

A Louvain-la-Neuve - 120 crédits - 2 années - Horaire de jour - En anglais

Mémoire/Travail de fin d'études : **OUI** - Stage : **optionnel** Activités en anglais: **OUI** - Activités en d'autres langues : **OUI**

Activités sur d'autres sites : optionnel

Domaine d'études principal : Sciences de l'ingénieur et technologie

Organisé par: Ecole Polytechnique de Louvain (EPL)

Sigle du programme: GBIO2M - Cadre francophone de certification (CFC): 7

Table des matières

ntroduction	
Profil enseignement	
- Compétences et acquis au terme de la formation	
- Structure du programme	
- Programme détaillé	
- Programme par matière	
- Préreguis entre cours	
- Cours et acquis d'apprentissage du programme	2
nformations diverses	
- Conditions d'accès	2
- Pédagogie	2
- Evaluation au cours de la formation	
- Mobilité et internationalisation	2
- Formations ultérieures accessibles	2
- Gestion et contacts	2

GBIO2M - Introduction

INTRODUCTION

Introduction

Ce master assure la formation d'ingénieurs capables de déployer leurs compétences d'analyse, de modélisation, de conception, et d'inventivité, afin de répondre aux défis technologiques futurs dans les domaines scientifiques et techniques liés au génie biomédical et ce, dans un contexte européen et mondial en pleine évolution.

À l'issue de votre master, vous aurez acquis des connaissances de base dans tous les domaines du génie biomédical (bioinstrumentation, biomatériaux, imagerie et physique médicale, modélisation mathématique, organes artificiels et réhabilitation, bioinformatique et biomécanique) et une formation de pointe dans une ou plusieurs options.

Une série de portraits vidéos de jeunes ingénieurs en biomédical est à découvrir sur la page « génie biomédical » de la faculté.

Votre profil

Vous

- avez, au terme d'une première formation, développé un intérêt marqué pour le domaine biomédical et les produits technologiques qu'il utilise :
- cherchez une formation ciblée par rapport aux enjeux scientifiques et technologiques actuels et au marché de l'emploi national et international :
- souhaitez exercer des fonctions de développement, de production ou de gestion dans le domaine de la santé.

Votre programme

Le master vous offre:

- la connaissance des grands enjeux scientifiques et industriels dans les domaines d'application du génie biomédical ;
- une formation qui articule théorie et pratique pour développer des compétences professionnelles avancées ;
- le choix d'une ou plusieurs options dans un domaine pointu du génie biomédical;
- l'occasion de réaliser un stage en milieu hospitalier, en industrie ou dans un centre de recherche ;
- la possibilité de réaliser une partie de votre master à l'étranger, en Europe ou ailleurs; avec dans certains cas l'obtention d'un « dual master degree » (diplôme émis conjointement par l'UCLouvain et l'autre institution où vous aurez séjourné).

GBIO2M - Profil enseignement

COMPÉTENCES ET ACQUIS AU TERME DE LA FORMATION

A l'heure actuelle, de plus en plus d'ingénieurs sont amenés à mettre leurs compétences d'analyse et d'inventivité au service du monde de la santé. Le **Master ingénieur civil biomédical** a pour objectif d'assurer la formation d'ingénieurs capables de répondre aux défis scientifiques et techniques liés au génie biomédical, et ce dans un contexte européen et mondial en pleine évolution. Intrinsèquement interdisciplinaire, la formation repose sur une forte collaboration entre le secteur des sciences et technologies et le secteur des sciences de la santé.

Sur base d'un corpus de connaissances solides en sciences de base (physique, chimie, mathématiques) et en sciences du vivant (biologie, anatomie, biochimie et physiologie), supposé maîtrisé par l'étudiant, le Master offre la possibilité à celui-ci/celle-ci de développer ses **compétences polytechniques** dans un éventail d'applications liées au monde du vivant. A l'issue de sa formation, l'étudiant est appelé à devenir un professionnel compétent pour mieux **comprendre et modéliser** un système vivant afin de **concevoir des outils d'analyse ou thérapeutiques** (par exemple en développant une nouvelle technologie biomédicale).

A l'issue de son master, l'étudiant aura des connaissances de base dans les principaux domaines d'application du génie biomédical : bioinstrumentation, biomatériaux, imagerie médicale, modélisation mathématique, organes artificiels et réhabilitation, bioinformatique et biomécanique. Il aura acquis une formation avancée dans une ou plusieurs de ces disciplines, couvrant un très large éventail de domaines d'expertise.

Par la place importante laissée aux cours au choix, l'étudiant peut orienter sa formation entre un profil polyvalent ou spécialisé dans un domaine précis. Les domaines particulièrement mis en évidence sont le développement de logiciels et algorithmes pour l'acquisition et le traitement de données biomédicales; les biomatériaux (implants, etc.); la biomécanique et la robotique médicale ; l'imagerie médicale et la physique médicale; et le génie clinique (le rôle de l'ingénieur dans l'hôpital).

Au terme de ce programme, le diplômé est capable de :

- 1. démontrer la maîtrise d'un solide corpus de connaissances et compétences en sciences fondamentales et sciences de l'ingénieur, lui permettant d'appréhender et de résoudre des problèmes qui relèvent du génie biomédical (axe 1).
- 1.1. Identifier et mettre en oeuvre les concepts, lois, raisonnements applicables à une problématique donnée faisant appel à plusieurs disciplines du génie biomédical :
- le développement d'algorithmes et de logiciels, particulièrement pour le traitement de données biomédicales, l'analyse de données biologiques et l'imagerie médicale,
- les biomatériaux (interfaces, biocompatibilité, etc.)
- la biomécanique, le contrôle moteur, et la robotique médicale (pour la chirurgie et la rééducation)
- le génie clinique
- 1.2. Identifier et utiliser les outils de modélisation et de calcul adéquats pour résoudre des problématiques liées aux disciplines (cidessus).
- 1.3. Vérifier la vraisemblance et confirmer la validité des résultats obtenus au regard de la nature du problème posé, notamment en ce qui concerne les ordres de grandeurs et les unités dans lesquelles les résultats sont exprimés :
- en particulier, valider ou invalider un travail de modélisation en comparant des résultats expérimentaux et théoriques
- 2.organiser et mener à son terme une démarche d'ingénierie appliquée au développement d'un produit (et/ou d'un service) répondant à un besoin ou à une problématique particulière dans le domaine du génie biomédical (axe 2).
- 2.1. Analyser le problème à résoudre ou le besoin fonctionnel à rencontrer, inventorier les fonctionnalités et contraintes, formuler le cahier des charges dans un domaine où les contraintes techniques et économiques sont prises en compte.
- 2.2. Modéliser le problème et concevoir une ou plusieurs solutions techniques en y intégrant les aspects mécaniques, électriques, électroniques ou informatiques et répondant au cahier des charges.
- 2.3. Évaluer et classer les solutions au regard de l'ensemble des critères figurant dans le cahier des charges : efficacité, faisabilité, qualité, ergonomie, sécurité dans l'environnement considéré, biocompatibilité, etc.
- 2.4. Implémenter et tester une solution sous la forme d'une maquette, d'un prototype et/ou d'un modèle numérique.
- 2.5. Formuler des recommandations pour améliorer une solution technique, soit pour la rejeter, soit pour expliquer les améliorations à y apporter dans la perspective d'en faire un produit opérationnel.
- 3. organiser et mener à son terme un travail de recherche pour appréhender un phénomène physique ou une problématique inédite relevant du génie biomédical (axe 3).
- 3.1 Se documenter et résumer l'état des connaissances actuelles dans le domaine considéré
- 3.2 Proposer une modélisation et/ou un dispositif expérimental permettant de simuler et de tester des hypothèses relatives au phénomène étudié, en agissant sur les différents paramètres qui le conditionnent
- 3.3 Mettre en forme un rapport de synthèse rédigé de telle manière que les résultats et productions présentés soient exploitables ultérieurement et par d'autres personnes, expliciter s'il y a lieu les potentialités d'innovation théorique et/ou technique résultant de ce travail de recherche
- 4.contribuer, en équipe, à la réalisation d'un projet pluridisciplinaire et le mener à son terme en tenant compte des objectifs, des ressources, allouées et des contraintes qui le caractérisent (axe 4).
- 4.1 Cadrer et expliciter les objectifs d'un projet compte tenu des enjeux et des contraintes (urgence, qualité, ressources, budget ...) qui caractérisent l'environnement du projet et appréhender les mécanismes principaux qui régissent l'économie des soins de santé et le financement de la sécurité sociale.
- 4.2 S'engager collectivement sur un plan de travail, un échéancier et des rôles à tenir.
- 4.3 Fonctionner dans un environnement pluridisciplinaire, conjointement avec d'autres acteurs porteurs de différents points de vue : gérer des points de désaccord ou des conflits.

