2021-elec2m-lelec2350] Major in advanced electronic materials and devices [en-prog-2021-elec2m-lelec2360] Disciplinary electives courses [en-prog-2021-elec2m-lelec2370]
Optio	ns et cours au choix en connaissances socio-économiques
	 > Business risks and opportunities [en-prog-2021-elec2m-lelec230o] > Major in small and medium sized business creation [en-prog-2021-elec2m-lelec231o] > Cours au choix en connaissances socio-économiques [en-prog-2021-elec2m-lelec2000]

MAJORS IN ELECTRICAL ENGINEERING

MAJOR IN ELECTROTECHNICS AND ELECTRICAL ENERGY

The objective of this major is to provide students with knowledge in electromechanics and control. At the end of this major, the students will have acquired a basic training in power electronics and electrical energy networks. They will master the main aspects related to the use of electricity as an energy vector.

• Mandatory	
🛱 Optional	
△ Not offered in 2021-2022	
Ø Not offered in 2021-2022 but offered the following year	
\oplus Offered in 2021-2022 but not the following year	
$\Delta \oplus$ Not offered in 2021-2022 or the following year	
Activity with requisites	
[FR] Teaching language (FR, EN, ES, NL, DE,)	
Click on the course title to see detailed informations (objectives, methods, evaluation)	

Maximum 30 credit(s)

		Year
		1 2
o Content:		

o Compulsory courses in electrotechnics and electrical energy (5 credits)

O LELEC2660	Power electronics	Marc Bekemans	EN [q2] [30h+15h] [5 Credits]	х)	×
-------------	-------------------	---------------	-------------------------------	---	---	---

o Elective courses in electrotechnics and electrical energy

8	LELME2313	Dynamic modelling and control of electromechanical converters	Emmanuel De Jaeger Bruno Dehez	(2) [q1] [30h+30h] [5 Credits]	х	x
£	LELME2311	Physics of Electromechanical Converters	Bruno Dehez	EN [q2] [30h+30h] [5 Credits]	х	x
8	LELEC2595	Electrical power systems dynamics and quality of supply	Emmanuel De Jaeger	EN [q2] [30h+30h] [5 Credits]	х	X
S	LELEC2753	Electrical power systems: advanced topics and smart grids	Emmanuel De Jaeger	EN [q2] [30h+15h] [5 Credits]	х	x

UCL - Université catholique de Louvain Study Programme 2021-2022 ELEC2M: Master [120] in Electrical Engineering

				1	2
🗱 LENVI2007	Renewable energy sources	Emmanuel De Jaeger Patrick Gerin (coord.) Hervé Jeanmart	EN [q1] [45h+15h] [5 Credits]	х	3
Stelec2811	Instrumentation and sensors	David Bol (coord.) Laurent Francis	EN [q1] [30h+30h] [5 Credits]	Х	3

Year

MAJOR IN COMMUNICATION SYSTEMS

The objectives of the telecommunications major are: Present the general organisation of communication networks and systems (wired or wireless) Present communications from the framework of information theory covering data compression (source-coding) and replication (channel coding) Present the different elements of modern modems, as well as systematic design methods for detection blocks and required estimates Offer a range of design tools for modems and systems Through this major, students will master important concepts about IP networks, GSM, UMTS and DSL access networks as well as new communications methods.

• Mandatory	
🗱 Optional	
△ Not offered in 2021-2022	
Not offered in 2021-2022 but offered the	following year
① Offered in 2021-2022 but not the following	ng year
$\Delta \oplus$ Not offered in 2021-2022 or the follow	/ing year
Activity with requisites	
[FR] Teaching language (FR, EN, ES, NL, I)E,)

Click on the course title to see detailed informations (objectives, methods, evaluation...)

Maximum 30 credit(s)

o Content:

Year 1 2

• Compulsory courses in communication systems

CELEC2880	Estimation and communication theory	Jérôme Louveaux (coord.) Luc Vandendorpe	EN [q2] [30h+30h] [5 Credits]	xx	٢
Stelec2796	Wireless communications	Claude Oestges (coord.) Charles Wiame (compensates Luc Vandendorpe)	EN [q1] [30h+30h] [5 Credits]	xx	(
Stelec2350	Electromagnetic waves	Christophe Craeye Dimitri Lederer	[q2] [30h+30h] [5 Credits]	хх	(
S LELEC2920	Communication networks	Sébastien Lugan Benoît Macq	(2N [q1] [30h+15h] [5 Credits]	хх	(
🗱 LINGI2348	Information theory and coding	Jérôme Louveaux Benoît Macq Olivier Pereira	0N [q2] [30h+15h] [5 Credits]	хх	1

