At Louvain-la-Neuve - 120 credits - 2 years - Day schedule - In English
Dissertation/Graduation Project: YES - Internship: optional
Activities in English: YES - Activities in other languages: NO
Activities on other sites: NO
Main study domain: Sciences de l'ingénieur et technologie
Organized by: Louvain School of Engineering (EPL)
Programme acronym: INFO2M - Francophone Certification Framework: 7

Table of contents

Introduction ... 2
Teaching profile .. 3
 - Learning outcomes ... 3
 - Programme structure ... 4
 - Detailed programme .. 5
 - Programme by subject .. 5
 - Course prerequisites .. 18
 - The programme's courses and learning outcomes ... 18
Information .. 19
 - Access Requirements ... 19
 - Teaching method .. 21
 - Evaluation ... 21
 - Mobility and/or Internationalisation outlook .. 21
 - Possible trainings at the end of the programme ... 22
 - Contacts .. 22
INFO2M - Introduction

Introduction

This Master's degree programme strikes a balance between "soft skills" and scientific/technical skills as well as between high quality research and practical field work. It offers

- the study of computer science based on fundamental concepts, the value of which goes beyond rapidly evolving technology;
- a programme taught entirely in English to improve students' language skills (technical written and spoken English);
- exchange programs and dual degrees in Belgium, Europe and throughout the world.

As with the Bachelor’s degree in civil engineering, this programme seeks to train well-rounded engineers by offering majors in related disciplines such as applied math, or electronics and communication.

Your profile

You would like to

- imagine, design and implement computer systems that will shape the future;
- focus on computer science and engineering after having studied science and technology (math, mechanics, electricity, chemistry, etc.) as an undergraduate student;
- improve your theoretical knowledge and develop technical skills;
- increase your interdisciplinary knowledge in areas such as foreign languages, resource management, teamwork, autonomy and ethics;
- expand your training to include management and small and medium sized business creation;
- take advantage of a programme taught entirely in English.

Your future job

We train

- scientists who know how to investigate a sharp problematic using scientific literature in the field;
- professionals who will design information systems that correspond to user needs;
- innovators who can master a wide range of technology and record its progress;
- specialists capable of implementing software solutions with particular attention to product quality and the development process.

Your programme

This Master's degree consists of:

- a compulsory part providing the knowledge necessary to model and design complex applications
- a major of your choice that allows you to acquire cutting edge knowledge in an area of interest
- at the heart of computer sciences: artificial intelligence, computer networks, cryptography and information security, software engineering, and system programming;
- at the frontier with other engineering sciences: communication networks, applied mathematics and data science, biomedical engineering, and bioinformatics;
- beyond computer science: management and small and medium sized business creation;
- elective courses that allow you to focus your training on your areas of interest, whether they be computer science or any other discipline (electricity, management, business creation, languages);
- a graduation project (representing half your workload during the last year) offers the possibility to discuss a subject in-depth. Due to its size and scope, this project allows for an initiation into the working life of computer scientists and/or researchers. The project’s subject is selected in consultation with the programme heads and possibly a company.
INFO2M - Teaching profile

Learning outcomes

Designers and developers of tomorrow’s computer systems are confronted with two major challenges:

- computer systems that are increasingly complex
- areas of application that are increasingly varied

To meet these challenges, the future Master’s degree holder in computer science must:

- master current computer science technologies but also manage and ascertain their progress,
- innovate by integrating elements linked to artificial intelligence, software engineering and security networks into computer systems,
- work as a member of a multidisciplinary team and act as an interface between the development team and other participants involved in the scientific or technical issues of the project.

The future computer science engineer will acquire the skills and knowledge necessary to become:

- a professional engineer capable of integrating several scientific and technical disciplines in the area of information technology
- an individual with field experience, capable of putting his/her knowledge into practice and use ever evolving high performance tools (both in research and technology)
- a specialist having acquired cutting edge knowledge in his/her field of study, for example artificial intelligence, security networks, software engineering and programming systems
- a manager who manages team projects

Polytechnic and multidisciplinary, the training offered by the Louvain School of Engineering (EPL) emphasises a combination of theory and practice open to computer science in all its dimensions (analysis, design, development, implementation, maintenance, research and innovation) including those pertaining to ethics.

International possibilities:

English is the most widely used language in companies particularly those in the technical sector. This Master’s degree programme is thus taught in English and provides its participants with the opportunity to acquire solid oral and written English language skills. Offering a Master’s degree in English, is proof of our international status. The use of English allows us to welcome international students all the while allowing these students to be immersed in a francophone environment. It also includes exchange programs and dual diplomas with foreign universities.

On successful completion of this programme, each student is able to:

1. demonstrate their mastery of a solid body of knowledge and skills in computer science allowing them to solve problems associated with their field of study

 1.1. Confronted with a computer science problem, diploma holders can identify concepts, algorithms, and applicable data structures to find a solution and can break the problem down into its component parts in order to formulate computer-based problem solving methods.

 1.2. Confronted with a problem in their field of study, diploma holders can choose the proper problem solving tools (for example, development environment, programming language, software and software packages) that will allow them to find the correct software solution to the problem in question.

 1.3. Confronted with the results obtained through reasoning as well as the use of tools and concepts, diploma holders are able to step back and ascertain the relevance and the quality of their results. To do so, diploma holders develop tests and relevant checks to ensure they have developed quality solutions.

2. organise and develop a computer system that meets the complex needs of a client

 2.1. Before working on a solution, graduates explore and analyse all aspects of a problem using the documentation at their disposal and consult with future system users. Graduates then will produce a specifications note that describes not only the system requirements but also its time constraints and ease of use for future users.

 2.2. In the design phase, graduates will imagine and model the computer system under development in terms of functional components (subsystems) in such a way as to facilitate and optimise development. They will capitalise on the available technology and programme verification methods to ensure the quality of the software system from the very beginning of the design stage.

 2.3. In the analysis phase, graduates will itemise, evaluate and compare different technologies (material, languages, algorithms, routing) with the goal of prioritising those that best correspond to different performance and quality criteria specified in the specifications note.

 2.4. In the implementation stage, graduates will demonstrate their mastery of the principles, techniques and development tools at their disposal. They will create a software prototype in order to verify that the software corresponds to the clients’ needs and will run a battery of tests to ensure that the proposed solution corresponds to the specifications note. By applying validation techniques and programme verifications, graduates can identify and locate bugs as well as their fixes.

