5.00 credits
30.0 h + 15.0 h
Q2
Teacher(s)
Bieliavsky Pierre;
Language
French
Content
-Introduction to Lie groups and Lie algebras
-Homogeneous spaces
-Riemannian symmetric spaces
-Theory of representations of Lie groups. Kirilov's orbit method.
-Introduction to quantization and quantum geometry.
-Homogeneous spaces
-Riemannian symmetric spaces
-Theory of representations of Lie groups. Kirilov's orbit method.
-Introduction to quantization and quantum geometry.
Teaching methods
Lectures and homeworks.
Evaluation methods
Homeworks and oral exam.
Bibliography
- P. Malliavin, Géométrie différentielle intrinsèque.
- J. Milnor, Topology from a differentiable viewpoint.
- S. Kobayashi and K. Nomizu, Foundations of differential geometry.
- S. Helgason, Differential geometry, Lie groups and symmetric spaces.
- A. Kirillov, Lectures on the orbit method.
Teaching materials
- syllabus, énoncés et corrigés des homeworks sur moodle.
Faculty or entity
MATH