4.4 Prendre des décisions en équipe lorsqu'il y a des choix à faire, et assumer les conséquences de ces décisions, que ce soit sur les solutions techniques ou sur l'organisation du travail pour faire aboutir le projet.

5.communiquer efficacement oralement et par écrit (en français et dans une ou plusieurs langues étrangères) en vue de mener à bien les projets qui lui sont confiés dans son environnement de travail (axe 5).

- 5.1 Identifier les besoins du client : questionner, écouter et s'assurer de la bonne compréhension de toutes les dimensions de sa demande et pas seulement les aspects techniques.
- 5.2. Argumenter et convaincre en s'adaptant au langage de ses interlocuteurs : médecins, thérapeutes, techniciens, collègues, clients, supérieurs hiérarchiques.
- 5.3. Communiquer sous forme graphique et schématique ; interpréter un schéma, présenter les résultats d'un travail, structurer des informations.
- 5.4. Lire, analyser et exploiter des documents techniques (normes, plans, cahier des charges...).
- 5.5. Rédiger des documents en tenant compte des exigences contextuelles et des conventions sociales en la matière, ainsi que du vocabulaire précis appartenant aux disciplines biomédicales.
- 5.6. Faire un exposé oral convaincant, en français ou en anglais, en utilisant les techniques modernes de communication.

6.faire preuve de rigueur, d'ouverture, d'esprit critique et d'éthique dans son travail. Tout en tirant parti des innovations technologiques et scientifiques à sa disposition, il prendra le recul nécessaire pour valider la pertinence socio-technique d'une hypothèse ou d'une solution (axe 6).

- 6.1 Appliquer les normes en vigueur dans le génie biomédical (terminologie, unités de mesure, normes de qualité et de sécurité...).
- 6.2 Trouver des solutions qui vont au-delà des enjeux strictement techniques, en intégrant les enjeux de développement durable et la dimension éthique d'un projet, particulièrement concernant les conséquences sur la pratique du médecin ou thérapeute, la prise en charge du patient, et la relation entre ceux-ci.
- 6.3 Faire preuve d'esprit critique vis-à-vis d'une solution technique pour en vérifier la robustesse et minimiser les risques qu'elle présente au regard du contexte de sa mise en oeuvre.
- 6.4 S'auto-évaluer et développer de manière autonome les connaissances nécessaires pour rester compétent dans son domaine (lifelong learning).

La contribution de chaque unité d'enseignement au référentiel d'acquis d'apprentissage du programme est visible dans le document " A travers quelles unités d'enseignement, les compétences et acquis du référentiel du programme sont développés et maitrisés par l'étudiant ?".

Le document est accessible moyennant identification avec l'identifiant global UCLouvain en cliquant ICI.

STRUCTURE DU PROGRAMME

Le programme de l'étudiant comprend :

- un tronc commun (35 crédits) constitué d'un travail de fin d'études et d'un projet industriel;
- une finalité spécialisée (30 crédits)
- une ou plusieurs options
- des cours au choix pour compléter le programme

Un projet à caractère industriel (5 crédits) est réalisé en début de master (1er bloc annuel), tandis que le travail de fin d'études est normalement réalisé en fin de master (2e bloc annuel). Il est par ailleurs recommandé que l'étudiant suive les cours de la finalité (30 crédits) en début de master (1er bloc annuel). L'étudiant peut néanmoins, en fonction de son projet de formation, choisir de placer ses cours en première ou en deuxième année dans la mesure où les « pré-requis entre cours » le permettent. Ceci est particulièrement le cas de l'étudiant effectuant une partie de sa formation à l'étranger.

Si au cours de son parcours académique antérieur, l'étudiant a déjà suivi un cours apparaissant dans la partie obligatoire ou optionnelle du programme, ou une activité de formation jugée équivalente par la commission de programme, il/elle remplacera celui-ci par des activités au choix tout en veillant à respecter les prescrits légaux. Il vérifiera également que le nombre minimum de crédits exigés pour la validation de son diplôme ainsi que pour la validation des options sélectionnées, en vue de leur mention sur le supplément au diplôme, soit atteint.

Le programme ainsi constitué sera soumis à l'approbation du jury restreint de ce master.

Pour un programme-type, ce master totalisera, quels que soient la finalité, les options et/ou les cours au choix sélectionnés un minimum de 120 crédits répartis sur deux blocs annuels correspondant à 60 crédits chacun.

