

Teacher(s)	Branders Vincent (compensates Dupont Pierre) ;Dupont Pierre ;					
Language :	English > French-friendly Louvain-la-Neuve					
Place of the course						
Prerequisites	 Students are expected to master the following skills : implement and test a solution in the form of a software prototype and/or a numerical model, demonstrate a good understanding of the basic concepts and the methodology of programming, make a relevant choice between several data representations and algorithms to process them, analyse a problem to provide an IT solution and implement it in a high level programming language, understand and know how to apply in various stuations the basic concepts of probability and statistical inference, use a scientific approach to extract reliable information from a data sample, as covered within the courses LEPL1401, LEPL1402, LEPL1109 The following skills are also useful. They are briefly reviewed at the beginning of the LGBIO2010 course : explain the functions that take place in the cells of a living organism, describe the basic concepts of molecular genetics, define the different classes of biomolecules and their links within the cell processes and structures, 					
	as covered within the courses LGBIO1111 and LBIR1250A					
Main themes	 Introduction to molecular biology Searching methods in biological databases Sequence comparisons, sequence alignment algorithms Motif search Hidden Markov models Gene expression measurement technology Transcriptome analysis methods Inference of interaction networks Phylogeny 					
Learning outcomes	At the end of this learning unit, the student is able to : With respect to the AA referring system defined for the Master in biomedical engineering, the course contributes to the development, mastery and assessment of the following skills : • AA1.1, AA1.2, AA1.3 • AA2.2, AA2.4 • AA4.3 • AA5.3 At the end of this course, students will be able: • to master the basic concepts of molecular biology for appropriate use of bioinformatics tools, • to design and develop tools or methods for database management, information extraction and data mining, • to formulate informed decisions between the many computational methods that are available for solving biological questions, • to carry out a collaborative project aiming at the resolution of a bioinformatics problem and taking benefit from complementary student's education and expertise, • to use the information available in major sequence databases (Genbank, Uniprot) with a critical mind and with discernment, • to master a software environment such as R (Bioconductor).					

	The final grade consists of
Evaluation methods	The final grade consists of
	 25% for computing projects implemented in groups during the semester 75% for the final exam
	The projects cannot be re-implemented for the second session. Hence, the project grade is fixed at the end of the semester.
	The final exam is, by default, a written exam (on paper or, when appropriate, on a computer).
Teaching methods	Lectures and computing projects.
	 The projects are made in groups of (max) 2 students to implement, possibly to adapt, concrete algorithms covered in the course lectures.
	• The projects are implemented in R. An R tutorial is included at the beginning of the first project.
	Practical <i>projects</i> are submitted on line and evaluated on the Inginious platform.
Content	 Overview of basic concepts in molecular biology Search in biological databases Sequence comparison, pairwise and multiple sequence alignments Hidden Markov models
	Phylogenetic tree inference algorithms
	 Gene expression analysis methods (transcriptomics) Biomarker selection
	Predictive modeling
Inline resources	moodle.uclouvain.be/course/view.php?id=1839
	https://inginious.info.ucl.ac.be/course/LGBIO2010
Bibliography	Recommended textbooks - Ouvrages complémentaires conseillés :
	- Biological Sequence Analysis : Probabilistic Models of Proteins and Nucleic Acids, R. Durbin et al., Cambridge University Press, 1998.
	- Inferring Phylogenies, J. Felsenstein, Sinauer Associates; 2nd ed., 2003.
	 Bioinformatics, Sequence and Genome Analysis, D. Mount, Cold Spring Harbord Laboratory Press, 2nd ed., 2004. Introduction to Computational Genomics : a case-study approach, N. Cristianini M. Hand, Cambridge University Press, 2007.
Faculty or entity in	GBIO
charge	

Programmes containing this learning unit (UE)						
Program title	Acronym	Credits	Prerequisite	Learning outcomes		
Master [120] in Biomedical Engineering	GBIO2M	5		٩		
Master [120] in Statistics: Biostatistics	BSTA2M	5		٩		
Master [120] in Computer Science and Engineering	INFO2M	5		ø		
Master [120] in Computer Science	SINF2M	5		٩		
Master [120] in Mathematical Engineering	MAP2M	5		٩		
Master [120] in Data Science Engineering	DATE2M	5		٩		
Master [120] in Data Science: Information Technology	DATI2M	5		٩		