Selective courses in communication systems

🔀 LELEC2590	Seminars in electronics and communications	Denis Flandre Isabelle Huynen Jérôme Louveaux	EN [q2] [30h] [3 Credits]	×	(X
Stinfo2146	Mobile and Embedded Computing	Ramin Sadre	EN [q2] [30h+15h] [5 Credits]	х	(X
🔀 LINMA1702	Optimization models and methods I	François Glineur	[q2] [30h+22.5h] [5 Credits]	x	(X

MAJOR IN INFORMATION AND SIGNAL PROCESSING

The objective of this major is to provide students with new tools used to understand graphs, discrete mathematics, matrices, and optimisation. For example, students may use these tools when solving communication problems, analysing and recognising data and signals, cryptography and system identification.

• Mandatory
🗱 Optional
Δ Not offered in 2021-2022
Not offered in 2021-2022 but offered the following year
Offered in 2021-2022 but not the following year
$\Delta \oplus$ Not offered in 2021-2022 or the following year
Activity with requisites
[FR] Teaching language (FR, EN, ES, NL, DE,)
Click on the course title to see detailed informations (objectives, methods, evaluation)

Maximum 30 credit(s)

• Content:

o Compulsory courses in information and signal processing

• LELEC2870	Machine learning : regression, deep networks and dimensionality reduction	John Lee Michel Verleysen	(20) [q1] [30h+30h] [5 Credits]	х	х
• LELEC2885	Image processing and computer vision	Christophe De Vleeschouwer (coord.) Laurent Jacques	EN [q1] [30h+30h] [5 Credits]	x	x
O LINGI2348	Information theory and coding	Jérôme Louveaux Benoît Macq Olivier Pereira	EN [q2] [30h+15h] [5 Credits]	x	x
O LINMA1510	Linear Control	Denis Dochain	EN [q1] [30h+30h] [5 Credits]	х	х

& Elective courses in information and signal processing

S LELEC2880	Estimation and communication theory	Jérôme Louveaux (coord.) Luc Vandendorpe	(EN [q2] [30h+30h] [5 Credits]	х	х
⁸⁸ LGBIO2050	Medical Imaging	Greet Kerckhofs John Lee Benoît Macq Frank Peeters	(EN [q1] [30h+30h] [5 Credits]	x	х
X LINFO2262	Machine Learning :classification and evaluation	Pierre Dupont	EN [q2] [30h+30h] [5 Credits]	х	x
🔀 LINMA1691	Discrete mathematics - Graph theory and algorithms	Vincent Blondel Jean-Charles Delvenne	(58 [q1] [30h+22.5h] [5 Credits]	х	х
X LINMA1702	Optimization models and methods I	François Glineur	ER [q2] [30h+22.5h] [5 Credits]	х	х
S LINMA2111	Discrete mathematics II : Algorithms and complexity	Jean-Charles Delvenne Jean-Charles Delvenne (compensates Vincent Blondel)	EN [q1] [30h+22.5h] [5 Credits]	x	x
X LINMA2380	Matrix computations	Raphaël Jungers	EN [q1] [30h+22.5h] [5 Credits]	х	х
X LINMA2875	System Identification	John Lataire	EN [q2] [30h+30h] [5 Credits]	х	х
🗱 LMAT2450	Cryptography	Olivier Pereira	EN [q1] [30h+15h] [5 Credits]	х	x

Year 1 2

MAJOR IN ELECTRONIC CIRCUITS AND SYSTEMS

The objective of the major in circuits and electronics systems (which it shares with other Master's degree programmes in electrical engineering) is to introduce students to techniques of system design, computer simulation, manufacturing and experimental classification of electronic circuit components both numerical and analogue as well as the mixed systems associated with these components. Emphasis is placed on the practical applications necessary to carry out projects.