 2.5. On the basis of a prototype, graduates design and ensure follow up through a quality control plan: monitoring, optimisation, maintenance, detection of break downs, communication protocols and intervention in the case of failure. They can use metrics and tools to evaluate and validate the structural quality of a software system in terms of its security and maintainability.

3. organise and carry out a research project to understand a new problem in their area of study
3.1. Confronted with a new computer problem, graduates will explore the area in question and obtain the necessary information to complete a situational analysis using the various resources at their disposal (library, Internet, researchers, industry experts).

3.2. In the graduation project (possibly paired with a company internship) on a new problem, graduates construct a model of the underlying phenomenon from a computer science perspective. On the basis of this model, graduates formulate and test different computer devices capable of solving the problem in question (for example, computerised processing of an image by a scanner to facilitate medical diagnosis).

3.3. Once in possession of the experimental results, graduates summarise their conclusions in a report, where they also discuss how key variables influenced the behaviour of the phenomenon being studied. Based on their results, graduates will make recommendations about how to develop and implement innovative technical solutions for the problems in question.

4. Participate in a group project

4.1. As a member of a team project, graduates will collaborate to study a problem and its context with the goal or itemising its different parts, issues and constraints. They will then collaborate to draft a specifications note reiterating the key elements of the project framework: problem and solution, objectives and performance indicators, risks, deadlines, resource limits, etc.

4.2. Once the project framework is defined, graduates collaborate on a plan of action. The team agrees to work collectively on a work schedule, the intermediary steps, the division of labour and project deadlines.

4.3. Team members share their knowledge and skills to solve problems collectively that are raised over the course of the project whether they are technical or not. Graduates are able to step back when necessary to overcome team difficulties or conflicts.

4.4. Mindful of the commitments made during the course of the project, graduates alert their teammates about decisions that need to be made in the event of a problem. Through steering committee meetings, graduates make the necessary decisions to organise or reorganise project objectives.

5. Communicate effectively orally and in writing with the goal of carrying out projects (in particular in English)

5.1. Faced with a computer development project, graduates are able to identify and question the relevant actors. Through their exchanges with those involved in the project, graduates assess the project environment and relevant issues, which requires them to specify their needs, expectations and limits in a specifications note while keeping in mind system functionalities as well as the conditions for use (interfaces with other applications, maintenance, progress, etc.)

5.2. By communicating, graduates take into account the fact that their interlocutors have not necessarily mastered the language of computers and do not have the same idea of the issues and solutions envisaged by computer science.

5.3. In certain critical phases of a project, there are collective choices to be made. To facilitate decision making, the graduate must be capable of providing his/her interlocutors with a summary of the situation and its issues. To this end, he/she is capable of communicating necessary information by using schemas or graphs of the computer system.

5.4. Graduates know how to use reference materials or computer language or software manuals in both English and French. They understand technical reports written in English.

5.5. During the development of a computer application, graduates can ensure the tracking and documentation in a concise and precise language: specifications note, software structures and their related data, operating modes. Graduates are also capable of drafting summary reports that describe their design and technology choices.

6. Demonstrate autonomy, rigor, openness, critical thinking as well as a sense of ethics when doing your job

6.1. In their fields of study, students master the technical vocabulary and usage standards that allow them to easily understand a scientific article or technical document or to communicate with specialists in their field.

6.2. Graduates will take into account the socio-economic aspects of a project in the specifications note, in particular the compatibility between technological progress and ethical standards.

6.3. Regarding the development of an application that meets an industrial challenge or provides an important service (for example ambulance management), graduates ensure the robustness and feasibility of the application for its users.

6.4. Confronted with a new problem, graduates autonomously acquire and use information and computer tools that they need to solve the problem even if they have not explicitly learned about them during their coursework.

Programme structure

The Master’s degree programme consists of four parts:

- Core curriculum, focused on the graduation project (38 credits)
- Required final specialisation (30 credits)
- One or more majors (20 to 52 credits)
- Elective courses (0 to 52 credits)

The graduation project is normally completed during the 2nd year. Regarding required and elective courses, students may (depending on their major) take these courses in the 1st or 2nd year as long as they have completed the course prerequisites. This is particularly the case for students who completed part of their education abroad. The yearly distribution of activities as outlined in the detailed programme is subject to change.

Furthermore, students have the opportunity to broaden their education by enrolling in non-technical elective courses if they have a clear objective in mind.

For a programme-type, and regardless of the focus, options/or elective courses selected, this master will carry a minimum of 120 credits divided over two annual units, corresponding to 60 credits each.
INFO2M: Master [120] in Computer Science and Engineering

Core courses for the Master in computer science and engineering

Liste au choix de finalités INFO2M

Professional Focus

List of electives

Majors for the Master’s degree in computer science and engineering

Major in Artificial Intelligence: big data, optimization and algorithms
Major in software engineering and programming systems
Major in Security and Networking
Major in Data science and Applied Mathematics
Option en Cryptography and information security
Major in biomedical engineering

Majors for the Master’s degree in computer science and engineering

Major in small and medium sized business creation
Major Business risks and opportunities

Elective courses

Elective courses: transversal skills and contacts with industry
Elective courses available for Master students in Computer Science

Preparatory Module (only for students who qualify for the course via complementary coursework)

INFO2M Detailed programme

Programme by subject

CORE COURSES

The student shall select

The student shall select one course between:

The student shall select
Sociétés, cultures, religions : Biblical readings
- **LTECO2100**
 - Title: Sociétés, cultures, religions : Biblical readings
 - Instructor: Hans Ausloos
 - Credits: 2
 - Hours: 15h
 - Semester: q1

Sociétés, cultures, religions : Ethical questions
- **LTECO2200**
 - Title: Sociétés, cultures, religions : Ethical questions
 - Instructor: Marcela Lobo Bustamante
 - Credits: 2
 - Hours: 15h
 - Semester: q1

Sociétés-cultures-religions : Human Questions
- **LTECO2300**
 - Title: Sociétés-cultures-religions : Human Questions
 - Instructors: Régis Burnet, Dominique Martens
 - Credits: 2
 - Hours: 15h
 - Semester: q1 or q2