Liste au choix	de finalités GBIO2M		
> Finalité	spécialisée [prog-2020-gbio2m-l	gbio200s]	
> Liste des op	tions [prog-2020-gbio2m-options]	
Options en ge	nie biomédical		
> Opt	on en génie clinique [prog-202	0-gbio2m-lgbio221o]	

UCLouvain - Université catholique de Louvain Catalogue des formations 2020-2021

GBIO2M: Master [120] : ingénieur civil biomédical

Options en gestion et création d'entreprises

- > Option : "Enjeux de l'entreprise" [prog-2020-gbio2m-lgbio2300]
- > Formation interdisciplinaire en création d'entreprise CPME [prog-2020-gbio2m-lgbio2310]

Cours au choix

- > Cours au choix en génie génétique [prog-2020-gbio2m-lgbio250o]
- > Cours au choix en génie biochimique [prog-2020-gbio2m-lgbio2510]
- > Cours au choix en génie pharmaceutique [prog-2020-gbio2m-lgbio2520]
- > Cours au choix en statistiques [prog-2020-gbio2m-lgbio253o]
- > Cours au choix : Compétences transversales et contact avec l'entreprise [prog-2020-gbio2m-lgbio9550]
- > Cours au choix accessibles aux étudiants du master ingénieur civil biomédical [prog-2020-gbio2m-lgbio9520]

Module complémentaire (concerne uniquement les étudiant.es qui ont obtenu un accès à la formation moyennant complément de formation)

> Master [120] : ingénieur civil biomédical [prog-2020-gbio2m-module_complementaire]

GBIO2M Programme détaillé

PROGRAMME PAR MATIÈRE

Tronc Commun [35.0]

Obligatoire

🛭 Au choix

△ Activité non dispensée en 2020-2021

O Activité cyclique non dispensée en 2020-2021

 \oplus Activité cyclique dispensée en 2020-2021

Activité avec prérequis

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

Bloc	
annue	

	1	2	
		X	
q1+q2	Х	X	

O LGBIO2990	Travail de fin d'études			28 Crédits			X
O LGBIO2220	Industrial project in biomedical engineering	Sophie Demoustier Philippe Lefèvre Renaud Ronsse	30h+30h	5 Crédits	q1+q2	X	×

o Cours de sciences religieuses pour étudiants en sciences exactes (2 crédits) Les étudiants choisissent un cours parmi:

Streco2100	Sociétés, cultures, religions : lectures bibliques	Hans Ausloos	15h	2 Crédits	q1	X	X
CHECO2300 CHECO2300	Sociétés, cultures, religions : questions éthiques	Marcela Lobo Bustamante	15h	2 Crédits	q1	X	X
CHECO2200 CHECO2200	Sociétés, cultures, religions : questions humaines fondamentales	Régis Burnet Dominique Martens	15h	2 Crédits	q1 ou q2	X	X

Finalité spécialisée [30.0]

Obligatoire State Au choix

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

La finalité spécialisée en génie biomédical offre un ensemble de cours décrivant les grands domaines du génie biomédical, de la bioinformatique à la biomécanique, en passant par l'imagerie. Elle correspond donc au volet "généraliste" de la formation. Par le volume horaire important consacré à cette finalité, l'étudiant peut néanmoins s'attendre à acquérir un niveau de maîtrise approfondi dans chacune des disciplines concernées.

Bloc annuel

o Contenu:

○ LGBIO2010	Bioinformatics	Pierre Dupont	30h+30h	5 Crédits	q1	X	X
○ LGBIO2020	Bioinstrumentation	André Mouraux Michel Verleysen	30h+30h	5 Crédits	q1	X	X
O LGBIO2030	Biomaterials	Sophie Demoustier Christine Dupont	30h+30h	5 Crédits	q1	X	x
○ LGBIO2040	Biomechanics	Greet Kerckhofs	30h+30h	5 Crédits	q2	X	X
O LGBIO2050	Medical Imaging	Greet Kerckhofs John Lee Benoît Macq Frank Peeters	30h+30h	5 Crédits	q1	X	x
O LGBIO2060	Modelling of biological systems	Philippe Lefèvre	30h+30h	5 Crédits	q1	X	X

Options et/ou cours au choix

L'étudiant e DOIT choisir au moins une option parmi les 5 options en génie biomédical. Il elle PEUT en outre en choisir une ou plusieurs parmi les options en génie biomédical et Gestion et création d'entreprises. Il elle complète son programme en choisissant parmi une liste de cours au choix.

Options en génie biomédical

- > Option en génie clinique [prog-2020-gbio2m-lgbio2210]
- > Option en acquisition et traitement de données biomédicales [prog-2020-gbio2m-lgbio2220]
- > Option en biomatériaux [prog-2020-gbio2m-lgbio2260]
- > Option en biomécanique et robotique médicale [prog-2020-gbio2m-lgbio2270]
- > Option en physique médicale et imagerie médicale [prog-2020-gbio2m-lgbio2320]

Options en gestion et création d'entreprises

- > Option : "Enjeux de l'entreprise" [prog-2020-gbio2m-lgbio2300]
- > Formation interdisciplinaire en création d'entreprise CPME [prog-2020-gbio2m-lgbio2310]

Cours au choix

- > Cours au choix en génie génétique [prog-2020-gbio2m-lgbio250o]
- > Cours au choix en génie biochimique [prog-2020-gbio2m-lgbio2510]
- > Cours au choix en génie pharmaceutique [prog-2020-gbio2m-lgbio2520]
- > Cours au choix en statistiques [prog-2020-gbio2m-lgbio2530]
- > Cours au choix : Compétences transversales et contact avec l'entreprise [prog-2020-gbio2m-lgbio9550]
- > Cours au choix accessibles aux étudiants du master ingénieur civil biomédical [prog-2020-gbio2m-lgbio9520]

Options en génie biomédical

Option en génie clinique

L'objectif de cette option est de fournir le corpus de connaissances nécessaires pour exercer le métier de l'ingénieur au sein d'une structure hospitalière ou d'une chaine de production de produits (bio)médicaux. Elle couvre les domaines relatifs à la gestion des technologies médicales, du contrôle qualité, etc.

Obligatoire

🛭 Au choix

△ Activité non dispensée en 2020-2021

O Activité cyclique non dispensée en 2020-2021

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

L'étudiant qui choisit cette option sélectionne de 20 à 30 crédits parmi: De 20 à 30 crédits

> Bloc annuel

1 2

o Contenu:

o Cours obligatoires (8 crédits)

O LGBIO2110	Introduction to Clinical Engineering	Benoit Delhaye Philippe Lefèvre	30h	3 Crédits	q2	X	X	
O LMECA2711	Quality management and control.	Nicolas Bronchart	30h+30h	5 Crédits	q2	X	X	

LSTAT2330 et WESP2123 sont mutuellement exclusifs de même que WFSP2218 et LBIRA2101 De 12 à 22 crédits

BIRA2110B	Modélisation et exploration des données multivariées - Applied Econometrics	Xavier Draye Frédéric Gaspart Bernadette Govaerts	27.5h +7.5h	3 Crédits	q1	X	X
\$\$ LINGI2172	Databases	Siegfried Nijssen	30h+30h	6 Crédits	q2	X	X
S LSTAT2110	Analyse des données	Johan Segers	30h+7.5h	5 Crédits	q1	X	X
S LSTAT2310	Contrôle statistique de qualité	Bernard Francq	15h+5h	4 Crédits	q1	X	X
S LSTAT2330	Statistique des essais cliniques	Catherine Legrand Annie Robert	22.5h +7.5h	5 Crédits	q2	X	X
© LDATS2360	Data Management I: programmation de base en SAS	Céline Bugli	15h+10h	5 Crédits	q1	X	X
窓 WESP2123	Principes des essais cliniques	Diego Castanares Zapatero Philippe Lysy Annie Robert (coord.) Françoise Smets	20h+10h	4 Crédits	q1	X	x
窓 WESP2234	Stratégies de la décision médicale	Andrea Penaloza-Baeza Annie Robert (coord.)	30h	3 Crédits	q1	X	X
ॐ WFSP2218	Analyse longitudinale : régression linéaire, logistique et de Poisson	Annie Robert	20h+20h	4 Crédits	q1	X	X
窓 WFSP2260	Management humain et comportement organisationnel	Pierre Meurens Sophie Thunus (coord.)	40h+30h	5 Crédits	q2	X	X

Option en acquisition et traitement de données biomédicales

L'objectif de cette option est de fournir le corpus de connaissances nécessaires pour acquérir et traiter des données de type biomédicales, soit à la fois des signaux bruts et des grandes bases de données prétraitées. Cette option est particulièrement destinée aux étudiants qui auraient suivi une majeure ou une mineure en informatique, en électricité, ou en mathématiques appliquées.

