	vain	lgciv2041		Numerical analysis of civil engineering structures		
[_	4.00 credits	credits 20.0 h		Q2	

Teacher(s)	Rattez Hadrien ;Saraiva Esteves Pacheco De Almeida João ;					
Language :	English > French-friendly					
Place of the course	Louvain-la-Neuve					
Prerequisites	Good knowledge of structural mechanics, structures stability and basis of finite elements method, as taught LGCIV1022 et LGCIV1023					
Main themes	 Variational principles in structural mechanics, classical theory of finite elements for structures: Trusses (2D and 3D) Frames (2D and 3D) Plates and shells Plane stress and plane strains. More advanced material will eventually be covered: elasto-plastic modelling of frames, structural instabilities, modelling of brittle materials, lage displacements in structures. A computer project will be assigned to students that will consist in the development of a finite element code for a specific type of structure. The code will have to deal with inputs and outputs, including a graphical user interface.					
Learning outcomes	At the end of this learning unit, the student is able to : Contribution of the course to the program objectives (N°) AA1.1, AA1.2, AA1.3, AA2.1, AA2.2, AA2.3, AA2.4, AA3.1, AA3.2, AA4.2, AA4.4, AA5.6. Specific learning outcomes of the course ¹ • Students will understand the principles of the finite element method applied to usual civil engineering structures (beams, frames, plates and shells). • Students will be trained in programming the finite element method. This includes the treatment of input data and the post-treatment of the results.					
Evaluation methods	Updated: 2022.09.12 Continuous assessment and final oral exam.					
Teaching methods	Updated: 2022.09.12 Lectures based on course slides; exercise sessions; practical applications.					
Content	 Updated: 2022.09.12 Theoretical development of the finite element method for beams, 2D, and 3D elastic elements, followed by practical considerations and applications. Classical issues in structural mechanics and remedies (e.g., shear locking, reduced integration, flexibility formulations volumetric locking, instabilities). Solution methods in nonlinear problems (incremental-iterative procedures, convergence criteria, etc) Geometrical nonlinearities (total Lagrangian, updated Lagragian, co-rotational formulations) Material nonlinearities (elasticity <i>vs</i> plasticity, elastoplasticity, plasticity, yield surface, flow rule, hardening, etc) (if time allows) Localisation and regularisation 					
Inline resources	Updated: 2022.09.12 Available in Moodle.					
Bibliography	Notes et supports de cours.					
Other infos	Updated: 2022.09.12 The course involves: - The use / development of Python scripts; - The use of a commercial/research finite element software (Abaqus).					

Faculty or entity in	GC
charge	

Programmes containing this learning unit (UE)							
Program title	Acronym	Credits	Prerequisite	Learning outcomes			
Master [120] in Civil Engineering	GCE2M	4		٩			
Master [120] in Mechanical Engineering	MECA2M	4		٩			
Master [120] in Electro- mechanical Engineering	ELME2M	4		٩			
Master [120] in Mathematical Engineering	MAP2M	4		٩			