Computer science seminars

Students may choose 3 credits among

The student shall select 3 credits from amongst

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Hours</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINGI2349</td>
<td>Networking and security seminar</td>
<td>Etienne Riviere, Ramin Sadre</td>
<td>3</td>
<td>30h</td>
<td>q1</td>
</tr>
<tr>
<td>LINGI2359</td>
<td>Software engineering and programming systems seminar</td>
<td>Axel Legay</td>
<td>3</td>
<td>30h</td>
<td>q1</td>
</tr>
<tr>
<td>LINGI2369</td>
<td>Artificial intelligence and machine learning seminar</td>
<td>Pierre Dupont, Siegfried Nijssen</td>
<td>3</td>
<td>30h</td>
<td>q1</td>
</tr>
</tbody>
</table>
The student may take all the specialisation courses

Content:

Computer science courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Lecturer</th>
<th>Credits</th>
<th>Start Period</th>
<th>Exam Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINGI2132</td>
<td>Languages and translators</td>
<td>Nicolas Laurent</td>
<td>6</td>
<td>q2</td>
<td>x</td>
</tr>
<tr>
<td>LINGI2172</td>
<td>Databases</td>
<td>Siegfried Nijssen</td>
<td>6</td>
<td>q2</td>
<td>x</td>
</tr>
<tr>
<td>LINGI2241</td>
<td>Architecture and performance of computer systems</td>
<td>Ramin Sadre</td>
<td>6</td>
<td>q1</td>
<td>x</td>
</tr>
<tr>
<td>LINGI2255</td>
<td>Software engineering project</td>
<td>Axel Legay</td>
<td>6</td>
<td>q1</td>
<td>x</td>
</tr>
<tr>
<td>LINGI2262</td>
<td>Machine Learning: classification and evaluation</td>
<td>Pierre Dupont</td>
<td>6</td>
<td>q2</td>
<td>x</td>
</tr>
</tbody>
</table>

OPTIONS [52.0]

Students must complete their programme with a combination of major and/or elective courses. They may select:

Majors for the Master’s degree in computer science and engineering

- Major in Artificial Intelligence: big data, optimization and algorithms [en-prog-2020-info2m-linfo301o]
- Major in software engineering and programming systems [en-prog-2020-info2m-linfo302o]
- Major in Security and Networking [en-prog-2020-info2m-linfo303o]
- Major in Data science and Applied Mathematics [en-prog-2020-info2m-linfo304o]
- Option en Cryptography and information security [en-prog-2020-info2m-linfo305o]
- Major in biomedical engineering [en-prog-2020-info2m-linfo307o]

Majors for the Master's degree in computer science and engineering

- Major in small and medium sized business creation [en-prog-2020-info2m-lfsa220o]
- Major Business risks and opportunities [en-prog-2020-info2m-lfsa220o]

Elective courses

- Elective courses: transversal skills and contacts with industry [en-prog-2020-info2m-lfsa957o]
- Elective courses available for Master students in Computer Science [en-prog-2020-info2m-lfsa958o]

MAJORS FOR THE MASTER'S DEGREE IN COMPUTER SCIENCE AND ENGINEERING

Students have to choose one or several options among:
MAJOR IN ARTIFICIAL INTELLIGENCE: BIG DATA, OPTIMIZATION AND ALGORITHMS

Students completing the major in artificial intelligence: big data, optimization and algorithms will be able to: identify and use methods and techniques that create software-based solutions to complex problems, understand and put to good use the methods and techniques pertaining to artificial intelligence such as automated reasoning, heuristic research, knowledge acquisition, automated learning, problems related to constraint satisfaction, identify a category of applications and how to use its methods and tools; understand specific categories of applications and their specific techniques-for example computer vision, scheduling, data mining, natural language processing, bioinformatics, big data processing; formalise and structure a body of complex knowledge by using a systematic and rigorous approach to develop quality “intelligent” systems.