• Mandatory
S Optional
△ Not offered in 2021-2022
Not offered in 2021-2022 but offered the following year
\oplus Offered in 2021-2022 but not the following year
$\Delta \oplus$ Not offered in 2021-2022 or the following year
Activity with requisites
[FR] Teaching language (FR, EN, ES, NL, DE,)
Click on the course title to see detailed informations (objectives, methods, evaluation)

Maximum 30 credit(s)

o Content:

o Compulsory course in electronic circuits and systems

O LELEC2532	Electronic analog systems	David Bol Denis Flandre (coord.)	UN [q2] [30h+30h] [5 Credits]	x	>
-------------	---------------------------	-------------------------------------	-------------------------------	---	---

o Elective courses in electronic circuits and systems

🔀 LELEC2541	Advanced Transistors	Denis Flandre Benoît Hackens Jean-Pierre Raskin	EN [q2] [30h+22.5h] [5 Credits]	x	x
Stelec2570	Synthesis of digital integrated circuits 📃	David Bol	EN [q1] [30h+30h] [5 Credits]	х	х
Stelec2580	Design of RF and microwave communication circuits	Christophe Craeye Dimitri Lederer	[q2] [30h+30h] [5 Credits]	x	x
🔀 LELEC2590	Seminars in electronics and communications	Denis Flandre Isabelle Huynen Jérôme Louveaux	EN [q2] [30h] [3 Credits]	х	x
X LELEC2620	Modeling and implementation of analog and mixed analog/ digital circuits and systems on chip	David Bol	EN [q2] [30h+22.5h] [5 Credits]	х	x
Stelec2650	Synthesis of analog integrated circuits	Denis Flandre	EN [q1] [30h+30h] [5 Credits]	х	х
Stelec2660	Power electronics	Marc Bekemans	EN [q2] [30h+15h] [5 Credits]	х	х
Stelec2700	Microwaves	Dimitri Lederer	EN [q1] [30h+30h] [5 Credits]	х	х
SELEC2760	Secure electronic circuits and systems	François- Xavier Standaert	[q2] [30h+30h] [5 Credits]	x	x
Science Lelec2811	Instrumentation and sensors	David Bol (coord.) Laurent Francis	[q1] [30h+30h] [5 Credits]	x	x
Strain LGBIO2020	Bioinstrumentation	André Mouraux Michel Verleysen	[q1] [30h+30h] [5 Credits]	x	x
Stinfo2315	Design of Embedded and real-time systems	Jean-Didier Legat	EN [q2] [30h+30h] [5 Credits]	х	х

Year 1 2

MAJOR IN CRYPTOGRAPHY AND INFORMATION SECURITY

As with most of the other Master's degree programmes in electrical engineering, computer science and applied mathematics, this major provides students with the knowledge to answer questions about information security with algorithms and mathematics as well as design and solve problems in the context of electronic circuits and information systems.

O Mandatory
🗱 Optional
△ Not offered in 2021-2022
Not offered in 2021-2022 but offered the following year
Offered in 2021-2022 but not the following year
$\Delta \oplus$ Not offered in 2021-2022 or the following year
Activity with requisites
[FR] Teaching language (FR, EN, ES, NL, DE,)
Click on the course title to see detailed informations (objectives, methods, evaluation)

Maximum 30 credit(s)

• Content:

Elective courses

In order to validate this option INFO and MAP students have to take at least 20 credits and the ELEC, DATE and DATI students have to take at least 15 credits among:

Science Lelec2760	Secure electronic circuits and systems	François- Xavier Standaert	[q2] [30h+30h] [5 Credits]	х	X
Stinfo2144	Secured systems engineering	Axel Legay	EN [q2] [30h+15h] [5 Credits]	х	x
Stinfo2347	Computer system security	Ramin Sadre	EN [q2] [30h+15h] [5 Credits]	х	x
🔀 LINGI2348	Information theory and coding	Jérôme Louveaux Benoît Macq Olivier Pereira	(EN [q2] [30h+15h] [5 Credits]	x	X
🔀 LMAT2440	Number theory	Olivier Pereira Jean-Pierre Tignol	19R [q1] [30h+15h] [5 Credits]	х	X
🔀 LMAT2450	Cryptography	Olivier Pereira	EN [q1] [30h+15h] [5 Credits]	х	x
Stelec2770	Privacy Enhancing technology	Olivier Pereira (coord.) François- Xavier Standaert	(EN [q1] [30h+30h] [5 Credits]	x	X

Year 12

MAJOR IN ADVANCED ELECTRONIC MATERIALS AND DEVICES

 Mandatory 	
🗱 Optional	
△ Not offered in 2021-2022	
Not offered in 2021-2022 but offered	the following year
Offered in 2021-2022 but not the fol	lowing year
$\Delta \oplus$ Not offered in 2021-2022 or the f	ollowing year
Activity with requisites	
[FR] Teaching language (FR, EN, ES, I	VL, DE,)
Click on the	course title to see detailed informations (objectives, methods, evaluation)

Maximum 30 credit(s)