Obligatoire

🛭 Au choix

△ Activité non dispensée en 2020-2021

O Activité cyclique non dispensée en 2020-2021

Activité cyclique dispensée en 2020-2021

Activité avec prérequis

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

Les cours LSTAT2320 et LBIRC2106 sont mutuellement exclusifs ainsi que LSTAT2120 et LBIRA2101 De 20 à 30 crédits

> Bloc annuel

1 2

o Contenu:

o Cours obligatoires (10 crédits)

O LELEC2531	Design and Architecture of digital electronic systems	Jean-Didier Legat	30h+30h	5 Crédits	q1	X	X
• LELEC2900	Signal processing	Laurent Jacques Benoît Macq Luc Vandendorpe	30h+30h	5 Crédits	q2	X	X

Les cours LSTAT2320 et LBIRC2106 sont mutuellement exclusifs. Ainsi que les cours LSTAT2120 et LBIRA2101. De 10 à 20 crédits

© LELEC2532	Design and Architecture of analog electronic systems	David Bol Denis Flandre	30h+30h	5 Crédits	q2	X	X
ELEC2811	Instrumentation and sensors	David Bol (coord.) Laurent Francis	30h+30h	5 Crédits	q1	X	X
LELEC2870	Machine learning : regression, deep networks and dimensionality reduction	John Lee Michel Verleysen	30h+30h	5 Crédits	q1	X	X
S LINGI2251	Software Quality Assurance	Charles Pecheur	30h+15h	5 Crédits	q2	X	X
S LINGI2261	Artificial intelligence	Yves Deville	30h+30h	6 Crédits	q2	X	X
S LINGI2262	Machine Learning : classification and evaluation	Pierre Dupont	30h+30h	5 Crédits	q2	X	X
Strip LINMA2361 Strip LINMA2361	Nonlinear dynamical systems	Pierre-Antoine Absil	30h +22.5h	5 Crédits	q1	X	X
\$\$ LINMA2370	Modelling and analysis of dynamical systems	Jean-Charles Delvenne (coord.) Denis Dochain	30h +22.5h	5 Crédits	q1	X	X
State LINMA2471 State LINMA2471	Optimization models and methods II	François Glineur	30h +22.5h	5 Crédits	q1	X	X
S LINMA2875	System Identification	Julien Hendrickx	30h+30h	5 Crédits	q2	X	X
S LSTAT2320	Plans expérimentaux	Patrick Bogaert Bernadette Govaerts	22.5h +7.5h	5 Crédits	q2	X	X
SS LSTAT2110	Analyse des données	Johan Segers	30h+7.5h	5 Crédits	q1	X	X
BIRA2110B	Modélisation et exploration des données multivariées - Applied Econometrics	Xavier Draye Frédéric Gaspart Bernadette Govaerts	27.5h +7.5h	3 Crédits	q1	X	X
SS LSTAT2120	Linear models	Christian Hafner	30h+7.5h	5 Crédits	q1	X	X
☎ LGBIO2072	Mathematical models in neuroscience	Frédéric Crevecoeur	30h+30h	5 Crédits	q1	X	X

Option en biomatériaux

L'objectif de cette option est de fournir le corpus de connaissances nécessaires pour comprendre et développer la technologie liée aux biomatériaux (implants, biocompatibilité, etc.). Cette option est particulièrement destinée aux étudiants qui auraient suivi une majeure ou une mineure en chimie et physique appliquées ET en génie biomédical.

Obligatoire

Au choix

△ Activité non dispensée en 2020-2021

Activité cyclique non dispensée en 2020-2021

⊕ Activité cyclique dispensée en 2020-2021

Activité avec prérequis

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

L'étudiant qui choisit cette option sélectionne de 20 à 30 crédits parmi: De 20 à 30 crédits

> Bloc annuel

1 2

o Contenu:

Cours obligatoires étudiants KIMA

Les étudiants KIMA sélectionnent obligatoirement LGBIO2030 et LBIR1250, sauf si ce cours de 1er cycle a déjà été validé dans un cursus antérieur.

De 5 à 10 crédits

O LGBIO2030	Biomaterials	Sophie Demoustier Christine Dupont	30h+30h	5 Crédits	q1	X	X
O LBIR1250	Biochimie I : biochimie structurale, enzymologie et métabolisme énergétique	Michel Ghislain Yvan Larondelle (coord.)	30h+15h	4 Crédits	q1	X	X

o Cours obligatoires étudiants GBIO

Les étudiants GBIO sélectionnent obligatoirement LMAPR2481 et LMAPR1805 sauf si ce cours de 1er cycle a déjà été validé dans un cursus antérieur.

De 5 à 10 crédits

O LMAPR1805	Introduction à la science des matériaux	Jean-Christophe Charlier Pascal Jacques Bernard Nysten Thomas Pardoen (coord.)	30h+30h	5 Crédits	q2	X	X
O LMAPR2481	Deformation and fracture of materials	Hosni Idrissi Thomas Pardoen	30h+30h	5 Crédits	q1	X	X

o Cours recommandés

De 10 à 26 crédits

⇔ LBIR1355	Métabolisme microbien et synthèse de biomolécules	Michel Ghislain (coord.) Yvan Larondelle	22.5h +15h	3 Crédits	q2	X	×
☎ LBIO1237	Immunologie : fondements et applications en biologie	Jean-Paul Dehoux	25h+15h	3 Crédits	q1	Х	×
LELEC2560	Micro and Nanofabrication Techniques	Laurent Francis (coord.) Benoît Hackens Jean-Pierre Raskin	30h+30h	5 Crédits	q2	x	×
S LMAPR2012	Macromolecular nanotechnology	Sophie Demoustier Karine Glinel Karine Glinel (supplée Bernard Nysten) Jean-François Gohy	45h+15h	5 Crédits	q2	X	×
\$\$ LMAPR2019	Polymer Science and Engineering	Sophie Demoustier Alain Jonas (coord.) Evelyne Van Ruymbeke	45h+15h	5 Crédits	q1	X	×
☎ LGBIO2071	Tissue Engineering	Greet Kerckhofs	30h+30h	5 Crédits	q2	X	Х