Students shall select 20 to 30 credits among

```
-Year

| Content: |

☐ Mandatory

| Courses not taught during 2020-2021 |

☐ Optional

| Periodic courses not taught during 2020-2021 |

☐ Periodic courses taught during 2020-2021

☐ Activity with requisites

| Click on the course title to see detailed informations (objectives, methods, evaluation...) |

| Year |

| 1 |

| 2 |

☐ Required courses in Artificial Intelligence: big data, optimization and algorithms

- LINGI2266 Advanced Algorithms for Optimization
  - Pierre Schaus
  - 30h+15h
  - 5 Credits
  - q1

- LINGI2263 Computational Linguistics
  - Pierre Dupont
  - 30h+15h
  - 5 Credits
  - q1

- LINGI2365 Constraint programming
  - Pierre Schaus
  - 30h+15h
  - 5 Credits
  - q2

- LINGI2364 Mining Patterns in Data
  - Siegfried Nijssen
  - 30h+15h
  - 5 Credits
  - q2

☐ Elective courses in Artificial Intelligence

Student shall select 10 credits among

- LELEC2870 Machine learning : regression, deep networks and dimensionality reduction
  - John Lee
  - 30h+30h
  - 5 Credits
  - q1

- LELEC2885 Image processing and computer vision
  - Christophe De Vleeschouwer (coord.)
  - 30h+30h
  - 5 Credits
  - q1

- LGBIO2010 Bioinformatics
  - Pierre Dupont
  - 30h+30h
  - 5 Credits
  - q1

- LINGI2145 Cloud Computing
  - Etienne Riviere
  - 30h+15h
  - 5 Credits
  - q1

- LINMA1691 Discrete mathematics - Graph theory and algorithms
  - Vincent Blondel
  - 30h
  - 5 Credits
  - q1

- LINMA1702 Optimization models and methods I
  - François Glineur
  - 30h
  - 5 Credits
  - q2

- LINMA2450 Combinatorial optimization
  - Jean-Charles Delvenne
  - 30h
  - 5 Credits
  - q1

- LINMA2472 Algorithms in data science
  - Jean-Charles Delvenne (coord.)
  - 30h
  - 5 Credits
  - q1

- LSINF2275 Data mining & decision making
  - Marco Saerens
  - 30h
  - 5 Credits
  - q2
# MAJOR IN SOFTWARE ENGINEERING AND PROGRAMMING SYSTEMS

Student completing the major in Software Engineering and Programming Systems will be able to: Understand and explain problems pertaining to large scale software projects as well as the critical impact of their solutions throughout the duration of the project (construction scope, validation, documentation, communication and large scale project management as well as expense limits and deadlines). Choose and apply engineering methods and tools related to complex software systems to meet strict quality control criteria: reliability, adaptability, upgradeability, performance, security, usability). Model products and processes necessary to obtain such systems and analyse the models in question. Design and create programmes to analyse, convert and optimise computer performance. Put to good use different programming language paradigms, in particular those that deal with competing functional and object oriented programmes. Understand the issues associated with different competing programming models and use the appropriate model. Define a new language (syntax and semantics) appropriate to a specific context.

### Content:

#### Students shall select 20 to 30 credits among

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINGI2143</td>
<td>Concurrent systems : models and analysis</td>
<td>Charles Pecheur</td>
<td>5</td>
<td>q1</td>
</tr>
<tr>
<td>LINGI2251</td>
<td>Software Quality Assurance</td>
<td>Charles Pecheur</td>
<td>5</td>
<td>q2</td>
</tr>
<tr>
<td>LINGI2252</td>
<td>Software Maintenance and Evolution</td>
<td>Kim Mens</td>
<td>5</td>
<td>q1</td>
</tr>
<tr>
<td>LINGI2345</td>
<td>Languages and algorithms for distributed Applications</td>
<td>Peter Van Roy</td>
<td>5</td>
<td>q1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINGI2145</td>
<td>Cloud Computing</td>
<td>Etienne Riviere</td>
<td>5</td>
<td>q1</td>
</tr>
<tr>
<td>LINGI2347</td>
<td>Computer system security</td>
<td>Ramin Sadre</td>
<td>5</td>
<td>q2</td>
</tr>
<tr>
<td>LINGI2355</td>
<td>Multicore programming</td>
<td>Etienne Riviere</td>
<td>5</td>
<td>q2</td>
</tr>
<tr>
<td>LINGI2364</td>
<td>Mining Patterns in Data</td>
<td>Siegfried Nijssen</td>
<td>5</td>
<td>q2</td>
</tr>
<tr>
<td>LINGI2365</td>
<td>Constraint programming</td>
<td>Pierre Schaus (compensates Yves Deville)</td>
<td>5</td>
<td>q2</td>
</tr>
<tr>
<td>LSINF2335</td>
<td>Programming paradigms</td>
<td>Kim Mens</td>
<td>5</td>
<td>q2</td>
</tr>
<tr>
<td>LSINF2382</td>
<td>Computer supported collaborative work</td>
<td>Jean Vanderdonckt</td>
<td>5</td>
<td>q1</td>
</tr>
</tbody>
</table>

### Required courses in software engineering and programming systems

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINGI2143</td>
<td>Concurrent systems : models and analysis</td>
<td>Charles Pecheur</td>
<td>5</td>
<td>q1</td>
</tr>
<tr>
<td>LINGI2251</td>
<td>Software Quality Assurance</td>
<td>Charles Pecheur</td>
<td>5</td>
<td>q2</td>
</tr>
<tr>
<td>LINGI2252</td>
<td>Software Maintenance and Evolution</td>
<td>Kim Mens</td>
<td>5</td>
<td>q1</td>
</tr>
<tr>
<td>LINGI2345</td>
<td>Languages and algorithms for distributed Applications</td>
<td>Peter Van Roy</td>
<td>5</td>
<td>q1</td>
</tr>
</tbody>
</table>

### Elective courses in Software Engineering and Programming Systems

Students can select 10 credits among

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINGI2145</td>
<td>Cloud Computing</td>
<td>Etienne Riviere</td>
<td>5</td>
<td>q1</td>
</tr>
<tr>
<td>LINGI2347</td>
<td>Computer system security</td>
<td>Ramin Sadre</td>
<td>5</td>
<td>q2</td>
</tr>
<tr>
<td>LINGI2355</td>
<td>Multicore programming</td>
<td>Etienne Riviere</td>
<td>5</td>
<td>q2</td>
</tr>
<tr>
<td>LINGI2364</td>
<td>Mining Patterns in Data</td>
<td>Siegfried Nijssen</td>
<td>5</td>
<td>q2</td>
</tr>
<tr>
<td>LINGI2365</td>
<td>Constraint programming</td>
<td>Pierre Schaus (compensates Yves Deville)</td>
<td>5</td>
<td>q2</td>
</tr>
<tr>
<td>LSINF2335</td>
<td>Programming paradigms</td>
<td>Kim Mens</td>
<td>5</td>
<td>q2</td>
</tr>
<tr>
<td>LSINF2382</td>
<td>Computer supported collaborative work</td>
<td>Jean Vanderdonckt</td>
<td>5</td>
<td>q1</td>
</tr>
</tbody>
</table>
# MAJOR IN SECURITY AND NETWORKING

- **Mandatory**
  - Courses not taught during 2020-2021
  - Periodic courses taught during 2020-2021
- **Optional**
  - Periodic courses not taught during 2020-2021
  - Activity with requisites

Click on the course title to see detailed informations (objectives, methods, evaluation...)

Students shall select 20 to 30 credits among

## Content:

### Required courses in Networking and Security

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINGI2142</td>
<td>Computer networks: configuration and management</td>
<td>Olivier Bonaventure</td>
<td>5</td>
<td>q1 x</td>
</tr>
<tr>
<td>LINGI2145</td>
<td>Cloud Computing</td>
<td>Etienne Riviere</td>
<td>5</td>
<td>q1 x</td>
</tr>
<tr>
<td>LINGI2146</td>
<td>Mobile and Embedded Computing</td>
<td>Ramin Sadre</td>
<td>5</td>
<td>q2 x</td>
</tr>
<tr>
<td>LINGI2347</td>
<td>Computer system security</td>
<td>Ramin Sadre</td>
<td>5</td>