,	Year
	1 2
• Content:	

o Compulsory courses in advanced electronic materials and devices

Student choose a	tudent choose at least 5 credits among:					
₿ LELEC2541	Advanced Transistors	Denis Flandre Benoît Hackens Jean-Pierre Raskin	[q2] [30h+22.5h] [5 Credits]	х	x	
Stelec2550	Special electronic devices	Vincent Bayot	EN [q1] [30h+15h] [5 Credits]	х	x	
Stelec2700	Microwaves	Dimitri Lederer	EN [q1] [30h+30h] [5 Credits]	х	x	
X LELEC2895	Design of micro and nanosystems	Laurent Francis	EN [q1] [30h+30h] [5 Credits]	х	x	

& Elective courses in advanced electronic materials and devices

Stelec2560	Micro and Nanofabrication Techniques	Laurent Francis (coord.) Benoît Hackens Jean-Pierre Raskin	EN [q2] [30h+30h] [5 Credits]	х	х
Stelec2580	Design of RF and microwave communication circuits	Christophe Craeye Dimitri Lederer	(a) [q2] [30h+30h] [5 Credits]	х	x
Stelec2710	Nanoelectronics	Vincent Bayot (coord.) Benoît Hackens	[q1] [30h+30h] [5 Credits]	х	х
Stelec2811	Instrumentation and sensors	David Bol (coord.) Laurent Francis	[q1] [30h+30h] [5 Credits]	х	х
🗱 LMAPR2015	Physics of Nanostructures	Jean-Christophe Charlier (coord.) Xavier Gonze Luc Piraux	[q1] [37.5h+22.5h] [5 Credits]	х	x
🗱 LMAPR2020	Materials Selection	Pierre Bollen (compensates Thomas Pardoen) Bernard Nysten	[q2] [30h+22.5h] [5 Credits]	х	x
Streen 1998 LMECA2300	Advanced Numerical Methods	Philippe Chatelain Christophe Craeye (coord.) Vincent Legat Jean-François Remacle	0N [q2] [30h+30h] [5 Credits]	х	x
Stephys2143	Optics and lasers	Clément Lauzin	EN [q1] [22.5h+22.5h] [5 Credits]	х	х
₿ LPHYS2303	Cryophysics and vacuum physics	Vincent Bayot Benoît Hackens Sorin Melinte	EN [q1] [30h+15h] [5 Credits]	х	x
Stelec2350	Electromagnetic waves	Christophe Craeye Dimitri Lederer	[q2] [30h+30h] [5 Credits]	х	x

DISCIPLINARY ELECTIVES COURSES

O Mandatory
🛱 Optional
△ Not offered in 2021-2022
⊘ Not offered in 2021-2022 but offered the following year
\oplus Offered in 2021-2022 but not the following year
$\Delta \oplus$ Not offered in 2021-2022 or the following year
Activity with requisites
[FR] Teaching language (FR, EN, ES, NL, DE,)
Click on the course title to see detailed informations (objectives, methods, evaluation)

Year 1 2

o Content:

O LELEC2520	Electrical power systems	Emmanuel De Jaeger	ENt [q1] [30h+30h] [5 Credits]	х	х
O LELEC2910	Antennas and propagation	Christophe Craeye (coord.) Claude Oestges	(IN [q1] [30h+30h] [5 Credits]	х	x
O LELEC2330	Opto-electronic and power devices	Denis Flandre Laurent Francis (coord.)	EN [q1] [30h+30h] [5 Credits]	x	x

OPTIONS ET COURS AU CHOIX EN CONNAISSANCES SOCIO-ÉCONOMIQUES

BUSINESS RISKS AND OPPORTUNITIES

This major is not available in English and may not be taken at the same time as the major \ll Interdisciplinary program in entrepreneurship – CPME ».

O Mandatory

- 🗱 Optional
- Δ Not offered in 2021-2022

Ø Not offered in 2021-2022 but offered the following year

- \oplus Offered in 2021-2022 but not the following year
- $\Delta \oplus \mathsf{Not}$ offered in 2021-2022 or the following year
- Activity with requisites
 - R] Teaching language (FR, EN, ES, NL, DE, ...)

Click on the course title to see detailed informations (objectives, methods, evaluation...)