Maximum 15 crédits

Maximum 13 C	reuns						
S LBIRC210	Analyse biochimique et notions de génie génétique: analyse biochimique	Pierre Morsomme	18.5h +22.5h	4 Crédits	q1	X :	K
BIRC210	Biochemical and Microbial Engineering	Iwona Cybulska	30h +22.5h	5 Crédits	q2	X	K
□ LGBIO202	Bioinstrumentation	André Mouraux Michel Verleysen	30h+30h	5 Crédits	q1	x :	K

UCLouvain - Université catholique de Louvain Catalogue des formations 2020-2021

GBIO2M: Master [120] : ingénieur civil biomédical

							loc inuel
						1	2
⇔ LMAPR2013	Science and engineering of metals and ceramics	Pascal Jacques	30h+30h	5 Crédits	q1	X	X
State LMAPR2014 State LMAPR2014	Physics of Functional Materials	Xavier Gonze Luc Piraux Gian-Marco Rignanese	37.5h +22.5h	5 Crédits	q1	X	X
S LMAPR2018	Rheology	Evelyne Van Ruymbeke	30h+30h	5 Crédits	q2	X	X
State LMAPR2631 State LMAPR2631	Surface Analysis	Arnaud Delcorte Bernard Nysten	30h+15h	5 Crédits	q2	X	X

Option en biomécanique et robotique médicale

L'objectif de cette option est de fournir le corpus de connaissances nécessaires pour comprendre et développer la technologie liée à la biomécanique (fluides et solides) et à la robotique médicale (assistance pour la chirurgie et rééducation). Cette option est particulièrement destinée aux étudiants qui auraient suivi une majeure ou une mineure en mécanique.

Obligatoire

Au choix

△ Activité non dispensée en 2020-2021

O Activité cyclique non dispensée en 2020-2021

⊕ Activité cyclique dispensée en 2020-2021

Activité avec prérequis

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

L'étudiant qui choisit cette option sélectionne de 20 à 30 crédits parmi: De 20 à 30 crédits

> Bloc annuel

1 2

o Contenu:

o Cours obligatoires (10 crédits)

O LMECA2170	Numerical Geometry	Vincent Legat Jean-François Remacle	30h+30h	5 Crédits	q1	X	X
• LMECA2355	Mechanical design in biomedical engineering	Greet Kerckhofs Ann Vankrunkelsven (supplée Benoît Raucent)	30h+30h	5 Crédits	q1	X	X

De 10 à 20 crédits

\$\$ LINMA2671	Advanced control and applications	Julien Hendrickx	30h+30h	5 Crédits	q1	X	X
⇔ LINMA2875	System Identification	Julien Hendrickx	30h+30h	5 Crédits	q2	X	X
S LMECA2300	Advanced Numerical Methods	Philippe Chatelain Christophe Craeye (coord.) Vincent Legat Jean-François Remacle	30h+30h	5 Crédits	q2	x	X
S LMECA2660	Numerical methods in fluid mechanics	Grégoire Winckelmans	30h+30h	5 Crédits	q2	X	X
StMECA2732	Robot modelling and control	Renaud Ronsse	30h+30h	5 Crédits	q2	X	X
⇔ LMECA2755	Industrial automation	Bruno Dehez Paul Fisette Renaud Ronsse	30h+30h	5 Crédits	q1	X	X
S LMECA2802	Multibody system Dynamics	Paul Fisette	30h+30h	5 Crédits	q2	X	X
State LMECA2840 State LMECA2840	Project in Mechanical Design II	Bruno Dehez Christophe Everarts (supplée Benoît Raucent) Renaud Ronsse	30h+30h	6 Crédits	q1+q2	X	X
⇔ LMECA2335	Biorobotics	Renaud Ronsse	30h+30h	5 Crédits	q2	X	X

Option en physique médicale et imagerie médicale

L'objectif de cette option est de fournir le corpus de connaissances nécessaires pour comprendre et développer la technologie liée à la physique médicale et l'imagerie médicale. Cette option est particulièrement destinée aux étudiants qui auraient suivi une majeure ou une mineure en électricité ou en chimie et physique appliquées.

Obligatoire

△ Activité non dispensée en 2020-2021 Ø Activité cyclique non dispensée en 2020-2021

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

🛭 Au choix

L'étudiant qui choisit cette option sélectionne de 20 à 30 crédits parmi: De 20 à 30 crédits

> Bloc annuel

annu 1 2

o Contenu:

o Cours obligatoires (10 crédits)

O LELEC2885	Image processing and computer vision	Christophe De Vleeschouwer (coord.) Laurent Jacques	30h+30h	5 Crédits	q1	X	X
O LGBIO2070	Engineering challenges in protontherapy	Guillaume Janssens John Lee Edmond Sterpin	30h+30h	5 Crédits	q2	X	X

De 10 à 20 crédits

St LMECA2645	Risques technologiques majeurs de l'industrie	Denis Dochain	30h	3 Crédits	q2	X	X
☐ LPHYS2102	Detectors and sensors	Eduardo Cortina Gil Krzysztof Piotrzkowski	22.5h +7.5h	5 Crédits	q1	X	X
S LPHYS2504	Production, utilisation, gestion et contrôle des radioéléments	Pascal Froment	22.5h	3 Crédits	q2	X	X
☎ LPHY2360	Physique atomique, nucléaire et des radiations	Krzysztof Piotrzkowski	22.5h	2 Crédits		X	X
SWMNUC2100	Applications de la médecine nucléaire in vivo	Véronique Roelants Thierry Vander Borght (coord.)	15h	2 Crédits	q1	X	X
SWRDTH3120	Dosimétrie en radiothérapie et contrôle de qualité	Edmond Sterpin	30h	3 Crédits	q2	X	X
≪ WRDTH3160	Dosimétrie informatisée en radiothérapie	Xavier Geets Carine Kirkove Laurette Renard Edmond Sterpin (coord.)	30h+60h	5 Crédits	q2	X	×
ॐ WRPR2001	Notions de base de radioprotection	Pascal Carlier Michaël Dupont François Jamar (coord.) Renaud Lhommel	10h+5h	2 Crédits	q1	X	X
☎ WRPR2330	Utilisation des radioisotopes et des molécules marquées en biologie	Bernard Gallez (coord.) Thierry Vander Borght	15h+15h	3 Crédits	q2	X	X

Options en gestion et création d'entreprises

Ces deux options sont exclusives. L'étudiant ne peut en choisir qu'une seule.

Option: "Enjeux de l'entreprise"

Obligatoire

🛭 Au choix

 Δ Activité non dispensée en 2020-2021

O Activité cyclique non dispensée en 2020-2021

⊕ Activité cyclique dispensée en 2020-2021

Activité avec prérequis

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

Cette option n'est pas accessible en anglais et ne peut être prise simultanément avec l'option « Formation interdisciplinaire en création d'entreprise - CPME ».

