UCLouv	Isinc1111					Analysis		
	Gill	2023				Anaiysis		
ſ	5	5.00 credits	30.0 ł	n + 30.0 h	Q1			

This learning unit is not open to incoming exchange students!

Teacher(s)	Nunes Grapiglia Geovani ;				
Language :	French				
Place of the course	Charleroi				
Prerequisites	This course assumes the skills of the end of secondary school in analysis (functions, calculation of derivatives and integrals).				
Main themes	 The course emphasizes: the understanding of mathematical tools and techniques based on a rigorous learning of the concepts favored by the highlighting of their concrete application, the rigorous manipulation of these tools and techniques within the framework of concrete applications. For most of the concepts studied, the applications are chosen within the framework of the other courses of the program in computer sciences (for example biology/chemistry). Sets and numbers One-variable real functions Boundaries Continuous functions Differentiable functions Integrals 				
Learning outcomes	 At the end of this learning unit, the student is able to : With regard to the AA reference system of the "Bachelor in Computer Science" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes: S1.G1 S2.2 Students who successfully complete this course will be able to: Solve concrete problems using the notions of sets, functions, limits, derivatives and integrals; Solve concrete problems using limit, derivative and integral calculation techniques; Reasoning by correctly manipulating mathematical notations and methods keeping in mind but going beyond a more intuitive interpretation of concepts. 				
Evaluation methods	Students are assessed individually during a written exam on the basis of the learning outcomes announced above. In addition, homework results will be incorporated into the final grade as a bonus. The exact terms and conditions will be specified during the course.				
Teaching methods	Lectures and exercise-based learning activities (APE). Online assignments will also be offered. The course and the learning activities through exercises will favor interactions between teachers and students. Some of the above activities (lessons, APE, APP) can be organized remotely.				
Content	 The course emphasizes: the understanding of mathematical tools and techniques based on a rigorous learning of the concepts favored by the highlighting of their concrete application, the rigorous manipulation of these tools and techniques within the framework of concrete applications. For most of the concepts studied, the applications are chosen within the framework of the other courses of the program in computer sciences (for example biology/chemistry). The concepts covered in this course are described below. Sets and numbers Sets (notation, intersection, union, difference) Interval, upper bound, lower bound, extremum Absolute value, powers and roots Cardinality of a set (finite and infinite) and notion of inclusion-exclusion 				

	Université catholique de Louvain - Analysis - en-cours-2023-lsinc1111				
	EquivalenceElements of logic and techniques of proof				
	One-variable real functions				
	 Injective, surjective and bijective functions Algebraic operations on functions (including graphical interpretation) Polynomial functions Exponential, logarithmic and trigonometric functions Composition of functions and inverse functions 				
	Limits and continuity				
	 Conditions of existence Limits to infinity Fundamental theorems of continuous functions 				
	Differentiable functions				
	 Derivative at a point (including graphical interpretation) Derivation techniques L'Hospital's theorem Maximum and minimum Concavity and convexity Linear function approximation Taylor expansion 				
	Primitives and integrals				
	 Primitives Definite integrals (including graphical interpretation) Improper integrals Integration techniques First-order ordinary differential equations				
Faculty or entity in charge	SINC				

Programmes containing this learning unit (UE)								
Program title	Acronym	Credits	Prerequisite	Learning outcomes				
Bachelor in Computer Science	SINC1BA	5		٩				