Year 1 2

• Content:

O LEPL2211	Business issues introduction	Benoît Gailly	[q2] [30h] [3 Credits]	х	х
O LEPL2212	Financial performance indicators	André Nsabimana	EN [q2] [30h+5h] [4 Credits]	x	х
O LEPL2214	Law, Regulation and Legal Context	Vincent Cassiers Werner Derycke (coord.) Bénédicte Inghels	EK [q1] [30h+5h] [4 Credits]	х	x

o One course between

From 3 to 5credit(s)

8 LEPL2210	Ethics and ICT	Axel Gosseries Olivier Pereira	EN [q2] [30h] [3 Credits]	Х	X
X LLSMS2280	Business Ethics and Compliance Management	Carlos Desmet	EN [q1] [30h] [5 Credits]	X	X

o Cours de fondements en marketing

Les cours MLSMM2136 Tendances en Digital Marketing Ou MLSMM2134 E-comportement du consommateur sont optionnels suite à la réussite du cours MGEST1220 lors du premier bloc annuel.

O MGEST1220	Marketing	Nadia Sinigaglia	FR [q1] [45h+20h] [5 Credits]	х

UCL - Université catholique de Louvain Study Programme 2021-2022 ELEC2M: Master [120] in Electrical Engineering

				Ye	ar
				1	2
XX MLSMM2136	Trends in Digital Marketing	Ingrid Poncin	FR [q2] [30h] [5 Credits]		x
XX MLSMM2134	e-Consumer Behavior	Karine Charry	FR [q2] [30h] [5 Credits]		x

Alternative to the major in business risks and opportunities for computer science students Computer science students who have already taken courses in this field while pursuing their Bachelor's degree may choose between 16-20 credits from the courses offered in the management minor for computer sciences.

MAJOR IN SMALL AND MEDIUM SIZED BUSINESS CREATION

In keeping with most of the EPL Masters' degrees, the goal of this major is to familiarize the student with the specifics of entrepreneurship and business development in order to develop the necessary abilities, knowledge and tools to create a business. It is a truly interdisciplinary initiative where students from different faculties are brought together in cross-disciplinary teams to create an entrepreneurial project.

The Interdisciplinary program in entrepreneurship (CPME) is spread over two years and is integrated into more than 30 Masters (9 faculties). The program includes a collective and interdisciplinary master thesis focused on an entrepreneurial project (start-up or spinoff) and realized in teams of 3 to 4 students from 3 to 4 different faculties. The access is reserved for a small number of students by a selection procedure. Additional information may be found at www.uclouvain.be/cpme.

- Mandatory
- St Optional
- Δ Not offered in 2021-2022
- Not offered in 2021-2022 but offered the following year
- ⊕ Offered in 2021-2022 but not the following year
- $\Delta \oplus$ Not offered in 2021-2022 or the following year
- Activity with requisites
- [FR] Teaching language (FR, EN, ES, NL, DE, ...)

Click on the course title to see detailed informations (objectives, methods, evaluation...)

o Content:

o Required courses for the major in small and medium sized businesses

O LCPME2001	Théorie de l'entrepreneuriat	Frank Janssen	FR [q1] [30h+20h] [5 Credits]	х
O LCPME2002	Aspects juridiques, économiques et managériaux de la création d'entreprise	Yves De Cordt Marine Falize	ER [q1] [30h+15h] [5 Credits]	x
O LCPME2003	Plan d'affaires et étapes-clefs de la création d'entreprise Les séances du cours LCPME2003 sont réparties sur les deux blocs annuels du master. L'étudiant doit les suivre dès le bloc annuel 1, mais ne pourra inscrire le cours que dans son programme de bloc annuel 2.	Frank Janssen	988 [q2] [30h+15h] [5 Credits]	x
O LCPME2004	Séminaire d'approfondissement en entrepreneuriat	Frank Janssen	IR [q2] [30h+15h] [5 Credits]	х

Prerequisite CPME courses

Student who have not taken management courses during their previous studies must enroll in LCPME2000.

O LCPME2000 F	Financer et gérer son projet l	Yves De Rongé Olivier Giacomin	ER [q1] [30h+15h] [5 Credits]	х	

Year 1 2

O Mandatory

- S Optional
- △ Not offered in 2021-2022
- $\ensuremath{\oslash}$ Not offered in 2021-2022 but offered the following year
- \oplus Offered in 2021-2022 but not the following year
- $\Delta \oplus \mathsf{Not}$ offered in 2021-2022 or the following year
- Activity with requisites
- [FR] Teaching language (FR, EN, ES, NL, DE, ...)

Click on the course title to see detailed informations (objectives, methods, evaluation...)