De 17 à 20 crédits

Bloc annuel

annu 1 2

o Contenu:

O LFSA1290	Introduction à la gestion financière et comptable	Philippe Grégoire	30h+15h	4 Crédits	q2	X	Х
• LFSA2140	Eléments de droit pour l'entreprise et la recherche	Vincent Cassiers Werner Derijcke Bénédicte Inghels	30h	3 Crédits	q1	X	X
O LFSA2210	Organisation et ressources humaines	John Cultiaux Eline Jammaers	30h	3 Crédits	q2	x	X
• LFSA2230	Sensibilisation à la gestion des entreprises	Benoît Gailly	30h+15h	4 Crédits	q2	X	X
○ LFSA2245	Environnement et entreprise	Jean-Pierre Tack	30h	3 Crédits	q1	X	X

o Un cours parmi

De 3 à 5 crédits

State LFSA2202 State LFSA2202	Ethics and ICT	Axel Gosseries Olivier Pereira	30h	3 Crédits	q2	X	X
⇔ LLSMS2280	Business Ethics and Compliance Management	Carlos Desmet	30h	5 Crédits	q1	X	X

Les étudiants en sciences informatiques qui ont déjà suivi de nombreux cours dans la discipline durant leur programme de bachelier, peuvent suivre cette option facultaire en sélectionnant entre 16 et 20 crédits parmi les cours de la mineure en gestion pour les sciences informatiques

Formation interdisciplinaire en création d'entreprise - CPME

Commune à la plupart des masters de l'EPL, cette option a pour objectif de familiariser l'étudiant avec les spécificités de l'entreprenariat et de la création d'entreprise afin de développer chez lui les aptitudes, connaissances et outils nécessaires à la création d'entreprise.

Cette option rassemble des étudiants de différentes facultés en équipes interdisciplinaires afin de créer un projet entrepreneurial. La formation interdisciplinaire en création d'entreprise (CPME) est une option qui s'étend sur 2 ans et s'intègre dans plus de 30 Masters de 9 facultés/écoles de l'UCL. Le choix de l'option CPME implique la réalisation d'un mémoire interfacultaire (en équipe) portant sur un projet de création d'entreprise. L'accès à cette option est limité aux étudiants sélectionnés sur dossier. Toutes les informations sur www.uclouvain.be/cpme.

Cette option n'est pas accessible en anglais et ne peut être prise simultanément avec l'option « Enjeux de l'entreprise ».

O Obligatoire
 △ Activité non dispensée en 2020-2021
 ⊕ Activité cyclique dispensée en 2020-2021

☼ Au choixØ Activité cyclique non dispensée en 2020-2021

Activité avec prérequis

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

De 20 à 25 crédits

Bloc annuel

1 2

o Contenu:

o Cours obligatoires en création de petites et moyennes entreprises

O LCPME2001	Théorie de l'entrepreneuriat	Frank Janssen	30h+20h	5 Crédits	q1	X	
O LCPME2002	Aspects juridiques, économiques et managériaux de la création d'entreprise	Yves De Cordt Marine Falize	30h+15h	5 Crédits	q1	X	X
O LCPME2003	Plan d'affaires et étapes-clefs de la création d'entreprise Les séances du cours LCPME2003 sont réparties sur les deux blocs annuels du master. L'étudiant doit les suivre dès le bloc annuel 1, mais ne pourra inscrire le cours que dans son programme de bloc annuel 2.	Frank Janssen	30h+15h	5 Crédits	q2		X
O LCPME2004	Séminaire d'approfondissement en entrepreneuriat	Frank Janssen	30h+15h	5 Crédits	q2	X	X

☎ Cours préalable CPME

Les étudiants qui n'ont pas suivi un cours de gestion durant leur formation antérieure doivent mettre au programme de cette option le cours LCPME2000.

O LCPME2000	Financer et gérer son projet l	Yves De Rongé Olivier Giacomin	30h+15h	5 Crédits	q1	X	
							-

Cours au choix

Cours au choix en génie génétique

Obligatoire State Au choix

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

Bloc annuel

1 2

o Contenu:

窓 LBIR1352	Génétique générale	Jacques Mahillon (supplée Philippe Baret)	45h+15h	5 Crédits	q2	X	X
BRMC2101	Génie génétique	François Chaumont (coord.) Charles Hachez Melissa Page (supplée François Chaumont)	37.5h +15h	5 Crédits	q1	X	X

Cours au choix en génie biochimique

Obligatoire St Au choix

⊕ Activité cyclique dispensée en 2020-2021 ___ Activité avec prérequis

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

Bloc annuel

1 2

o Contenu:

\$\$ LBRAL2102	Physiological and nutritional biochemistry	Cathy Debier Yvan Larondelle (coord.)	37.5h+0h	4 Crédits	q1	X	X
BRAL2104	Food Microbiology	Jacques Mahillon	30h +22.5h	4 Crédits	q2	X	X
⇔ LBRMC2202	Technologie des cellules en culture	David Alsteens Charles Hachez (coord.) Pascal Hols	30h	3 Crédits	q1	X	X
S LBRNA2202	Nanobiotechnologies	Yves Dufrêne	30h	3 Crédits	q2	X	X
BRTE2201	Human and environmental toxicology	Cathy Debier (coord.) Philippe Hantson	30h+7.5h	4 Crédits	q1	X	X

Cours au choix en génie pharmaceutique

Obligatoire State Au choix

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc...)

Bloc annuel 1 2

o Contenu:

S LINMA2300	Analysis and control of distributed parameter systems	Denis Dochain	30h+30h	5 Crédits	q1	Х	X
⇔ LMAPR2118	Fluid-fluid separations	Patricia Luis Alconero Denis Mignon	30h +22.5h	5 Crédits	q2	X	X
B LMAPR2330	Reactor Design	Juray De Wilde	30h+30h	5 Crédits	q2	X	X
⇔ LMAPR2380	Solid-fluid separation	Tom Leyssens Patricia Luis Alconero	30h +22.5h	5 Crédits	q1	X	X
State LMAPR2430 State LMAPR2430	Industrial processes for the production of base chemicals	Juray De Wilde	30h +22.5h	5 Crédits	q1	X	X
WFARM1008	Conception du médicament	Giulio Muccioli Véronique Préat (coord.)	15h+15h	2 Crédits	q2	x	x
© WFARM1232	Pharmacologie générale	Emmanuel Hermans	15h+7.5h	2 Crédits	q1	X	X
© WFARM1307	Eléments de physico-chimie appliqués aux médicaments	Tom Leyssens	15h	2 Crédits	q2	X	X

Cours au choix en statistiques

Obligatoire State Au choix

△ Activité non dispensée en 2020-2021 ⊘ Activité cyclique non dispensée en 2020-2021

⊕ Activité cyclique dispensée en 2020-2021
Activité avec prérequis

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

Ce module en statistique propose des cours utiles pour le traitement de données (laboratoire d'analyse, recherche clinique, contrôle qualité, etc.). Les étudiants qui suivent au-moins 45 crédits dans ce module et parmi les cours de statistique des options du Master (labels LBIRA, LBIRC, LSTAT, WESP, WFSP) auront un accès direct au second bloc annuel du Master en statistique, orientation biostatistique [120 crédits]. Plus d'informations concernant cette passerelle via info-stat-actu@uclouvain.be