<td>q2 x</td>
</tr>
</tbody>
</table>

### Elective courses in Networking and Security

*Student can select 10 credits among*

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINGI2143</td>
<td>Concurrent systems : models and analysis</td>
<td>Charles Pecheur</td>
<td>5</td>
<td>q1 x</td>
</tr>
<tr>
<td>LINGI2144</td>
<td>Secured systems engineering</td>
<td>Axel Legay</td>
<td>5</td>
<td>q2 x</td>
</tr>
<tr>
<td>LINGI2315</td>
<td>Design of Embedded and real-time systems</td>
<td>Jean-Didier Legat</td>
<td>5</td>
<td>q2 x</td>
</tr>
<tr>
<td>LINGI2348</td>
<td>Information theory and coding</td>
<td>Jérôme Louveaux</td>
<td>5</td>
<td>q2 x</td>
</tr>
<tr>
<td>LINMA2470</td>
<td>Stochastic modelling</td>
<td>Philippe Chevailler</td>
<td>5</td>
<td>q2 x</td>
</tr>
<tr>
<td>LMAT2450</td>
<td>Cryptography</td>
<td>Olivier Pereira</td>
<td>5</td>
<td>q1 x</td>
</tr>
<tr>
<td>LSINF2345</td>
<td>Languages and algorithms for distributed Applications</td>
<td>Peter Van Roy</td>
<td>5</td>
<td>q1 x</td>
</tr>
<tr>
<td>LINGI2355</td>
<td>Multicore programming</td>
<td>Etienne Riviere</td>
<td>5</td>
<td>q2 x</td>
</tr>
<tr>
<td>LELEC2770</td>
<td>Privacy Enhancing technology</td>
<td>Olivier Pereira (coord.) François-Xavier Standaert</td>
<td>5</td>
<td>q1 x</td>
</tr>
</tbody>
</table>
MAJOR IN DATA SCIENCE AND APPLIED MATHEMATICS

This major is available only to students who majored or minored in Applied Mathematics during their bachelor's degree programme. Students completing the major Computing and Applied Mathematics will be able to: Understand both applied mathematics and computing including algorithms, scientific calculations, computer system modelling, optimisation, automated learning or data mining, Understand and use the methods and techniques related to advanced algorithms such as optimisation methods, constraint programming, algorithms of graphs, numerical algorithms or analysis and design of algorithms, Identify and use models and techniques relating to statistics, automated learning and data mining; understand categories of applications used for the processing of raw data as well as automatic forms used to mine information out of large data sets.

The student shall select 20 to 30 credits among

### Required courses in Computing and Applied Mathematics (20 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINMA2472</td>
<td>Algorithms in data science</td>
<td>Jean-Charles Delvenne (coord.) Gautier Krings (compensates Vincent Blondel)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LINMA2710</td>
<td>Scientific computing</td>
<td>Pierre-Antoine Absil (coord.) Karl Meerbergen (compensates Anthony Papavasiliou)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LSINF2275</td>
<td>Data mining &amp; decision making</td>
<td>Marco Saerens</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LINGI2364</td>
<td>Mining Patterns in Data</td>
<td>Siegfried Nijssen</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

### Elective courses in computing and applied mathematics

Student shall select max. 10 credits among

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LELEC2870</td>
<td>Machine learning : regression, deep networks and dimensionality reduction</td>
<td>John Lee Michel Verleysen</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LINGI2266</td>
<td>Advanced Algorithms for Optimization</td>
<td>Pierre Schaus</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LINGI2348</td>
<td>Information theory and coding</td>
<td>Jérôme Louveaux Benoit Macq Olivier Pereira</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LINGI2365</td>
<td>Constraint programming</td>
<td>Pierre Schaus Pierre Schaus (compensates Yves Deville)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LINMA2450</td>
<td>Combinatorial optimization</td>
<td>Jean-Charles Delvenne Julien Hendrickx</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LINMA2470</td>
<td>Stochastic modelling</td>
<td>Philippe Chevalier</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LINMA2471</td>
<td>Optimization models and methods II</td>
<td>François Glineur</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LMAT2450</td>
<td>Cryptography</td>
<td>Olivier Pereira</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LMECA2170</td>
<td>Numerical Geometry</td>
<td>Vincent Legat Jean-François Remacle</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
OPTION EN CRYPTOGRAPHY AND INFORMATION SECURITY

This major is available only to students who majored or minored in Electricity during their Bachelor’s degree programme. Students completing the major Communication Networks will be able to: Understand and use different devices and protocols used in fixed and wireless networks, Design, configure and manage fixed and wireless networks while taking into account application needs (including multimedia), Understand and effectively use information coding techniques, Understand and design mobile wireless communication systems from start to finish.

Content:

Elective courses

In order to validate this option INFO and MAP students have to take 20 credits at least and ELEC and DATA students 15 credits at least among:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Semester</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LELEC2760</td>
<td>Secure electronic circuits and systems</td>
<td>François-Xavier Standaert</td>
<td>5</td>
<td>q2</td>
<td>1,2</td>
</tr>
<tr>
<td>LINGI2144</td>
<td>Secured systems engineering</td>
<td>Axel Legay</td>
<td>5</td>
<td>q2</td>
<td>1,2</td>
</tr>
<tr>
<td>LINGI2347</td>
<td>Computer system security</td>
<td>Ramin Sadre</td>
<td>5</td>
<td>q2</td>
<td>1,2</td>
</tr>
<tr>
<td>LINGI2348</td>
<td>Information theory and coding</td>
<td>Jérôme Louveaux, Benoît Macq, Olivier Pereira</td>
<td>5</td>
<td>q2</td>
<td>1,2</td>
</tr>
<tr>
<td>LMAT2440</td>
<td>Number theory</td>
<td>Olivier Pereira, Jean-Pierre Tignol</td>
<td>5</td>
<td>q1</td>
<td>1,2</td>
</tr>
<tr>
<td>LMAT2450</td>
<td>Cryptography</td>
<td>Olivier Pereira</td>
<td>5</td>
<td>q1</td>
<td>1,2</td>
</tr>
<tr>
<td>LELEC2770</td>
<td>Privacy Enhancing technology</td>
<td>Olivier Pereira (coord.), François-Xavier Standaert</td>
<td>5</td>
<td>q1</td>
<td>1,2</td>
</tr>
</tbody>
</table>
MAJOR IN BIOMEDICAL ENGINEERING

This major is available only to students who minored in biomedical engineering during their Bachelor’s degree programme. The objective of the biomedical engineering major is to train engineers who are capable of meeting future technological challenges in the scientific and technical fields related to biomedical engineering. This major provides students with basic knowledge about bioinformatics as well as other biomedical engineering fields such as bioinstrumentation, biomaterials, medical imaging, mathematical modelling, artificial organs and rehabilitation and biomechanics. The collaboration between the Louvain School of Management and the School of Medicine provides an interdisciplinary curriculum where engineering is applied to the complex and varied biomedical field.