Minimum 3 credit(s)

Year

Year 1 2

o Content:

8 LEPL2211	Business issues introduction	Benoît Gailly	EN [q2] [30h] [3 Credits]	x	х
🗱 LFSA2995	Company Internship	Dimitri Lederer Jean-Pierre Raskin	ER [q1+q2] [30h] [10 Credits]	х	×
🔀 LFSA2212	Innovation classes	Benoît Macq Jean-Pierre Raskin Benoît Raucent	EN [q1] [30h+15h] [5 Credits]	x	х
CELEC2590	Seminars in electronics and communications	Denis Flandre Isabelle Huynen Jérôme Louveaux	[q2] [30h] [3 Credits]	x	x
				_	

OTHER ELECTIVE COURSES

OTHER ELECTIVE COURSES

- O Mandatory
- S Optional
- Δ Not offered in 2021-2022 \oslash Not offered in 2021-2022 but offered the following year
- ⊕ Offered in 2021-2022 but not the following year
- $\Delta \oplus \mathsf{Not}$ offered in 2021-2022 or the following year
- Activity with requisites
 - R] Teaching language (FR, EN, ES, NL, DE, ...)

Click on the course title to see detailed informations (objectives, methods, evaluation...)

o Content:

Les étudiants peuvent également inscrire à leur programme tout cours faisant partie des programmes d'autres masters de l'EPL moyennant l'approbation du jury restreint.

Students may select from any language course offered at the ILV. Special attention is placed on the following seminars in professional development:

Stalle2500	Professional development seminar German	Caroline Klein (coord.)	DE [q1+q2] [30h] [3 Credits]	х	х
X LALLE2501	Professional development seminar-German	Caroline Klein (coord.)	DE [q1+q2] [30h] [5 Credits]	х	х
Stespa2600	Vocational Induction Seminar - Spanish (B2.2/C1)	Paula Lorente Fernandez (coord.)	ES [q1] [30h] [3 Credits]	х	x
S LESPA2601	Vocational Induction Seminar - Spanish (B2.2/C1)	Paula Lorente Fernandez (coord.)	ES [q1] [30h] [5 Credits]	x	х
X LNEER2500	Seminar of Entry to professional life in Dutch - Intermediate level	Isabelle Demeulenaere (coord.) Marie-Laurence Lambrecht	Nb [q1 or q2] [30h] [3 Credits]	х	х

				1	2	l
S LNEER2600	Seminar of entry to professional life in Dutch - Upper- Intermediate level	Isabelle Demeulenaere (coord.) Dag Houdmont	[q1 or q2] [30h] [3 Credits]	х	х	

S LEPL2351	Group dynamics - Q1	Claude Oestges (coord.) Benoît Raucent Vincent Wertz (compensates Thomas Pardoen)	ER [q1] [15h+30h] [3 Credits]	х	x
S LEPL2352	Group dynamics - Q2	Claude Oestges (coord.) Benoît Raucent Vincent Wertz (compensates Thomas Pardoen)	08. [q2] [15h+30h] [3 Credits]	х	x

autres UEs hors-EPL

L'étudiant e peut choisir maximum 8 ects de cours hors EPL considérées comme non-disciplinaires par la commission de diplôme

Year

Course prerequisites

The **table** below lists the activities (course units, or CUs) for which there are one or more prerequisites within the programme, i.e. the programme CU for which the learning outcomes must be certified and the corresponding credits awarded by the jury before registering for that CU.

These activities are also identified in the detailed programme: their title is followed by a yellow square.

Prerequisites and student's annual programme

As the prerequisite is for CU registration puposes only, there are no prerequisites within a programme year. Prerequisites are defined between CUs of different years and therefore influence the order in which the student will be able to register for the programme's CUs.

In addition, when the jury validates a student's individual programme at the beginning of the year, it ensures its coherence, meaning that it may:

- transform a prerequisite into a corequisite within the same year (to enable the student to continue his or her studies with a sufficient annual course load)
- require the student to combine registration in two separate CUs which it considers necessary from a pedagogical point of view.

For more information, please consult the Academic Regulations and Procedures (https://uclouvain.be/fr/decouvrir/rgee.html).

Prerequisities list

LELEC2570 "Synthesis of digital integrated circuits" has prerequisite(s) LELEC2531

•LELEC2531 - Electronic digital systems LELEC2650 "Synthesis of analog integrated circuits" has prerequisite(s) LELEC2532

• LELEC2532 - Electronic analog systems

The programme's courses and learning outcomes

For each UCLouvain training programme, a reference framework of learning outcomes specifies the the skills expected of every graduate on completion of the programme. Course unit descriptions specify targeted learning outcomes, as well as the unit's contribution to reference framework of learning outcomes.

