vain	linma2345				Game theory
5	5.00 credits	30.0	n + 22.5 h	Q2	

Teacher(s)	Jungers Raphaël ;Philippe Matthew (compensates Jungers Raphaël) ;					
Language :	English > French-friendly					
Place of the course	Louvain-la-Neuve					
Prerequisites	Basic mathematics (bachelor level), applied math cursus is a plus.					
Main themes	Game theory is a rich and pluridisciplinary theory which aims at modeling and optimizing the way people tal decision in a concurrent environment (that is, if one's decision impacts each other's profit). It is the legacy of s among the 20th century's greatest mathematicians, like Von Neumann, Nash, It has ramifications in Sociol Economy, Mathematics, Operations Research, etc. The course will survey the main concepts of Game Theory, among which decision theory, Nash Equilibria, Ga with communication, Repeated Games, Bargaining and Coalitional games, and applications diverse field engineering.					
Learning outcomes	At the end of this learning unit, the student is able to :					
0	• AA1.1, AA1.2, AA1.3					
	• AA3.1 • AA5.1, AA5.2, AA5.3, AA5.4, AA5.5					
	At the end of the course, the student will be able to :					
	 Understand and explain the framework of Decision Theory, its intrinsic limitations and broad goals, and how it leads to Game Theory. Choose the particular tools in the game theorist's toolbox in order to properly model a 'real-life' situation. Study and solve a problem in game theory by the computation of equilibria. Criticize and analyze the results of these computations for practical implementations. Transversal L.O.: During the course, the student will learn how to detect, model, and analyze practical situations and, based on this mathematical model, propose a relevant solution. 					
Evaluation methods	Written or oral exam. A continuous evaluation could take place. In case of a written exam, in case of doubt, the teacher might invite the student for a supplementary oral exam.					
Teaching methods	The course will be given partly by the professor, and partly as a seminar with student presentations. Regular exercise sessions will be delivered. Some activities could be organized remotely, e.g. on MS Teams.					
Content	 Decision Theory: axioms, fundamental theorems, bayesian models, significance. Elementary Game theory: strategic/extended form, Domination, Iterative deletion. Nash equilibrium, Nash's theorem, 2 players zero-sum games. Sequential equilibria, computation and significance. Perfect, proper, robust equilibria. Games with communication and correlated equilibria. Repeated games. Nash's bargaining theory. Coalitional games: the core, Shapley's value, Applications to: Finance, auctions, voting,' 					
Inline resources	Please see the Moodle website.					
Bibliography	Main: • Myerson, Roger B. Game Theory: Analysis of Conflict, Harvard University, 1991. Others:					
	 Osborne, Martin J. An introduction to game theory, Oxford University Press, 2004. Osborne, Martin J.; Rubinstein, Ariel. A course in game theory, MIT Press, 1994. Nowak, Martin A. Evolutionary Dynamics: Exploring the Equations of Life. Harvard University Press, 2006. 					

Faculty or entity in	МАР
charge	

Programmes containing this learning unit (UE)								
Program title	Acronym	Credits	Prerequisite	Learning outcomes				
Master [120] in Mathematics	MATH2M	5		٩				
Master [120] in Mathematical Engineering	MAP2M	5		٩				