Mandatory

Courses not taught during 2020-2021
Periodic courses not taught during 2020-2021
Periodic courses taught during 2020-2021
Activity with requisites

Students shall select 20 to 30 credits among:

Year

1

2

Content:

Required courses in biomedical engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teachers</th>
<th>ECTS</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGBIO2010</td>
<td>Bioinformatics</td>
<td>Pierre Dupont</td>
<td>30h+30h</td>
<td>5 Credits</td>
<td>q1</td>
</tr>
<tr>
<td>LGBIO2020</td>
<td>Bioinstrumentation</td>
<td>André Mouraux, Michel Verleysen</td>
<td>30h+30h</td>
<td>5 Credits</td>
<td>q1</td>
</tr>
<tr>
<td>LGBIO2030</td>
<td>Biomaterials</td>
<td>Sophie Demoustier, Christine Dupont</td>
<td>30h+30h</td>
<td>5 Credits</td>
<td>q1</td>
</tr>
<tr>
<td>LGBIO2040</td>
<td>Biomechanics</td>
<td>Greet Kerckhofs</td>
<td>30h+30h</td>
<td>5 Credits</td>
<td>q2</td>
</tr>
<tr>
<td>LGBIO2050</td>
<td>Medical Imaging</td>
<td>Greet Kerckhofs, John Lee, Benoît Macq, Frank Peeters</td>
<td>30h+30h</td>
<td>5 Credits</td>
<td>q1</td>
</tr>
<tr>
<td>LGBIO2060</td>
<td>Modelling of biological systems</td>
<td>Philippe Lefèvre</td>
<td>30h+30h</td>
<td>5 Credits</td>
<td>q1</td>
</tr>
</tbody>
</table>

Elective courses in biomedical engineering for students enrolled in the ELEC Master’s degree programme

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teachers</th>
<th>ECTS</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LELEC2870</td>
<td>Machine learning : regression, deep networks and dimensionality reduction</td>
<td>John Lee, Michel Verleysen</td>
<td>30h+30h</td>
<td>5 Credits</td>
<td>q1</td>
</tr>
<tr>
<td>LELEC2885</td>
<td>Image processing and computer vision</td>
<td>Christophe De Vleeschouwer (coord.), Laurent Jacques</td>
<td>30h+30h</td>
<td>5 Credits</td>
<td>q1</td>
</tr>
</tbody>
</table>
MAJORS FOR THE MASTER'S DEGREE IN COMPUTER SCIENCE AND ENGINEERING

MAJOR IN SMALL AND MEDIUM SIZED BUSINESS CREATION

In keeping with most of the EPL Masters’ degrees, the goal of this major is to familiarize the student with the specifics of entrepreneurship and business development in order to develop the necessary abilities, knowledge and tools to create a business. It is a truly interdisciplinary initiative where students from different faculties are brought together in cross-disciplinary teams to create an entrepreneurial project.

The Interdisciplinary program in entrepreneurship (CPME) is spread over two years and is integrated into more than 30 Masters (9 faculties). The program includes a collective and interdisciplinary master thesis focused on an entrepreneurial project (start-up or spin-off) and realized in teams of 3 to 4 students from 3 to 4 different faculties. The access is reserved for a small number of students by a selection procedure. Additional information may be found at www.uclouvain.be/cpme.

This major is not available in English and may not be taken at the same time as the major “Business risks and opportunities”.

### Content:

#### Required courses for the major in small and medium sized businesses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Hours</th>
<th>Enrolled</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCPME2001</td>
<td>Entrepreneurship Theory (in French)</td>
<td>Frank Janssen</td>
<td>5</td>
<td>30+20h</td>
<td></td>
</tr>
<tr>
<td>LCPME2002</td>
<td>Managerial, legal and economic aspects of the creation of a company (in French)</td>
<td>Yves De Cordt, Marine Falize</td>
<td>5</td>
<td>30+15h</td>
<td></td>
</tr>
<tr>
<td>LCPME2003</td>
<td>Business plan of the creation of a company (in French)</td>
<td>Frank Janssen</td>
<td>5</td>
<td>30+15h</td>
<td></td>
</tr>
<tr>
<td>LCPME2004</td>
<td>Advanced seminar on Entrepreneurship (in French)</td>
<td>Frank Janssen</td>
<td>5</td>
<td>30+15h</td>
<td></td>
</tr>
</tbody>
</table>

**Prerequisite CPME courses**

Les étudiants qui n'ont pas suivi un cours de gestion durant leur formation antérieure doivent mettre au programme de cette option le cours CMPE2000

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Hours</th>
<th>Enrolled</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCPME2000</td>
<td>Venture creation financement and management I</td>
<td>Yves De Rongé, Olivier Giacomin</td>
<td>5</td>
<td>30+15h</td>
<td></td>
</tr>
</tbody>
</table>
MAJOR BUSINESS RISKS AND OPPORTUNITIES

This Major is not available in English and cannot be taken simultaneously with the Major “Major in small and medium sized business creation”.

From 17 to 20 credits

<table>
<thead>
<tr>
<th>Content:</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFSA1290 Introduction to financial and accounting management Philippe Grégoire 30h+15h 4 Credits q2 x x</td>
<td>2</td>
</tr>
<tr>
<td>LFSA2140 Elements of law for industry and research Vincent Cassiers Werner Derijcke Bénédicte Inghels 30h 3 Credits q1 x x</td>
<td></td>
</tr>
<tr>
<td>LFSA2210 Organisation and human resources John Cultiaux Eline Jammaers 30h 3 Credits q2 x x</td>
<td></td>
</tr>
<tr>
<td>LFSA2230 Introduction to management and to business economics Benoît Gailly 30h+15h 4 Credits q2 x x</td>
<td></td>
</tr>
<tr>
<td>LFSA2245 Environment and business Jean-Pierre Tack 30h 3 Credits q1 x x</td>
<td></td>
</tr>
</tbody>
</table>

One course between

From 3 to 5 credits

<table>
<thead>
<tr>
<th>Alternative to the major in business risks and opportunities for computer science students</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFSA2202 Ethics and ICT Axel Gosseries Olivier Pereira 30h 3 Credits q2 x x</td>
</tr>
<tr>
<td>LLSMS2280 Business Ethics and Compliance Management Carlos Desmet 30h 5 Credits q1 x x</td>
</tr>
</tbody>
</table>

Computer science students who have already taken courses in this field while pursuing their Bachelor’s degree may choose between 16-20 credits from the courses offered in the management minor for computer sciences.
## ELECTIVE COURSES: TRANSVERSAL SKILLS AND CONTACTS WITH INDUSTRY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit(s)</th>
<th>Duration</th>
<th>Prerequisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFSA2995</td>
<td>Company Internship</td>
<td>10</td>
<td>30h</td>
<td>q1+q2</td>
</tr>
<tr>
<td>LINGI2399</td>
<td>Industrial seminar in computer science</td>
<td>3</td>
<td>30h</td>
<td>q2</td>
</tr>
<tr>
<td>LINGI2402</td>
<td>Open Source Project</td>
<td>5</td>
<td></td>
<td>q1+q2</td>
</tr>
</tbody>
</table>

### Content:

- **Transversal skills and contacts with industry**

  The student selects min 3 credits among the courses of the majors "business risks and opportunities", "small and medium sized business creation" and courses of professional integration activity specific to the program.

### Year 1

- **Internship**
  - LFSA2995: Company Internship (Jean-Pierre Raskin)
    - 10 Credits
    - Duration: 30h