ELEC2M - Information

Access Requirements

Master course admission requirements are defined by the French Community of Belgium Decree of 7 November 2013 defining the hiher education landscape and the academic organisation of courses.

General and specific admission requirements for this programme must be satisfied at the time of enrolling at the university.

In the event of the divergence between the different linguistic versions of the present conditions, the French version shall prevail.

SUMMARY

- > General access requirements
- Specific access requirements
- > University Bachelors
- > Non university Bachelors
- > Holders of a 2nd cycle University degree
- > Holders of a non-University 2nd cycle degree
- > Access based on validation of professional experience
- > Access based on application
- > Admission and Enrolment Procedures for general registration

Specific access requirements

This programme is taught in English with no prerequisite in French. The student is supposed to have at least a B2 level in the European Framework of Reference. A certificat is required for the holders of a non-Belgian degree, see <u>selection criteria</u> of the Accès on the file.

University Bachelors

Diploma	Special Requirements	Access	Remarks			
UCLouvain Bachelors						
Bachelor in Engineering		Direct access	Students who have neither major nor minor in the field of their civil engineering Master's degree may have an adapted master programme.			
Others Bachelors of the French	n speaking Community of Belgiu	im				
Bachelor in engineering		Direct access	Students with a Bachelor's degree in engineering sciences who have not taken the equivalent of a minor in the field of their civil engineering master degree may have an adapted master programme.			
Bachelors of the Dutch speaking Community of Belgium						
Bachelor in engineering		Access with additional training	Students who have no specialisation in the field of their civil enginering master degree may have an adapted master programme with up to 60 additional credits.			
Foreign Bachelors						
Bachelor in engineering	Bachelors degree of Cluster Institution	Direct access	Students with a Bachelor's degree in engineering sciences who have not taken the equivalent of a minor in the field of their civil enginering master degree may have an adapted master programme.			
Bachelor in Engineering	For others institutions	Access based on application	See personalized access			

Non university Bachelors

> Find out more about links to the university

Holders of a 2nd cycle University degree

Diploma	Special Requirements	Access	Remarks
"Licenciés"			
Masters			
Master in Engineering		Direct access	

Holders of a non-University 2nd cycle degree

> Find out more about links to the university

Access based on validation of professional experience

It is possible, under certain conditions, to use one's personal and professional experience to enter a university course without having the required qualifications. However, validation of prior experience does not automatically apply to all courses. Find out more about Validation of priori experience.

Access based on application

Admission on the basis of a submitted dossier may be granted either directly or on the condition of completing additional coursework of a maximum of 60 ECTS credits, or refused.

The first step of the admission procedure requires to submit an application online: https://uclouvain.be/en/study/inscriptions/futurs-etudiants.html

Selection criteria are summarized here (contact : epl-admission@uclouvain.be).

Pending the publication of the 2022-2023 study programme (expected in early March), the specific access requirements for 2022-2023 are now available on the faculty website

Admission and Enrolment Procedures for general registration

Teaching method

Methods that promote multidisciplinary studies

The Master's degree programme in electrical engineering provides students with considerable technical and professional knowledge. It offers in-depth knowledge of the different subjects covered in the Bachelor's degree programme on electricity and expected of electrical engineers (electronics, electromagnetics, communication, system design). It is open to other fields such as

- Computer science, applied mathematics and automation (the latter having been studied in the Bachelor's degree programme for students enrolled in the electricity major); achieved through 32 credits of required common courses
- Electrotechnology, photovoltaic technologies, nanotechnologies, MEMS and NEMS, computer science and communication,
- biomedical engineering, cryptography and information security via specialised majors.

Regarding elective courses, the programme commission encourages students to broaden their training by choosing classes organised by other programme commissions. Thus the majority of suggested majors are MAPR, INGI, INMA or MATH.

Also of note are the dozen ELEC classes that are open to students enrolled in other Master's degree programmes on the condition that they have taken introductory classes on electric circuits and electronics or complementary classes in electricity.

To encourage interdisciplinary coursework, there are interdisciplinary projects regrouping a series of subjects from the common core curriculum.

Diverse learning situations

The diverse learning situations include lectures, practical work and projects based on the following approach: modelling-simulationrealisation -experimental validation. Depending on the case, students are encouraged to work either in groups or individually. Of note is the interdisciplinary project that requires students to design, model, carry out and test a system. This project draws upon the entirety of their knowledge in the field of their final specialisation as well completes the work begun during their undergraduate studies (ELEC Bachelor's degree programme).

