UCLou	vain	lelec2885		Image processing and computer		
		2022				vision
		5.00 credits	30.0	h + 30.0 h	Q1	

Teacher(s)	De Vleeschouwer Christophe (coordinator) ;Jacques Laurent ;				
Language :	English > French-friendly				
Place of the course	Louvain-la-Neuve				
Main themes	This course is part of the ELEC/EPL program in "information and signal processing". The main object LELEC2885 is to introduce all the concepts needed to understand the "image" signals, from their acquisition their processing, through the important questions of signal representation and approximation occuring during transmission or interpretation.				
Learning outcomes	At the end of this learning unit, the student is able to :				
j i i i i	With respect to the AA referring system defined for the Master in Electrical Engineering, the course contributes to the develoopment, mastery and assessment of the following skills :				
	• AA1.1, AA1.2 • AA3.1, AA3.3 • AA5.5, AA5.6				
	b. At the end of this course, the student will be able to:				
	1. Handle techniques of representation and approximation of images in order to extract their meaningful components with respect to a particular application, for example, in the fields of data transmission or interpretation;				
	2. Apply linear and non-linear filtering operations (e.g., morphological) to isolate certain frequency components or to cancel particular noises;				
	¹ 3. Detect structures of interest in an image, such as contours, key features, etc				
	4. Segment an image into regions of homogeneous characteristics, targeting a semantic interpretation of the image content;				
	5. Restore images corrupted a noise or a blurring;				
	6. Understand the basic principles of inverse problem solving in imaging and in compressed sensing;				
	 7. Manage image databases using detection tools or classification; 8. Detect and track one or more object(s) of interest in video streams, in biomedical applications or for 				
	 3-D scene interpretation; 9. Compress image signals considering their visual perception and their accessability in the compressed sized expression and their accessability in the compressed sized expression. 				
	signal representation; 10. Provide a solution to complex problems involving image processing, such as quality control, visiosurveillance, multimodal human-machine interfaces, and image compression.				
Evoluction methods	The evaluation includes two components :				
Evaluation methods					
	 An oral examination (in-session): Scheduled in January, this test evaluates individually the students on their understanding of the concepts and methods taught during the theoretical courses. An evaluation of the Python numerical exercises (off-session): students are evaluated on a computer (in session) based on problems similar to those presented during the year. The evaluations associated with this context are organized only once during the semester. 				
	These 2 components are weighted as 70% and 30% of the final grade, respectively. The note obtained for the Python numerical exercises is acquired for all sessions of the academic year.				
Teaching methods	The course is organized around a series of lectures, each dealing with a specific problem commonly encountered in the field of image processing. Each lesson introduces a selection of the main solutions found in the literature and/or the industry to solve the problem of interest, and a list of references is provided for each covered topic.				
	In addition to the theoretical classes, numerical exercise sessions under Python are organized in a computer room Students are asked to program different algorithms associated with a consistent sub-selection of the techniques taught. They use existing Python libraries for this purpose. Learning is provided by problem solving, based on rea or synthetic images/signals, sometimes associated with external databases.				
	The course is given in the classroom exclusively.				
Content	Image representation: Pixels, Fourier and Multiscale Transforms. The wavelet transform.				

	Université catholique de Louvain - Image processing and computer vision - en-cours-2022-lelec2885
	 The sparsity principle and applications: from orthonormal bases to redundant systems. Human visual system and salient image features. Image classification and deep learning introduction. Basic tools of image analysis: mathematical morphology and relatives. Image segmentation, (spectral) clustering, watershed and level sets An introduction to computational imaging Detection-based (multi-) object tracking: detect-before-track Recursive visual object tracking: track-before-detect Principles of stereo vision From entropy coding to image compression Video compression, and sparse approximation coding
Inline resources	Moodle https://moodle.uclouvain.be/course/view.php?id=982
Bibliography	Support de cours : Transparents, articles tutoriaux et parties de code Python. Les documents du cours sont disponibles sur Moodle <u>Course materials</u> : Slides, tutorials and parts of Python code. Course documents are available on Moodle
Other infos	This course assumes that the basics of signal processing, such as taught in the course "signals and systems" (LFSAB1106) or "digital signal processing" (LELEC2900), are known.
Faculty or entity in charge	ELEC

Programmes containing this learning unit (UE)							
Program title	Acronym	Credits	Prerequisite	Learning outcomes			
Master [120] in Biomedical Engineering	GBIO2M	5		٩			
Master [120] in Electrical Engineering	ELEC2M	5		٩			
Master [120] in Computer Science and Engineering	INFO2M	5		٩			
Master [120] in Computer Science	SINF2M	5		ø			
Master [120] in Mathematical Engineering	MAP2M	5		٩			
Master [120] in Data Science Engineering	DATE2M	5		٩			
Master [120] in Data Science: Information Technology	DATI2M	5		٩			