    - Prerequisites: q1+q2

- **Professional integration activity specific to the program**
  - LINGI2399: Industrial seminar in computer science (Yves Deville, Bernard Geubelle)
    - 3 Credits
    - Duration: 30h
    - Prerequisites: q2
  - LINGI2402: Open Source Project
    - 5 Credits
    - Duration: 30h
    - Prerequisites: q1+q2

### Year 2

#### Communication

Students may select max. 8 credits of languages courses or group dynamics:

- **Languages**
  - LALLE2500: Professional development seminar German (Caroline Klein (coord.))
    - 3 Credits
    - Duration: 30h
    - Prerequisites: q1+q2
  - LALLE2501: Professional development seminar German (Caroline Klein (coord.))
    - 5 Credits
    - Duration: 30h
    - Prerequisites: q1+q2
  - LESPA2600: Vocational Induction Seminar - Spanish (B2.2/C1) (Paula Lorente Fernández (coord.))
    - 3 Credits
    - Duration: 30h
    - Prerequisites: q1
  - LESPA2601: Vocational Induction Seminar - Spanish (B2.2/C1) (Paula Lorente Fernández (coord.))
    - 5 Credits
    - Duration: 30h
    - Prerequisites: q1
  - LNEER2500: Seminar of Entry to professional life in Dutch - Intermediate level (Isabelle Demeulemaere (coord.), Marie-Laurence Lambrecht)
    - 3 Credits
    - Duration: 30h
    - Prerequisites: q1 or q2
  - LNEER2600: Seminar of entry to professional life in Dutch - Upper-Intermediate level (Isabelle Demeulemaere (coord.), Dag Houdmont)
    - 3 Credits
    - Duration: 30h
    - Prerequisites: q1 or q2

#### Group dynamics

- LEPL2351: Dynamique des groupes - Q1 (Christine Jacqmot, Claude Oestges, Benoît Raucents, Vincent Wertz)
  - 3 Credits
  - Duration: 15h+30h
  - Prerequisites: q1
- LEPL2352: Dynamique des groupes - Q2 (Christine Jacqmot, Claude Oestges, Benoît Raucents, Vincent Wertz)
  - 3 Credits
  - Duration: 15h+30h
  - Prerequisites: q2

#### Other non-disciplinary courses

The student may further select maximum 8 credits in other disciplines.
ELECTIVE COURSES AVAILABLE FOR MASTER STUDENTS IN COMPUTER SCIENCE

In addition to the 2 UE below, student may add to their elective courses any other course in the program that was not taken as part of an option.

| Year | 1 | 2 |

**Content:**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor</th>
<th>Credits</th>
<th>Period</th>
<th>Requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>LING2401</td>
<td>Open Source strategy for software development</td>
<td>Lionel Dricot</td>
<td>5</td>
<td>q1+x</td>
<td></td>
</tr>
<tr>
<td>LING2402</td>
<td>Open Source Project</td>
<td></td>
<td>5</td>
<td>q1+q2</td>
<td></td>
</tr>
</tbody>
</table>

Course prerequisites

There are no prerequisites between course units (CUs) for this programme, i.e. the programme activity (course unit, CU) whose learning outcomes are to be certified and the corresponding credits awarded by the jury before registration in another CU.

The programme's courses and learning outcomes

For each UCLouvain training programme, a reference framework of learning outcomes specifies the competences expected of every graduate on completion of the programme. You can see the contribution of each teaching unit to the programme's reference framework of learning outcomes in the document "In which teaching units are the competences and learning outcomes in the programme's reference framework developed and mastered by the student?"
Access Requirements

In the event of the divergence between the different linguistic versions of the present conditions, the French version shall prevail.

The admission requirements must be met prior to enrolment in the University.

SUMMARY

- Specific access requirements
- University Bachelors
- Non university Bachelors
- Holders of a 2nd cycle University degree
- Access based on validation of professional experience
- Access based on application
- Admission and Enrolment Procedures for general registration

Specific access requirements

This programme is taught in English with no prerequisite in French. The student is supposed to have at least a B2 level in the European Framework of Reference. A certificate is required for the holders of a non-Belgian degree, see selection criteria of the "access on the file".

University Bachelors

<table>
<thead>
<tr>
<th>Diploma</th>
<th>Special Requirements</th>
<th>Access</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCLouvain Bachelors</td>
<td></td>
<td>Direct access</td>
<td></td>
</tr>
<tr>
<td>Others Bachelors of the French speaking Community of Belgium</td>
<td></td>
<td>Direct access</td>
<td></td>
</tr>
<tr>
<td>Bachelors of the Dutch speaking Community of Belgium</td>
<td></td>
<td>Access with additional training</td>
<td></td>
</tr>
<tr>
<td>Foreign Bachelors</td>
<td></td>
<td>Direct access</td>
<td>Access based on application</td>
</tr>
</tbody>
</table>

Non university Bachelors

> Find out more about links (https://uclouvain.be/fr/etudier/passereselles) to the university

Holders of a 2nd cycle University degree

<table>
<thead>
<tr>
<th>Diploma</th>
<th>Special Requirements</th>
<th>Access</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;Licenciés&quot;</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Access based on validation of professional experience

> See the website Valorisation des acquis de l'expérience

It is possible to gain admission to all masters courses via the validation of professional experience procedure.
Access based on application

Reminder: all Masters (apart from Advanced Masters) are also accessible on file.

The first step of the admission procedure requires to submit an application online: https://uclouvain.be/en/study/inscriptions/futurs-etudiants.html

Selection criteria are summarized here (contact: epl-admission@uclouvain.be).

Admission and Enrolment Procedures for general registration
Teaching method

Active teaching strategies and non-technical skills

The teaching methods used in the Master’s degree programme in civil engineering are consistent with those of the Bachelor’s degree programme in engineering sciences: active learning, an equal mix of group work and individual work, and emphasis on the development of non-technical skills. In particular, our pedagogy prioritises projects (including a large scale project that puts student groups in a semi-professional situation).

Students will be exposed to various teaching methods: lectures, exercise sessions, problem solving sessions, case studies, industry or research internships, group work, individual work, seminars and conferences offered by the industrial sector. This variety of teaching techniques helps students to build their knowledge in an iterative and progressive manner while at the same time develop their autonomy as well as their organisation, time management and communication skills.

Use of Foreign Languages