Furthermore, in certain subjects, e-Learning permits students to educate themselves at their own pace and carry out virtual experiments.

This variety of learning situations help students to learn in an iterative and progressive manner, all the while developing their autonomy, organisational abilities, as well as time management and communication skills. Modern information technologies (materials, software, networks) are made available to students.

For example, the major in business creation is based on an interactive approach that emphasizes problem-based learning. Throughout the programme, students enrolled in this major must carry out group work as part of multidisciplinary teams. Their interdisciplinary thesis or graduation project permits groups of three students, ideally from different academic departments, to collaborate on a business creation proposal.

The graduation project aims for the most part to integrate students into research teams at the Institute.

Thus, teaching activities are supplemented by research activities and serve as a starting point for the recruitment of researchers (often a graduation project is the starting point for a doctorate, publication or paper presentation).

Depending on the situation, students are encouraged to work either individually or in groups.

Concrete learning: infrastructure

In ELEC courses, "concrete" learning is characterised by student access to high quality technical infrastructures:

The Marconi and Faraday pedagogical laboratories are equipped with the latest in work stations (oscilloscopes, sources, computers) and are accessible to students as part of their laboratory classes and Bachelor's and Master's degree projects. In the case of projects including the creation of a prototype by groups of students, access to prototypes of electronic cards (PCB, components, welding) is available.

R&D platforms in the areas of electronic components and communication systems (Welcome) and micro and nano-technologies (Winfab) are accessible to Master's degree students as part of certain classes and graduation projects.

Computers and work stations equipped with the most recent professional CAO software are accessible to students in the Maxwell building but also remotely from the Engineering School's computer labs. This software is largely used in classes, APE and projects: design sequences for electronic circuits and microwaves, simulation of manufacturing processes, electronic devices, etc.

Evaluation

The evaluation methods comply with the <u>regulations concerning studies and exams</u> (https://uclouvain.be/fr/decouvrir/ rgee.html). More detailed explanation of the modalities specific to each learning unit are available on their description sheets under the heading "Learning outcomes evaluation method".

Teaching activities are evaluated according to University rules (see the rules for evaluating coursework and exams) namely written and oral exams, laboratory exams, individual or group work, public presentations of projects and theses defences.

In most Master's degree classes, students are primarily evaluated on the basis of their written work, which assesses their mastery of theoretical concepts as well as their ability to solve exercises (of the same level of difficulty as in class).

Group projects are primarily used to evaluate students' ability to solve complex equations and master software. These projects generally result in a report (in the form of a scientific article or a conference paper) or an oral presentation before a jury or lecture hall about the project's results and/or progress. In either case, particular attention is paid to the project's technical qualities as well as the quality of the report's structure, the use of supporting materials, and the students' presentation skills.

For more information on evaluation methods, students may consult the relevant evaluation descriptions.

To obtain a passing grade, the marks received for the teaching units are offset by their respective credits.

Mobility and/or Internationalisation outlook

Since its creation, the Louvain School of Engineering (EPL) has participated in diverse exchange programs that were put into place at the European level and beyond.

Possible trainings at the end of the programme

- Accessible complementary Master's degrees:

Master's in nuclear engineering Master in nanotechnologies

- Accessible Ph. D. curricula

The department of electrical engineering is one of those with the largest number of doctoral students. Members of the department are involved in many thematic Ph. D. schools, some of these having been active for many years, others currently being set up. A list of these thematic Ph. D. schools can be obtained from the chairperson of the Ph. D. committee relating to "Engineering sciences and the Art of building and town planning " of the Académie Universitaire Louvain or on the FNRS Website http://www1.FNRS.BE

Contacts

Curriculum Management

Entity Structure entity Denomination Faculty Sector Acronym Postal address

SST/EPL/ELEC (ELEC) Louvain School of Engineering (EPL) Sciences and Technology (SST) ELEC Place du Levant 3 - bte L5.03.02 1348 Louvain-la-Neuve Tel: +32 (0) 10 47 25 86 - Fax: +32 (0) 10 47 86 67

Academic supervisor: <u>Jérôme Louveaux</u> (https://uclouvain.be/repertoires/jerome.louveaux)

Jury

• Président: <u>Jean-Didier Legat</u> (https://uclouvain.be/repertoires/jean-didier.legat)

• Secrétaire du Jury: <u>Jérôme Louveaux</u> (https://uclouvain.be/repertoires/jerome.louveaux)

Useful Contact(s)

• Secrétariat: Isabelle Dargent (https://uclouvain.be/repertoires/isabelle.dargent)