UCLouvain

lmat2420

2022

Complex analysis

5.00 credits 30.0 h + 15.0 h Q2

Teacher(s)	Claeys Tom ;					
Language :	English > French-friendly					
Place of the course	Louvain-la-Neuve					
Prerequisites	LMAT1222 - Complex Analysis 1 (second year of bachelor in mathematical sciences) or equivalent course					
Main themes	Reminders of complex analysis, conformal mappings, Möbius transformations, Riemann mapping theore asymptotic methods (Laplace method, steepest descent method), special functions					
Learning outcomes	At the end of this learning unit, the student is able to :					
	Contribution of the course to learning outcomes in the Master in Mathematics programme. By the end of this activity, students will have made progress in:					
	- Recognise and understand a basic foundation of mathematics. In particular:					
	Recognise the fundamental concepts of important current mathematical theories.					
	Establish the main connections between these theories.					
	- Show evidence of abstract thinking and of a critical spirit. In particular:					
	Identify the unifying features of different situations and experiments in mathematics or in closely related fields (probabilty and statistics, physics).					
	Argue within the context of the axiomatic method.					
	Construct and draw up a proof independently, with clarity and rigour.					
	Learning outcomes specific to the course. By the end of this activity, students will be able to:					
	(a) Understand and apply the major results from complex analysis.					
	(b) Understand the theory of conformal mappings and Möbius transformations.					
	(c) Construct bijective conformal mappings between simple domains.					
	(d) Understand and use several asymptotic methods.					
	The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the program(s) can be accessed at the end of this sheet, in the section entitled 'Programmes/courses offering this Teaching Unit'.					
	a LD Convey Evertions of any complex veriable					
Bibliography	 J.B. Conway, Functions of one complex variable. J.E. Marsden and M.J. Hofman, Basic complex analysis, third edition. 					
Faculty or entity in	MATH					
charge						

Programmes containing this learning unit (UE)						
Program title	Acronym	Credits	Prerequisite	Learning outcomes		
Master [60] in Physics	PHYS2M1	5		٩		
Master [120] in Mathematics	MATH2M	5		Q.		
Master [60] in Mathematics	MATH2M1	5		٩		
Master [120] in Physics	PHYS2M	5		٩		