

lelec2710	Nanoelectronics
2023	Natioelectionics

5.00 crédits	30.0 h + 30.0 h	Q1

Enseignants	Bayot Vincent (coordinateur(trice)) ;Gehring Pascal ;Hackens Benoît ;				
Langue d'enseignement	Anglais > Facilités pour suivre le cours en français				
Lieu du cours	Louvain-la-Neuve				
Thèmes abordés	Le cours aborde les phénomènes physiques spécifiques aux systèmes électroniques de faibles dimensions (<1-100 nm) Systèmes bidimensionnels (2D), 1D (fils quantiques) et 0D (points quantiques); puits quantiques; contacts quantiques et conductance balistique; électrons dans un champs électrique et magnétique; mécanismes de diffusion; transport de charge cohérent; effet tunnel résonant.				
Acquis	A la fin de cette unité d'enseignement, l'étudiant est capable de :				
d'apprentissage	Eu égard au référentiel AA du programme « Master ingénieur civil électricien », ce cours contribue au développement, à l'acquisition et à l'évaluation des acquis d'apprentissage suivants :				
	• AA1.1, AA1.2 • AA2.1, AA2.2, AA2.5 • AA3.1, AA3.2, AA3.3 • AA4.1, AA4.2, AA4.3, AA4.4 • AA5.3, AA5.4, AA5.5, AA5.6 1 • AA6.1				
	 A l'issue de cet enseignement, les étudiants seront en mesure de: Expliquer les bases physiques de la nano-électronique. Prédire et analyser le comportement de dispositifs nanoscopiques simples à partir des bases physiques développées durant le cours et leur projet. Synthétiser et présenter oralement un travail scientifique relaté dans un article important du domaine de la nano-électronique. 				
Modes d'évaluation des acquis des étudiants	 Evaluation du rapport écrit et de la présentation orale du travail de recherche réalisé sur base d'un article scientifique. Le travail peut impliquer la simulation, le calcul ou la mesure de propriétés de transport de dispositifs nanoélectroniques. Evaluation écrite sur le contenu du cours 				
Méthodes d'enseignement	Les séances de cours laissent beaucoup de place aux questions des étudiants pour éclaircir au mieux les nombreux concepts abordés. Les étudiants sont invités à faire par eux-même certains développements complémentaires qui sont ensuite mis en commun.				
Contenu	Les cours présentent, de manière interactive, les bases des dispositifs nano-électroniques et analyse leur fonctionnement. Le projet leur permet d'étudier plus en profondeur un dispositif particulier en se basant sur un article scientifique particulier et une recherche bibliographique complémentaire, ainsi qu'un projet spécifique qui peut impliquer des simulations ou des calculs.				
Ressources en ligne	Moodle https://moodleucl.uclouvain.be/enrol/index.php?id=10290				
Bibliographie	Syllabus, copies de transparents, livres suggérés dont : The physics of low-dimensional semiconductors, J.H. Davies, Cambridge				
Autres infos	Bases de physique, y compris de mécanique quantique ; bases de physique des dispositifs électroniques.				
Faculté ou entité en charge:	ELEC				

Programmes / formations proposant cette unité d'enseignement (UE)							
Intitulé du programme	Sigle	Crédits	Prérequis	Acquis d'apprentissage			
Master [120] : ingénieur civil en chimie et science des matériaux	KIMA2M	5		•			
Master [120] : ingénieur civil électricien	ELEC2M	5		•			
Master [120] : ingénieur civil physicien	FYAP2M	5		•			
Master de spécialisation en nanotechnologies	NANO2MC	5		٩			