UCLouvain		Imeca2648				-hydraulics (Centre ude nucléaire-Mol)
		5.00 credits 40.0		h + 7.5 h	Q1	

Teacher(s)	Bartosiewicz Yann ;					
Language :	English					
Place of the course	Louvain-la-Neuve					
Main themes	 Reactor heat generation Transport equations (single-phase & two-phase flow) Thermal analysis of fuel elements (Single-phase fluid mechanics and heat transfer)'usually already known Two-phase flow dynamics Two-phase heat transfer Single heated channel; steady state analysis Single heated channel; transient analysis Flow loops Utilisation of established codes and introduction to advanced topics (modelling and thermalhydraulics for GEN4 reactors) 					
Learning outcomes	 At the end of this learning unit, the student is able to : To be familiarised with various reactor types and their main design and operational characteristics To learn how to estimate the volumetric heat generation rate in fission reactor cores under normal operation and shutdown conditions To learn how to analyse the thermal performance of nuclear fuel elements To learn the basic fluid mechanics of single phase reactor cooling systems To learn to calculate pressure drop in reactor systems, including tube bundles, and spacer grids To learn the basic fluid mechanics of two-phase systems, including flow regime maps, void-quality relations, pressure drop, and critical flow To learn the fundamentals of boiling heat transfer, and its implications for reactor design To learn the fundamentals of core thermal design, with attention to design uncertainty analysis and hot channel factors. 					
Evaluation methods	The evaluation is a combination of continuous and in-session exam. The continuous part is a project (team of 2) where the students have to set up a simulation tools to calculate the pressure drop (plus temperature, quality profiles) in a boiling channel under different conditions. The exam is written (in english), and assess both theoretical and practical leaning outcomes. Thus this exam is split according a theoretical part (closed book) and a practical part (opened book) The final mark is calculated as: • Project + pratical part of the exam (11/20) • Exam (9/20)					
Teaching methods	 30h of ex catedra lectures 30h of partially-supervised personnal work (project) 16h of supervised exercice sessions (exercice sessions) The course takes place at the Nuclear Research Centre of Belgium (SCK.CEN) in gthe framework of the BNEN interuniversity programme (see: http://bnen.sckcen.be). Courses taking place at SCK.CEN are condensed over a period of 2 intensive weeks of courses.					
Content	 Lect. 1: Thermal design principles Lect. 2: Reactor energy distribution Lect. 3: Transport eqns. For 1-phase flow: Reminders/summary Lect. 4: Tranport eqns. For 2-phase flows:basic formulation Lect. 5: Tranport eqns. For 2-phase flows:equations Lect. 6: Thermodynamics, cycles: non-flow and steady flow Lect. 7: Thermodynamics, cycles: non steady flow first law Lect. 8: Thermal analysis of fuel elements Lect. 9: 1-phase fluid mechanics/pressure drops Lect. 11: 2-phase fluid mechanics/pressure drops Lect. 12: 2-phase heat transfer (pool boiling) 					

Université catholique de Louvain - Nuclear thermal-hydraulics (Centre d'étude nucléaire-Mol) - en-cours-2022-Imeca2648

	 Lect. 13: 2-phase heat transfer (flow boiling) Lect. 14: Single-heated channel: steady state analysis 					
Inline resources	http://bnen.sckcen.be					
Bibliography	• Todreas, N.E. and Kazimi, M.S. Nuclear System I: Thermal Hydraulic Fundamentals, CRC Press, 2012. • Todreas, N. E. and Kazimi, M.S. Nuclear Systems II: Elements of Thermal Hydraulic Design, Hemisphere Publishing Corp., New York, 1990. REFERENCE BOOKS ON THE CONTENT					
	 Todreas, N.E. and Kazimi, M.S. Nuclear System I: Thermal Hydraulic Fundamentals, CRC Press, 2012. Mandatory. Todreas, N. E. and Kazimi, M.S. Nuclear Systems II: Elements of Thermal Hydraulic Design, Hemisphere Publishing Corp., New York, 1990. Advised. 					
Faculty or entity in charge	MECA					

Programmes containing this learning unit (UE)								
Program title	Acronym	Credits	Prerequisite	Learning outcomes				
Master [120] in Mechanical Engineering	MECA2M	5		٩				
Master [120] in Electro- mechanical Engineering	ELME2M	5		٩				