Globalisation demands that all societies open up to foreign markets. In addition, the main language used in computer science is English. The use of English throughout the programme allows students to develop their mastery of this language, which will facilitate their integration into universities and foreign companies. Course materials as well as educational support are in English. However, students may express themselves in French during class or evaluations. Specifically, the Master’s thesis or graduation project may be written and defended in English or French.

Furthermore, the programme foresees the possibility of taking language classes at the ILV and participating in study abroad programs. Overall, the programme is taught in English with the exception of the biomedical engineering major and the majors in management and small and medium sized business creation.

Open to other disciplines

Students are encouraged to enlarge their training to include other engineering sciences and techniques, management as well as the humanities and social sciences. In fact, over the course of their careers, computer scientists must manage (team) projects and show an interest in the complex socio-economic context in which computer science takes place. They must dialogue with colleagues from different educational backgrounds who prioritise other aspects of a project. Thus it is imperative that students enlarge their field of vision beyond computer science.

Evaluation

The evaluation methods comply with the regulations concerning studies and exams. More detailed explanation of the modalities specific to each learning unit are available on their description sheets under the heading “Learning outcomes evaluation method”.

Student work is evaluated according to University rules (see the rules for evaluating coursework and exams) namely written and oral exams, laboratory exams, individual or group work, public presentations of projects and theses defences. For classes taught in English, questions are in English. Students may respond in French. For classes taught in French, questions are in French. Students may ask for help translating the questions into English and respond to them in English.

Certain activities completed during the semester and supervised by a teaching team in collaboration with students do not take place outside of the class session. Thus they are not re-evaluated in a future course session.

At the beginning of the semester, professors will explain their marking scheme, which is based on the learning outcomes of the course (that it frequently shares with those of the Master’s degree programme).

For more information on evaluation methods, students may consult the relevant evaluation descriptions.

To obtain a passing grade, the marks received for the teaching units are offset by their respective credits.

Mobility and/or Internationalisation outlook

Outgoing students

Since its creation, the Louvain School of Engineering (EPL) has participated in diverse exchange programs that were put into place at the European level and beyond.

Students are informed about study abroad opportunities at the end of their Bachelor’s degree programme, notably through intensive academic programmes like the BEST network. This network gives students an initial study abroad experience.

In addition, within the framework of the Erasmus/Mercator exchange programmes, students have the possibility of studying at a partner university for one year (two semesters) during the 1st year of the Master’s degree programme or 5 months (first semester) in the 2nd year of the Master’s degree programme. To this end, the EPL participates in different study abroad networks.

• In Belgium, the EPL has a partnership with the Faculteit Ingenieurswetenschappen de la Katholieke Universiteit Leuven.
• Within Europe, the EPL participates in the CLUSTER network, which provides quality training and accommodations for exchange students. Furthermore, the members of the CLUSTER network have signed an agreement that mutually recognises their Bachelor’s degree programmes. This agreement means that all the Bachelor degree holders in the CLUSTER network are automatically admitted to the Master’s degree programme in member institutions.

• Outside of Europe, the EPL is a member of the Magalhäes network that brings together 15 European universities with the best scientific and technological universities in Latin America.

In addition to these networks and partnerships, the EPL has signed a certain number of individual agreements with different universities in Europe, North America and elsewhere in the world. The list of these agreements is available at UCL’s International Relations Administration website.

Joint degree programmes have also been put into place.

• Dual Masters degrees allow students to receive a diploma from two universities at the end of their two year Master’s degree programme (one year at UCL and the other at a host university).

Students are informed about the different exchange programmes in the second year of their Bachelor’s degree programme. They are encouraged to prepare in advance, specifically their language skills through classes offered at the Institute for Living Languages (Institut des langues vivants) at UCL.

Beyond exchange programmes, students may intern in a research laboratory or a foreign company.


Incoming students

Thanks to the CLUSTER network, foreign students have the same status as local UCL students. UCL favours students coming from institutions that participate in the Socrates exchange network.

Overall the Master’s degree programme is taught in English and does not require previous knowledge of French with the exception of the majors in biomedical engineering, management and small and medium sized business creation (CPME). Except for rare cases, all courses are taught in English. For non-francophone students, substitute courses may take the place of courses taught in French. These courses are suggested by the programme commission on a case by case basis and are based on the student’s course curriculum.


Possible trainings at the end of the programme

Doctoral programmes

The Master’s degree in civil engineering and computer science may be followed by a doctoral degree programme in engineering sciences. Doctoral degrees are offered by thematic doctoral degree granting schools.

UCL Master’s degrees (about 60) are accessible to UCL Master’s degree holders

For example:

• The Master’s degree (120) in sciences and environmental management and the Master’s degree (60) in sciences and environmental management (automatic admission with possible complementary coursework)
• Different Master’s degree programmes in management (automatic admission based on written application); see this list
• The Master’s degree (60) in information and communication at Louvain-la-Neuve or the Master’s degree (60) in information and communication at Mons

Contacts

Curriculum Management

Entity
Structure entity
Denomination
Faculty
Sector
Acronym
Postal address

Jury

• Jean-Didier Legat
• Charles Pecheur

Useful Contact(s)

Academic supervisor: Charles Pecheur
• Sofie De Pauw