Bloc annuel

annu 1 2

o Contenu:

S LSTAT2020	Logiciels et programmation statistique de base	Céline Bugli	15h+15h	4 Crédits	q1	X	X
S LSTAT2040	Analyse statistique I	Benjamin Colling (supplée Anouar El Ghouch)	30h+15h	5 Crédits	q2	X	X
S LSTAT2130	Introduction to Bayesian statistics	Philippe Lambert	15h+5h	4 Crédits	q2	X	X
SS LSTAT2170	Times series	Rainer von Sachs	22.5h +7.5h	5 Crédits	q2	X	X
S LSTAT2210	Modèles linéaires avancés.	Lieven Desmet (supplée Catherine Legrand)	15h+5h	4 Crédits	q1	X	X
S LSTAT2220	Analyse des données de survie et de durée	Ingrid Van Keilegom	15h+5h	4 Crédits	q1	X	X

Cours au choix : Compétences transversales et contact avec l'entreprise

Obligatoire State Au choix

△ Activité non dispensée en 2020-2021 Ø Activité cyclique non dispensée en 2020-2021

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

L'étudiant.e choisira entre 3 et 22 crédits (max 27 crédits si l'étudiant choisit le stage LFSA2995) parmi les UE ci-dessous et les UE de l'option facultaire "Création PME". L'étudiant.e peut aussi remplacer les cours au choix par l'option CPME.

Bloc annuel

o Contenu:

o Compétences transversales et contact avec l'entreprise

L'étudiant choisit minimum 3 crédits parmi un stage, un ou plusieurs cours de l'option "Enjeux de l'entreprise", l'option "CPME", une UE d'activité professionnelle liée à la discipline

Stage

☎ Communication

L'étudiant peut choisir max. 8 crédits de cours de langues ou dynamique des groupes Maximum 8 crédits

Les étudiant.e.s peuvent inclure dans leurs cours au choix tout cours de langues de l'ILV. Leur attention est attirée sur les séminaires d'insertion professionnelle suivants:

S LALLE2500	Séminaire d'insertion professionnelle: allemand	Caroline Klein (coord.)	30h	3 Crédits	q1+q2	X	X
LALLE2501	Séminaire d'insertion professionnelle: allemand	Caroline Klein (coord.)	30h	5 Crédits	q1+q2	X	X
LESPA2600	Séminaire d'insertion professionnelle - Epagnol (B2.2 /C1)	Paula Lorente Fernandez (coord.)	30h	3 Crédits	q1	X	X

							loc nnu
						1	2
S LESPA2601	Séminaire d'insertion professionnelle - Espagnol (B2.2 /C1)	Paula Lorente Fernandez (coord.)	30h	5 Crédits	q1	X	X
S LNEER2500	Séminaire d'insertion professionnelle: néerlandais - niveau moyen	Isabelle Demeulenaere (coord.) Marie-Laurence Lambrecht	30h	3 Crédits	q1 ou q2		X
\$\$ LNEER2600	Séminaire d'insertion professionnelle: néerlandais - niveau approfondi	Isabelle Demeulenaere (coord.) Dag Houdmont	30h	3 Crédits	q1 ou q2		x
Dynamique d	les groupes						
S LEPL2351	Dynamique des groupes - Q1	Christine Jacqmot Claude Oestges Benoît Raucent Vincent Wertz	15h+30h	3 Crédits	q1	X	X
© LEPL2352	Dynamique des groupes - Q2	Christine Jacqmot Claude Oestges Benoît Raucent Vincent Wertz	15h+30h	3 Crédits	q2	X	X

L'étudiant.e peut proposer maximum 8 crédits d'ouverture vers d'autres disciplines.

UCLouvain - Université catholique de Louvain Catalogue des formations 2020-2021

GBIO2M: Master [120]: ingénieur civil biomédical

Cours au choix accessibles aux étudiants du master ingénieur civil biomédical

Les cours au choix recommandés et accessibles aux étudiants du master ingénieur civil biomédical sont listés ci-dessus, dans les options et autres listes de cours au choix. L'étudiant e est également libre de proposer d'autres cours des programmes de Masters EPL qui seraient pertinentes à son parcours personnel, pour autant que cela respecte les règles de constitution de programme du Master. Ces cours doivent être approuvés par le jury restreint.

PRÉREQUIS ENTRE COURS

Il n'y a pas de prérequis entre cours pour ce programme, c'est-à-dire d'activité (unité d'enseignement - UE) du programme dont les acquis d'apprentissage doivent être certifiés et les crédits correspondants octroyés par le jury avant inscription à une autre UE.

COURS ET ACQUIS D'APPRENTISSAGE DU PROGRAMME

Pour chaque programme de formation de l'UCLouvain, un référentiel d'acquis d'apprentissage précise les compétences attendues de tout diplômé au terme du programme. La contribution de chaque unité d'enseignement au référentiel d'acquis d'apprentissage du programme est visible dans le document "A travers quelles unités d'enseignement, les compétences et acquis du référentiel du programme sont développés et maitrisés par l'étudiant ?".

GBIO2M - Informations diverses

CONDITIONS D'ACCÈS

Les conditions d'accès aux programmes de masters sont définies par le décret du 7 novembre 2013 définissant le paysage de l'enseignement supérieur et l'organisation académique des études.

Les conditions d'accès doivent être remplies au moment de l'inscription à l'université.

SOMMAIRE

- > Conditions d'accès spécifiques
- > Bacheliers universitaires
- > Bacheliers non universitaires
- > Diplômés du 2° cycle universitaire
- > Diplômés de 2° cycle non universitaire
- > Accès par valorisation des acquis de l'expérience
- > Accès sur dossier
- > Procédures d'admission et d'inscription

Conditions d'accès spécifiques

Ce programme étant enseigné en anglais, aucune preuve préalable de maitrise de la langue française n'est requise. L'étudiant est supposé avoir minimum le niveau B2 en anglais dans le cadre européen commun de référence pour les langues. Une preuve de niveau d'anglais est demandée aux titulaires d'un diplôme non-belge, voir critères académiques d'évaluation des dossiers de l'accès sur dossier.

