7.00 credits

linfo1

2023

111

45.0 h + 37.5 h

Q1

Analysis

Teacher(s)	Absil Pierre-Antoine ;Berger Guillaume ;Glineur François ;					
Language :	French					
Place of the course	Louvain-la-Neuve					
Prerequisites	This course assumes that the students already masters the skills in analysis (functions, derivatives an as expected at the end of secundary school.					
Main themes	The course focuses on understanding of mathematical tools and techniques based on a rigorous learning of concepts favored b 					
	highlighting their practical application, • careful handling of these tools and techniques in the framework of applications.					
	For most concepts, applications are selected from the other courses of the computer science program (e economy).					
	Sets and Numbers					
	sets (intersection, union, difference)					
	 Order and equivalence, Interval, upper bounds, lower bounds, extremes, absolute value, powers and roots 					
	Real functions of one variable					
	 injective, surjective, bijective functions, algebraic operations on functions (including graphic interpretation) first order functions, exponential, logarithmic and trigonometric functions Composition of functions and inverse functions 					
	Limits					
	 conditions to ensure that a limit exists, limits to infinity 					
	Continuous functions					
	fundamental theorems of continuous functions,					
	Differentiable functions					
	derivative at a point (including graphical interpretation)					
	The Hospital's theorem, Inear approximation of a function,					
	maximum and minimum, encreasing of decreasing function (sign study)					
	 concavity and convexity, 					
	Taylor's development					
	Integrals					
	 primitive, definite integrals (including graphic interpretation) undefinite integrals 					
	Functions of two variables					
	 notion and calculation of partial derivative graphical interpretation of the gradient interpretation and calculation of the Hessian matrix Intuitive introduction to the use of the Hessian matrix and gradient for a 2-variable function to determine critic points and their nature 					
	concept and calculation of double integrals					

Learning outcomes	At the end of this learning unit, the student is able to :				
	Given the learning outcomes of the "Bachelor in Copputer science" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes:				
	• \$1.G1 • \$2.2				
	1 Students completing successfully this course will be able to				
	 Model real problems using the concepts of set, function, limit, derivative and integral; Solve real problems using computational techniques for limit, derivative and integral; Reason using correctly the mathematical notations and methods keeping in mind but exceeding a more intuitive understanding of the concepts; Model real problems using functions of 2 variables. 				
Evaluation methods	Assessments are carried out individually in writing, based on the learning outcomes listed above. A test is organized during the first term, and a written exam during each session. For the January session, the final grade is awarded on the basis of the test (5 points out of 20) and the exam (15				
	points out of 20). For the other two sessions, the grade is based on the exam only.				
Teaching methods	Lectures in a large auditorium, supervised exercise (APE) and problem (APP) sessions in small groups, possibly supplemented with writing assignments and online exercises.				
Content	 Sets and numbers Real univariate functions Limits and continuity Derivatives (computation and applications) Optimization Taylor polynomial Integration (computation and applications) Differential equations Functions of two variables 				
Inline resources	https://moodle.uclouvain.be/course/view.php?id=2798				
Bibliography	Mathématiques pour l'économie (5ème édition) par Knut Sydsæter, Peter Hammond, Arne Strøm et Andrés Carvajal, Pearson, 2020				
Faculty or entity in charge	INFO				

Programmes containing this learning unit (UE)							
Program title	Acronym	Credits	Prerequisite	Learning outcomes			
Master [120] in Data Science : Statistic	DATS2M	7		٩			
Bachelor in Computer Science	SINF1BA	7		٩			