

Program design methods

5.00 credits

30.0 h + 30.0 h

Q1

Teacher(s)	Pecheur Charles ;				
Language :	French				
Place of the course	Louvain-la-Neuve				
Prerequisites	This course assumes acquired skills in programming, algorithms and data structures covered by the LEPL1402 course and the logic concepts covered by the LINFO1114 course.				
Main themes	 Specification of simple programs, with procedures and with data structures Logic and recurrence Proof of simple programs, with procedures and with data structures Algorithm design techniques Programming schemes 				
Learning outcomes	At the end of this learning unit, the student is able to :				
	Given the learning outcomes of the "Bachelor in Computer science" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes: • S1.I5				
	• \$2.2-3				
	1 Students completing successfully this course will be able to				
	 imagine a correct and efficient algorithm to solve a given problem create and specify the design of a software product using an appropriate program design and notation methodology demonstrate the exactness of simple algorithms use a rigorous approach to ensure the exactness of the result, using mathematical tools 				
Evaluation methods	The assessment is based on the work done during the semester (25%) and on a written exam during the session (75%). The works cannot be represented in the second session; in September, the final grade will be made up of the exam only (100%). Depending on the circumstances, the exam can be organized remotely.				
Teaching methods	The course includes:				
-	 lectures every week, exercise sessions to apply the concepts seen in class in simple situations, projects to practice the techniques when designing a larger application. 				
	Depending on the circumstances, all or part of the courses and exercises could be broadcast and recorded so that they can be followed remotely.				
Content	 Specification of programs Proof of simple programs: wp calculus Recurrence and Induction Proofs of programs: method of inductive assertions Procedures and recursion Data structures Decomposition into sub-problems Automatic Program Proofs Object-oriented programming: design patterns 				
Inline resources	All resources are available at site Moodle du cours.				
Faculty or entity in charge	INFO				

Programmes containing this learning unit (UE)					
Program title	Acronym	Credits	Prerequisite	Learning outcomes	
Additional module in computer science	APPSINF	5		٩	
Master [120] in Chemistry and Bioindustries	BIRC2M	5		٩	