Bacheliers universitaires

Diplômes	Conditions spécifiques	Accès	Remarques
Bacheliers universitaires de l'U	CLouvain		
Bachelier en sciences de l'ingénie	eur, orientation ingénieur civil	Accès direct	L'étudiant n'ayant suivi au préalable ni la majeure, ni la mineure dans la discipline de son master ingénieur civil peut se voir proposer par le jury un adaptation de son programme de master.
Autres bacheliers de la Commu l'Ecole royale militaire inclus)	nauté française de Belgique (ba	acheliers de la Communauté ge	rmanophone de Belgique et de
		Accès direct	
Bachelier en sciences de l'ingénie	eur - orientation ingénieur civil	Accès direct	L'étudiant n'ayant pas acquis au préalable les compétences équivalentes à la majeure ou à la mineure dans la discipline de son master ingénieur civil peut se voir proposer par le jury un adaptation de son programme de master.
Bacheliers de la Communauté f	lamande de Belgique		
Bachelor in de ingenieurswetensc	chappen	Accès moyennant compléments de formation	L'étudiant n'ayant pas acquis au préalable les compétences équivalentes à la majeure ou à la mineure dans la discipline de son master ingénieur civil peut se voir proposer par le jury une adaptation de son programme de master, moyennant l'ajout éventuel de maximum 60 crédits d'enseignements supplémentaires.
Bacheliers étrangers			

Bachelier en sciences de l'ingénieur	Bacheliers provenant du réseau Cluster	Accès direct	L'étudiant n'ayant pas acquis au préalable les compétences équivalentes à la majeure ou à la mineure dans la discipline de son master ingénieur civil peut se voir proposer par le jury une adaptation de son programme de master.
Bachelier en sciences de l'ingénieur	Autres institutions	Accès sur dossier	Voir accès personnalisé

Bacheliers non universitaires

> En savoir plus sur les passerelles (https://uclouvain.be/fr/etudier/passerelles) vers l'université

Diplômés du 2° cycle universitaire

Diplômes	Conditions spécifiques	Accès	Remarques
Licenciés			
Masters			
Master ingénieur civil		Accès direct	

Diplômés de 2° cycle non universitaire

Accès par valorisation des acquis de l'expérience

> Consultez le site Valorisation des acquis de l'expérience

Tous les masters peuvent être accessibles selon la procédure de valorisation des acquis de l'expérience.

Accès sur dossier

Pour rappel, tout master (à l'exception des masters de spécialisation) peut également être accessible sur dossier.

La première étape de la procédure consiste à introduire un dossier en ligne (voir www.uclouvain.be/fr/etudier/inscriptions/futurs-etudiants.html).

Des informations complémentaires sur les critères académiques d'évaluation des dossiers sont disponibles ici (l'adresse de contact est epl-admission@uclouvain.be)

Procédures d'admission et d'inscription

Consultez le Service des Inscriptions de l'université.

PÉDAGOGIE

Modalités qui contribuent à favoriser l'interdisciplinarité

Le master ingénieur civil biomédical est par nature interdisciplinaire, puisqu'il se place à l'interface entre l'art de l'ingénieur et les sciences biomédicales. Il est constitué d'un socle polyvalent destiné à permettre à l'étudiant de s'initier aux bases des grands domaines d'application du génie biomédical, et d'un certain nombre d'options dans différentes disciplines.

Variété de stratégies d'enseignement

La pédagogie utilisée dans le programme de master ingénieur civil est en continuité avec celle du programme de bachelier en sciences de l'ingénieur : apprentissage actif, mélange équilibré de travail de groupe et de travail individuel, place importante réservée au développement de compétences non techniques.

Une caractéristique forte du programme est l'immersion des étudiants dans les laboratoires de recherche des enseignants du programme (à l'occasion des laboratoires didactiques, études de cas, projets et mémoire), ce qui permet aux étudiants de s'initier aux méthodes de pointe des disciplines concernées, et d'apprendre par le biais du questionnement inhérent à la recherche.

Le travail de fin d'études représente la moitié de la charge de travail de la dernière année, il offre la possibilité de traiter en profondeur un sujet donné et constitue par sa taille et le contexte dans lequel il se déroule, une véritable initiation à la vie professionnelle d'ingénieur ou de chercheur.

Diversité de situations d'apprentissage

L'apprentissage est réalisé par l'intermédiaire de dispositifs pédagogiques variés, comme les stages, les études de cas, les cours, les projets, la confrontation à la recherche de pointe, et la rencontre avec des acteurs industriels clés du domaine. Cette variété de situations aide l'étudiant à construire son savoir de manière itérative et progressive.

L'option en Création d'entreprise suit une approche interactive et orientée vers le "problem-based" learning. Durant toute la durée du programme, les étudiants doivent réaliser des travaux de groupe par équipes pluridisciplinaires. Le mémoire est conçu de manière interdisciplinaire afin de permettre à des groupes de trois étudiants, idéalement issus de facultés différentes, de travailler sur un projet de création d'entreprise.

EVALUATION AU COURS DE LA FORMATION

Les méthodes d'évaluation sont conformes au <u>règlement des études et des examens</u> (https://uclouvain.be/fr/decouvrir/rgee.html). Plus de précisions sur les modalités propres à chaque unité d'apprentissage sont disponibles dans leur fiche descriptive, à la rubrique « Mode d'évaluation des acquis des étudiants ».

Les activités d'enseignement sont évaluées selon les règles en vigueur à l'Université (voir <u>le règlement des études et des examens</u> (https://uclouvain.be/fr/decouvrir/rgee.html)), à savoir des examens écrits et oraux, des examens de laboratoire, des travaux personnels ou en groupe, des présentations publiques de projets et défense de mémoire.

Pour en savoir plus sur les modalités d'évaluation, l'étudiant est invité à consulter la fiche descriptive des activités.

Pour l'obtention de la moyenne, les notes obtenues pour les unités d'enseignement sont pondérées par leurs crédits respectifs.

MOBILITÉ ET INTERNATIONALISATION

L'Ecole Polytechnique de Louvain (EPL) participe depuis leur création aux divers <u>programmes de mobilité</u> (https://uclouvain.be/en/faculties/epl/etudiants-epl-en-mobilite.html) qui se sont mis en place tant au niveau européen qu'à l'échelle du reste de la planète.

FORMATIONS ULTÉRIEURES ACCESSIBLES

Masters de spécialisation accessibles : actuellement à l'étude.

Formations doctorales accessibles

Par sa composante de formation à et par la recherche, le master GBIO prépare idéalement les étudiants à une formation doctorale. Les enseignants impliqués dans le master sont membres de plusieurs écoles doctorales, qui pourront accueillir les étudiants désireux de prolonger leurs études par une thèse de doctorat.

Des masters UCL (généralement 60) sont largement accessibles aux diplômés masters UCL

Par exemple:

- le Master [120] en sciences et gestion de l'environnement et le Master [60] en sciences et gestion de l'environnement (accès direct moyennant compléments éventuels),
- les différents Masters 60 en sciences de gestion (accès direct moyennant examen du dossier); voir dans cette liste.
- le Master [60] en information et communication à Louvain-la-Neuve ou le Master [60] en information et communication à Mons

GESTION ET CONTACTS

Gestion du programme

Entité

Entité de la structure Dénomination Faculté Secteur Sigle

Adresse de l'entité

Responsable académique du programme: Sophie Demoustier Jury

- Jean-Didier Legat
- Sophie Demoustier

Personne(s) de contact

• Isabelle Dargent

SST/EPL/GBIO

Commission de programme- Ingénieur civil biomédical (GBIO)

Ecole Polytechnique de Louvain (EPL) Secteur des sciences et technologies (SST)

GBIO

Place du Levant 3 - bte L5.03.02

1348 Louvain-la-Neuve

Tél: +32 (0) 10 47 25 86 - Fax: +32 (0) 10 47 25 98