<- Archives UCL - PPE2011 ->


Master in Mathematics [60.0]

AnnéesTravail de fin d'étude


Retour en début de pageStudy objectives

The Master in Mathematics (60 credits) is clearly different from the 120 credit Master in Mathematics ; although it only takes a year of study, it is inspired by the same objectives, but aims in a more modest way to build on and refine the training in the bachelor’s degree.  It is designed to provide general training of a high quality in important areas of mathematics.

 


Retour en début de pageGeneral presentation of the programme

The programme comprises core subjects of 30 credits and optional subjects (30 credits).

 

Core courses


Retour en début de pagePositioning of the programme

The only university training directly accessible from the 60 credit Master is teacher training (30 credits). It is also possible, in one year, to gain the 120 credit Master in Mathematics. This gives access to doctorates and Advanced Masters. Students’ attention is drawn to the fact that this progression will require the submission of two dissertations and may require up to 15 credits for additional courses.

 


Admission

University Bachelors
Diploma Special Requirements Access Remarks
UCL Bachelors
Intitulé du programme appelé par le code   Direct access  
Bachelor in Physics [180.0] Si l'étudiant a suivi la Minor in Mathematics [30.0]   Direct access  
Bachelor in Engineering [180.0] Si l'étudiant a suivi la Minor in Mathematics [30.0] ou s'il a suivi le programme de majeure en mathématiques appliquées  Direct access  
Belgian Bachelors of the French speaking Community
Intitulé du programme appelé par le code   Direct access  
Bachelier en sciences de l'ingénieur - orientation ingénieur civil   Access with additional training  
Belgian Bachelors of the Dutch speaking Community
Intitulé du programme appelé par le code   Direct access  
Foreign Bachelors
Intitulé du programme appelé par le code   Direct access  

Non university Bachelors
Diploma Access Remarks
> Find out more about links to the university
 

Holders of a 2nd cycle University degree
Diploma Special Requirements Access Remarks
"Licenciés"
 
Intitulé du programme appelé par le code   Direct access  
Masters
 
Intitulé du programme appelé par le code   Direct access  

Holders of a non-University 2nd cycle degree
Diploma Access Remarks
> Find out more about links to the university
 

Adults taking up their university training
> See the website www.uclouvain.be/vae

Personalized access
Reminder : all Masters (apart from Advanced Masters) are also accessible on file.

Admission and Enrolment Procedures for general registration

See the general admission requirements



Contact

Retour en début de pageCurriculum management

Département de mathématique
Aucun élément de recherche n'a été rempli.

Retour en début de pageUseful contacts

Secrétariat du département
Aucun élément de recherche n'a été rempli.



Teaching method

Retour en début de pageStrong points of the pedagogical approach

The courses enable students to acquire mathematical tools. They will mostly be accompanied by work which forms the main part of the assessment. Individual work, group work and work in the library will be encouraged. The ‘research courses’ are directly linked to the most advanced research areas in the Department.

 

Retour en début de pageEvaluation

Students will mainly be assessed on the basis of individual work (e.g. reading, consultation of databases and bibliographic references, writing monographs and reports, presentation of seminars, dissertation and work placement). Where necessary, students will also be assessed on how much they have learned from lectures. As far as possible, there will be continuous assessment, including regular ‘open book examinations’. Certain activities will not be given a precise mark but will be officially certified. Assessment of the dissertation is in two stages : a ‘progress report’ at the end of the first year of the Master and the final presentation.

 



Core courses
Legend
Mandatory Optional
Courses not taught this academic year Periodic courses not taught this academic year
Periodic courses taught this academic year Two year courses

Click on the course code to see detailed informations (objectives, methods, evaluation...)
Year
1
Mandatory LMAT2998

Mémoire   (in French) N.   18credits    x

MandatoryPhilosophy (2credits)
2 credits to choose between
Optional LSC2001

Introduction to contemporary philosophy  (in French) Gilbert Gérard 30h  2credits  2q  x
Optional LSC2220

Philosophy of science  (in French) Michel Ghins 30h  2credits  2q  x
Optional LFILO2003E

Questions d'éthique dans les sciences et les techniques (partie séminaire)  (in French) N.   2credits    x

Mandatory2 optional courses to choose between (10credits)
Avec l'accord du responsable du Master, les étudiants peuvent également prendre comme cours au choix, des cours figurant dans la liste des cours au choix du Master 120.
Optional LMAT2110

Eléments de géométrie différentielle  (in French) Luc Haine 30h + 30h  5credits  2q  x
Optional LMAT2120

Galois theory and groups representtions  (in French) Pierre-Emmanuel Caprace, Jean-Pierre Tignol 45h + 15h  5credits  2q  x
Optional LMAT2130

Partial differential equations : Poisson and Laplace equations  (in French) Augusto Ponce, Jean Van Schaftingen 30h + 30h  5credits  1q  x
Optional LMAT2440

Number theory  (in French) Jean-Jacques Quisquater 30h + 15h  5credits  1q  x
Optional LPHY2111

Introduction à la dynamique non linéaire  (in French) Jean Bricmont 30h + 15h  5credits  1q  x

MandatoryOptional courses (30credits)
To choose between the optional courses (not yet taken in the core courses) and the following courses
Optional LMAT2140

Algebraic topology  (in French) Yves Félix, Pascal Lambrechts 45h  5credits  2q  x
Optional LMAT2150

Category theory I and foundations of mathematics  (in French) Marino Gran, Enrico Vitale 45h  5credits  2q  x
Optional LMAT2410

Partial differential equation : heat equation, brownian moves and numerical aspects  (in French) Augusto Ponce, Jean Van Schaftingen 30h + 15h  5credits  2q  x
Optional LMAT2420

Combinatorial geometry  (in French) Tom Claeys 30h + 15h  5credits  1q  x
Optional LMAT2430

Lie theory and Riemannien geometry  (in French) Gery Debongnie 30h + 15h  5credits    x
Optional LMAT2450

Cryptography  Olivier Pereira 30h + 15h  5credits  1q  x
Optional LMAT2460

Finite mathematics and combinatorial structures  (in French) Mélanie Raczek 30h  5credits  1q  x
Optional LINMA2380

Matrix theory  Paul Van Dooren 30h + 22.5h  5credits  1q  x
Optional LINMA1170

Numerical analysis  Pierre-Antoine Absil, Paul Van Dooren (coord.) 30h + 22.5h  5credits  1q  x
Optional LINMA2345

Differential equations  (in French) Abdou Kouider Ben-Naoum, Jean Van Schaftingen (coord.) 30h + 22.5h  5credits  2q  x